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Abstract 
This paper presents the optimization technique to reduce the geospatial data cube size and enhance the 
land cover classification. The technique is based on training sample separability. Accordingly, the 
Separability Index of the Training Sample (SITS) was developed and used as the object function for the 
optimization. In order to test the effectiveness of the optimization technique, the experiment was 
conducted. It implied the land cover classification of the highly heterogeneous natural landscapes in the 
case of the Shatsky National Natural Park, where the prevailing landscape is wetlands. After the 
optimization of the input geospatial data cube, classification enhancement was evidenced by increasing 
indicators such as overall accuracy by 0.04 from 0.9 to 0.94 and the kappa coefficient by 0.06 from 0.86 
to 0.92. In addition, the data cube size was reduced by 5.55 times from 222 to 40 layers 

Keywords  
Remote sensing, land cover classification, supervised classification, training sample separability, 
geospatial data cube, data optimization1  

1. Introduction 

Land cover classification is a critical process in remote sensing, providing spatially explicit 
information at different scales for numerous environmental applications [1]. Such information is 
widely applied to issues that require practical geospatial solutions like land cover change 
detection [2], environmental monitoring [3,4], fossil fuel exploration [5], and landmine detection 
[6]. Land classification techniques, likewise, play a crucial role in the integration of Earth 
observation data into comprehensive interdisciplinary issues on sustainable development goals 
achieving [7, 8], in particular, combat climate change and its impacts [9], reverse land degradation 
[10] and halt biodiversity loss [11], protect water-related ecosystem for safety water supply [12], 
and provide support for food security and sustainable agriculture [13, 14]. 

Today, most classification methods are mainly divided into supervised and unsupervised [15]. 
However, in remote sensing, the supervised classification methods are the most appropriate for 
the majority of the thematic tasks because applying these methods can establish the 
characteristics of the output classes, unlike unsupervised ones. A training sample set is used to 
set the characteristics of classes in supervised classification methods. Such a set contains the 
signatures of features of each class.  

The input data for classification is heterogeneous geospatial data, which can be represented 
in the form of raster layers. To combine such layers into a single array, it is customary to form a 
geospatial data cube [16]. From ordinary datasets, data cubes differ by integrating different data 
types into a coherent and interoperable structure [17, 18]. After the cube's formation, the training 
sample's signatures must be determined in each layer. Hence, each layer is a feature of the 
training sample. 
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A geospatial data cube for specific classification tasks can comprise numerous layers. 
Including multitemporal data, a data cube aims to distinguish dynamic objects that change 
significantly during a specific period or vary much from each other at different stages of their 
development, e.g. vegetation cover, wetlands in particular [12]. Different physical aspects of 
multisource data, e.g. optical and radar, highlight diverse object traits and variations in land cover 
types [19]. Multiple ancillary data, e.g. data on geomorphology, hydrology, or phenology, help to 
differentiate land cover types due to their context [20].  

However, the redundancy of the geospatial data cube causes two significant problems [21]. 
Firstly, the processing of such a data cube has high computational complexity. Secondly, since the 
signatures of the training sample are defined in each layer of the geospatial data cube, the 
separability of the training sample can be reduced if the layers are either incorrectly created or 
irrelevant to the selected thematic task. In turn, the low separability of the training sample leads 
to a decrease in classification accuracy [22].  

In light of the above, optimization of the geospatial data cube is seen as a solution to the 
mentioned problems [23, 24]. Among approaches to reduce input data, the Principal Component 
Analysis (PCA) [25] and the Minimum Noise Fraction (MNF) [26] are the most widely used. There 
are also similar methods, for example, Noise-Adjusted Principal Components (NAPC) [27], 
Independent Component Analysis (ICA) [28], Non-Negative Matrix Factorization (NMF) [29] and 
Spatio-Spectral Decomposition (SSD) [30]. However, a common disadvantage of the considered 
approaches is that they do not consider the training sample's structure (in particular 
separability) and the selected classifier's specificity.  

The presented study aims to enhance land cover classification by selecting the cube layers, the 
training sample separability of which will be the highest among other options. For this purpose, 
the optimization technique of the geospatial data cube was developed. It has two goals: 
enhancement of land cover classification and reduction of geospatial data cube size. 

Hence, in the relevant sections of this article, the separability assessment of the training 
sample, the optimization technique of the geospatial data cube, and the experiment conducted to 
demonstrate the effectiveness of the developed technique are described. 

 

2. Methods 

This section presents the optimization technique of a geospatial data cube. Since this optimization 
is based on training sample separability, the objection function is the developed separability 
index of the training sample (SITS). Thus, the training sample separability assessment is also 
presented below as an algorithm for SITS calculation. 

2.1. Assessment of the training sample separability 

Separability is one of the training sample characteristics that affect classification accuracy. 
This characteristic shows the extent to which signatures representing different classes do not 
overlap. A low degree of separability is inherent in a high level of training sample mixing. In turn, 
this leads to a significant number of misclassified objects in the classification. Thus, the training 
sample separability is directly proportional to the classification accuracy.  

The algorithm depicted in the flowchart(Figure 1) describes the separability assessment of the 
training sample.  

 

 
Figure 1: Algorithm of the separability assessment of the training sample 



The first step implies classifier training by the training sample. Importantly, the supervised 
classification method must be the same as the one selected to classify the geospatial data cube 
further. Moreover, due to the proposed, separability depends on its structure (i.e., the set of 
layers) and the selected supervised classification method. 

In the second step, the classifier is used to classify each signature from the training sample set. 
The third step is the formation of the confusion matrix [31] for the classification obtained in 

the previous step.  
The fourth and final step is calculating the SITS. This index quantifies the separability of 

training samples by measuring the ratio of correctly classified training samples to the total 
number of training samples. In other words, SITS equals the overall accuracy [31] based on the 
confusion matrix obtained in the previous step. The calculation of the SITS is shown in the 
following formula: 

𝑆𝐼𝑇𝑆 =
∑ 𝑥𝑖𝑖

𝐾
𝑖=1

𝑁
, 

(1) 

where 𝐾 is the number of classes, N is the total number of training sample signatures, 𝑥𝑖𝑖  is the 
number of class i signatures classified as class i (i.e. diagonal elements of the obtained confusion 
matrix that correspond to correctly classified signatures). 

The values of the considered index range from 0 to 1. In this case, the value 0 shows that the 
training sample is entirely mixed (minimum separability), and the value 1 corresponds to the 
training sample, which is entirely separable (maximum separability). 

2.2. Optimization technique 

This technique is an optimization procedure that aims to reduce the number of layers of the 
geospatial data cube and increase the separability of the training sample, the signatures of which 
are defined in each layer of this cube. The objective function implies using the SITS. Thus, 
geospatial data cube optimization can be described as a search of the minor number of cube layers 
for which the training sample has the highest SITS value among all other sets of cube layers. 

The flowchart of the technique algorithm is shown in Figure 2. 
 

 
Figure 2: Algorithm of the optimization technique 



The initial data and their characteristics will be introduced below for a detailed description of 
the technique algorithm. 

Let the initial geospatial data cube have the following form: 
𝐺𝐶𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = {𝐿1, 𝐿2, … , 𝐿𝑁},  

where 𝐿𝑖 is the layer i of the geospatial data cube, and N is the total number of layers included 
in the initial geospatial data cube. 

Then, as shown in Figure 2, the SITS value of the initial training sample, which has the 
signatures defined in each layer of the initial geospatial data cube, is first calculated. Let this value 
be 𝑆𝐼𝑇𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙. 

Let us assign the values obtained above to the variables corresponding to the optimal set of 
layers of the geospatial data cube and the corresponding value of the SITS. Thus, we have: 

𝐺𝐶𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ≔ 𝐺𝐶𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙,  

𝑆𝐼𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ≔ 𝑆𝐼𝑇𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙.  

Next, an iterative procedure follows, in which the following steps are performed at each 
iteration. 

Step 1. At the iteration i, the current geospatial data cube 𝐺𝐶𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙, consisting of N-(i-1) 

layers, is decomposed into N-(i-1) cubes. Each newly formed cube is obtained by discarding one 
of the layers from the current cube. Then, each of the newly created geospatial data cubes will 
have the following form:  

𝐺𝐶𝐷1
′ = 𝐺𝐶𝐷 − {𝐿1} = {𝐿2, 𝐿3, … , 𝐿𝑁−(𝑖−1)},  

𝐺𝐶𝐷2
′ = 𝐺𝐶𝐷 − {𝐿2} = {𝐿1, 𝐿3 … , 𝐿𝑁−(𝑖−1)},  

…  

𝐺𝐶𝐷𝑁−(𝑖−1)
′ = 𝐺𝐶𝐷 − {𝐿𝑁−(𝑖−1)} = {𝐿1, … , 𝐿𝑁−(𝑖−1)−1}.  

Since the number of layers decreases by one at each iteration, the obtained cubes will contain 
N-i layers. Therefore, the following is valid: 

|𝐺𝐶𝐷1
′| = |𝐺𝐶𝐷2

′ | = ⋯ = |𝐺𝐶𝐷𝑁−(𝑖−1)
′ | = 𝑁 − 𝑖.  

Thus, the generated cubes can be written in the form of the following set: 

𝐶 = {𝐺𝐶𝐷1
′ , 𝐺𝐶𝐷2

′ , … , 𝐺𝐶𝐷𝑁−(𝑖−1)
′ }.  

Step 2. For each newly formed cube, the SITS value is calculated for the training sample, the 
signatures of which are defined in each cube layer. Then, the value of SITS for a particular cube 
𝐺𝐶𝐷𝑡

′ will be denoted as 𝑆𝐼𝑇𝑆𝑡
′. Thus, a set containing the value of the SITS for each newly formed 

cube will be obtained: 
𝑆 = {𝑆𝐼𝑇𝑆1,

′ 𝑆𝐼𝑇𝑆2
′ , … , 𝑆𝐼𝑇𝑆𝑁−(𝑖−1)

′ }.  

Step 3. Among the obtained cubes, the one with the highest value of the SITS is selected. Such 
a cube will be denoted as 𝐺𝐶𝐷𝑖. The selected cube can be expressed as follows: 

𝐺𝐶𝐷𝑖 = {𝐺𝐶𝐷𝑡
′ ∈  𝐶|𝑆𝐼𝑇𝑆𝑡

′ = max{𝑆}}.  
𝑆𝐼𝑇𝑆𝑖 denotes the value of the SITS of the geospatial data cube 𝐺𝐶𝐷𝑖 . 

Step 4. The values of the variables 𝑆𝐼𝑇𝑆𝑖 and 𝑆𝐼𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙 are compared, and two options are 

considered: 
1) if 𝑆𝐼𝑇𝑆𝑖 < 𝑆𝐼𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙, then the execution of the optimization algorithm will be interrupted, 

and further steps will be ignored. The optimal geospatial data cube will be the one obtained in 
the previous iteration, namely 𝐺𝐶𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙. Accordingly, the SITS of the training sample of the 

corresponding cube has the value 𝑆𝐼𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . 

2) if 𝑆𝐼𝑇𝑆𝑖 ≥ 𝑆𝐼𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙, then the variable 𝑆𝐼𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is assigned the value of the variable 

𝑆𝐼𝑇𝑆𝑖, i.e.: 
𝑆𝐼𝑇𝑆𝑖 ≔ 𝑆𝐼𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙.  

Step 5. At this step, as at the previous one, two options are considered: 
1) if the number of layers of the obtained cube 𝐺𝐶𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is 1, i.e.: 

|𝐺𝐶𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙| = 1,  

then the execution of the optimization algorithm will be interrupted. The optimal geospatial data 
cube will be the one obtained at the current iteration, namely – 𝐺𝐶𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙. Accordingly, the SITS 

value of the training sample of the corresponding cube is – 𝑆𝐼𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . 



2) if the number of layers of the obtained geospatial data cube 𝑮𝑪𝑫𝒐𝒑𝒕𝒊𝒎𝒂𝒍 is greater than 1, 

i.e.: 

|𝐺𝐶𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙| > 1,  

then a new iteration will start, and the actions specified in step 1 will be performed again.  
The result of the described optimization procedure is the geospatial data cube with the set of 

layers that achieves the highest value of the SITS among all other considered sets. This geospatial 
data cube will be used for further land cover classification.  
 

3. Experiment 

The experiment was conducted to test the effectiveness of the developed technique. It consisted 
of carrying out a classification of the selected study area. For this purpose, an initial geospatial 
data cube with an excessive number of layers was formed. Then, the optimization technique was 
applied, resulting in an optimized cube. Finally, two classifications were obtained – before and 
after the optimization. 

3.1. Study area 

Since 2007, the Ukrainian network of test sites has provided validation and calibration of 
various remote sensing techniques and satellite-based products, including land cover 
classification [32]. The proposed technique was tested at the site within the Shatsk National 
Natural Park (SNNP). It is situated in the northwest of Ukraine, within Volyn' oblast, between 51º 
28'25"N and 23º 49'29"E. The SNNP encompasses highly heterogeneous natural landscapes, like 
forests, peat bogs, transitional mires, meadows, and lakes.  

The site comprises more than 100 georeferenced sample plots and gives comprehensive 
ground truth information about the representative landscapes of the West Polissia region (Figure 
3).  

 

 
Figure 3: Location of the study area and sample plots within the Shatsk National Natural Park. 
The background is the true-colored composite of the Sentinel-2 Multispectral Instrument (MSI) 
image acquired on 1 June 2018 

3.2. Training sample 

Six broad land cover classes that characterize the study area were defined: artificial surfaces, 
tree-covered areas, grassland, agricultural areas, water bodies, and wetlands.  

The given classes varied considerably both in spatial extent and heterogeneity. The smallest 
class of artificial surfaces included diverse features of built-up areas and transport units. While 
the biggest ones, like tree-covered areas and wetlands, included various sub-types that could still 



be quite homogenous due to the big extent. Water bodies represent the most homogeneous class. 
Therefore, the number of training pixels of each class also varied disproportionally. The overall 
number of all training pixels accounted for 6474. Table 1 shows labels, descriptions, and training 
pixel amounts for the land cover classes assigned for the experiment. 
 
Table 1  
The classification scheme used in the experiment 

# Land Cover Class Description Training pixels 

1 Artificial surfaces 
Urban public and industrial built-up areas, 
transport units, and construction sites 

319 

2 Tree-covered areas 
Broadleaved, coniferous, mixed and swamped 
forests, orchards, roadside tree lines 

2313 

3 Grasslands 
Natural herbaceous vegetation, permanent 
grasslands of natural origin, pastures 

634 

4 Agricultural areas 
Arable land, permanent crops, fallow lands, 
heterogeneous agricultural areas, open soils 

887 

5 Water bodies 
Lakes, rivers and streams of natural origin, 
including man-made reservoirs and canals 

634 

6 Wetlands 
Non-forested areas of peat bogs, transitional 
mires, eutrophic marshes, and reed beds 

1687 

3.3. Initial geospatial data cube 

The experimental classification focuses on wetlands, the prevailing landscape of the test site 
and one of the most important for conservation within the SNNP. Evident differences in the 
seasonal development of wetlands and other vegetative land cover classes help distinguish them 
and require the application of multitemporal data [12].  

The primary data source for forming the geospatial data cube was Sentinel-2 satellite imagery 
[33]. The images were selected for 4 dates (04.07.2018, 05.12.2018, 06.01.2018 and 10.14.2018) 
with minimal or no cloudiness. 

Each Sentinel-2 image contains 13 spectral bands. At the preprocessing stage, atmospheric 
correction was performed for each image to eliminate the influence of the atmosphere and 
calculate the pixel values corresponding to the surface reflectance (bottom of atmosphere). 
During this procedure, 3 bands (B1, B9 and B10) that consider the effects of aerosols and water 
vapour on reflectance were removed. The spectral bands of the Sentinel-2 image have different 
spatial resolutions, namely 10, 20 and 60 meters. 

Next, a complete set of normalized difference indices was calculated for each image. The 
following combnatorial formula is used to calculate such an index: 

𝐼𝑛𝑑𝑒𝑥 =
𝑏𝑖 − 𝑏𝑗

𝑏𝑖 + 𝑏𝑗
, 𝑖 ≠ 𝑗, 

 

where 𝑏𝑖 is the spectral band i. 
This set could be presented in the following form: 

𝑁𝐷𝐼 = {
𝑏𝑖 − 𝑏𝑗

𝑏𝑖 + 𝑏𝑗
|𝑖, 𝑗 ∈ {1,2 … ,10}, 𝑖 ≠ 𝑗}. 

 

The cardinality of this set (i.e. number of normalized difference indices of one image) is 
calculated by the formula below: 

|𝑁𝐷𝐼| = 𝐶𝑛
𝑚 =

𝑛!

𝑚! (𝑛 − 𝑚)!
=  

10!

2! (10 − 2)!
=

8! ∗ 9 ∗ 10

1 ∗ 2 ∗ 8!
=

90

2
= 45, 

 

where variable n corresponds to the number of image bands, and m is the number of 
arguments in the index calculation formula. 

As a result, 45 spectral indices were obtained for each image. 
Another component of the input cube was the geomorphological data obtained from the ALOS 

PALSAR DEM [34]. In particular, this data contains the height above sea level and the slope. Their 
spatial resolution is 12.5 m. 



All the above-described data must be spatially regularized to form the input geospatial data 
cube. It involves bringing all layers to the same spatial resolution, map projection, and size. With 
this in mind, all layers were scaled to a spatial resolution of 10 m, transformed to Universal 
Transverse Mercator Projection, Zone 34N (EPSG:32634) and resized so that all layers lie within 
the study area. 

So, the input geospatial data cube contained 222 raster layers, namely 40 spectral bands of 4 
different time Sentinel-2 satellite images, 180 corresponding spectral indices, and 2 raster layers 
of geomorphological parameters. The layers of the input cube are described in Table 2. 
 
Table 2 
Layers of the initial geospatial data cube 

Date 
(DD/MM/YYYY) 

Spectral bands Spectral indices Geomorphological 
data 

07.04.2018 10 45 

2 
12.05.2018 10 45 

01.06.2018 10 45 

14.10.2018 10 45 

 
Hence, signatures of the initial training sample were assigned in each layer of the initial cube. 

To assess the separability of the training sample, the SITS was calculated using Formula 1: 

𝑆𝐼𝑇𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙 =
∑ 𝑥𝑖𝑖

𝐾
𝑖=1

𝑁
=

6469

6474
≈  0.9992. 

 

As seen above, this training sample had 5 misclassified signatures.  

3.4. Optimized geospatial data cube 

After applying the developed optimization technique, the geospatial data cube size was 
reduced from 222 to 40 layers. The selected layers are listed below in Table 3. 

 
Table 3  
Layer of the optimized geospatial data cube 

Date 
(DD/MM/YYYY) 

Spectral bands Spectral indices Geomorphological 
data 

07.04.2018 0/10 4/45 

1/2 
12.05.2018 4/10 0/45 

01.06.2018 2/10 17/45 

14.10.2018 1/10 11/45 

 
Along with the cube optimization, the training sample signatures were reassigned according 

to the selected cube layers. The separability of that training sample was assessed by the SITS 
calculated below: 

𝑆𝐼𝑇𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙 =
∑ 𝑥𝑖𝑖

𝐾
𝑖=1

𝑁
=

6474

6474
=  1. 

 

This training sample had no misclassified signatures, so the optimized training sample was 
entirely separated. 

3.5. Land cover classifications 

In order to test the effectiveness of the developed technique, the classifications using the initial 
cube and the optimized one were compared.  

Firstly, the classification was obtained using the initial cube and the appropriate training 
sample. Then, the classification was obtained using the optimized cube and the appropriate 
training sample. These classifications are depicted in Figure 4.  

 



 

a) 

 

b) 

 

Figure 4: Land cover maps of the study area were obtained using a) the initial cube and b) the 
optimized cube 

 

The classifications above were obtained using Mahalanobis distance [35] as a supervised 
classification method. Exactly for this method, the separability assessment of the training sample 
was carried out for both initial and final geospatial data cubes. 



3.6. Accuracy assessment 

Classification accuracy assessment involved independent verification of initial and final land 
cover maps using proportionate stratified random samplings. This sampling technique produces 
sample set sizes directly related to the size of the classes and is widely used in assessing the 
classification accuracy of classes disproportionate in their extent. As the required sample size for 
a class, 0.01% of the total classified pixels of this class were analyzed. Thus, test sample sets were 
equal to 300 pixels for each land cover map. Satellite images (QuickBird) of high spatial 
resolution, available for 2018 in the Google Earth Pro app, were used for verification as reference 
data.  

Table 4 shows the confusion matrix of the initial land cover map. In addition to the two 
dimensions ("Reference" and "Prediction"), this matrix shows metrics such as producer accuracy 
(PA) and user accuracy (UA) for each class [31]. 

 
Table 4 
Confusion matrix of the initial land cover map 

  
Reference    

1 2 3 4 5 6 
Total 
(pixels) 

UA  

P
re

d
ic

ti
o

n
 

1.Artificial 
surfaces 

14 0 1 2 7 0 24 0,58 

2.Tree-
covered 
areas 

0 134 0 0 1 0 135 0,99 

3.Grasslands 0 3 29 5 0 1 38 0,76 

4.Other 
lands 

0 0 0 15 0 0 15 1 

5.Water 
bodies 

0 0 0 0 53 0 53 1 

6.Wetlands 1 0 6 2 1 25 35 0,71 

Total 
(pixels) 

15 137 36 24 62 26 300  

PA  0,93 0,98 0,81 0,63 0,85 0,96     

 
The accuracy of the obtained land cover classification was assessed by indicators of overall 

accuracy and the kappa coefficient [31]. The overall accuracy value was calculated by the 
following formula: 

𝑂𝐴 =
∑ 𝑥𝑖𝑖

𝐾
𝑖=1

𝑁
=

14 + 134 + 29 + 15 + 53 + 25

300
=

270

300
= 0.9, 

 

where 𝐾 is the number of classes, N is the total number of test samples, 𝑥𝑖𝑖  is diagonal element 
i of the confusion matrix (i.e. number of correctly classified samples of class i). The value of the 
kappa coefficient was obtained following the calculations below: 

𝐾𝑎𝑝𝑝𝑎 =
𝑁 ∗ ∑ 𝑥𝑖𝑖

𝐾
𝑖=1 − ∑ (∑ 𝑥𝑖𝑗

𝐾
𝑗=1 ∗ ∑ 𝑥𝑗𝑖

𝐾
𝑗=1 )𝐾

𝑖=1

𝑁2 −  ∑ (∑ 𝑥𝑖𝑗
𝐾
𝑗=1 ∗ ∑ 𝑥𝑗𝑖

𝐾
𝑗=1 )𝐾

𝑖=1

=
300 ∗ 270 − 24779 

3002 −  24779
=

56221 

65221 
≈ 0.86. 

Table 5 shows the confusion matrix of the final land cover map.  
 
 
 
 
 



Table 5 
Confusion matrix of the final land cover map 

  
Reference    

1 2 3 4 5 6 
Total 
(pixels) 

UA  

P
re

d
ic

ti
o

n
 

1.Artificial 
surfaces 

8 0 0 1 1 0 10 0,8 

2.Tree-
covered 
areas 

0 128 0 0 0 0 128 1 

3.Grasslands 0 6 40 1 0 0 47 0,85 

4.Other 
lands 

1 0 0 14 0 0 15 0,93 

5.Water 
bodies 

0 0 0 0 56 0 56 1 

6.Wetlands 1 1 1 5 0 36 44 0,82 

Total 
(pixels) 

10 135 41 21 57 36 300  

PA  0,8 0,95 0,98 0,67 0,98 1     

 
The same indicators were selected for the final land cover classification as for the initial one. 

Thus, the value of overall accuracy value is stated below: 

𝑂𝐴 =
∑ 𝑥𝑖𝑖

𝐾
𝑖=1

𝑁
=

8+128+40+14+56+36

300
=

282

300
= 0.94.  

Then, the following calculations are for the kappa coefficient value: 

𝐾𝑎𝑝𝑝𝑎 =
𝑁 ∗ ∑ 𝑥𝑖𝑖

𝐾
𝑖=1 − ∑ (∑ 𝑥𝑖𝑗

𝐾
𝑗=1 ∗ ∑ 𝑥𝑗𝑖

𝐾
𝑗=1 )𝐾

𝑖=1

𝑁2 −  ∑ (∑ 𝑥𝑖𝑗
𝐾
𝑗=1 ∗ ∑ 𝑥𝑗𝑖

𝐾
𝑗=1 )𝐾

𝑖=1

=
300 ∗ 282 −  24779

3002 −  24779
=

59821

65221
≈ 0.92. 

 

4. Discussion 

The aims of the developed optimization technique are stated as layers reduction of the geospatial 
data cube and enhancement of the classification. Thus, the experiment result should be 
considered in terms of these two aspects. 

Firstly, the size of the optimized cube was 40 layers, whereas the initial one contained 222 
layers. Therefore, the number of layers was reduced by 5.55 times. 

Secondly, classification enhancement was evidenced by increasing indicators such as overall 
accuracy and the kappa coefficient. Namely, the overall accuracy increased by 0.04 from 0.9 to 
0.94, and the kappa coefficient increased by 0.06 from 0.86 to 0.92. Since the classification 
focused on the wetlands, the accuracy of this class should be considered individually. Thereby, 
both user and producer accuracy of wetlands class were significantly increased, viz. by 0.11 from 
0.71 to 0.82 and by 0.4 from 0.96 to 1, respectively. 
 

5. Conclusion 

This article presents an optimization technique to reduce geospatial data cube size and enhance 
land cover classification. The technique is based on the separability of the training sample, which 
is defined in each layer of the geospatial data cube. To assess the separability, the appropriate 
index (i.e. SITS) was developed and used as an object function in the technique frame. The 



algorithm of the optimization technique implies stepwise band discarding to define the optimal 
set of the geospatial data cube layers. Such a set has the highest value of SITS among other options.  

The conducted experiment implied techniques application to the land cover classification of 
the highly heterogeneous natural landscapes in the case of the Shatsky National Natural Park. 
This classification covered six land cover classes where wetlands are prevailing. The technique's 
effectiveness was approved by geospatial data cube reduction and classification accuracy 
enhancement, evidenced by the increase in such indicators as overall accuracy and kappa 
coefficient.  

Further research should be aimed at technique application in other study areas and thematic 
tasks. Also, the separability assessment of the training sample could be extended by additional 
criteria. For example, the kappa coefficient could substitute overall accuracy as the basis of the 
developed separability index.  
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