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Abstract 
The study examined the ideas, procedures, and algorithms for creating chatbots and clinic websites. The 
study also looked at the prospects of chatbots and whether or not they are necessary for digital 
resources in general. A chatbot was created without using the ChatterBot framework, and its structure 
and data source were fully explained. The methodologies, algorithms, and libraries used to design and 
train the chatbot were also described. In addition, we carried out a visual analysis, discussed the 
findings, and made judgments regarding the chatbot's functionality.   
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1. Introduction 

Although medicine has long been viewed as a profession based solely on face-to-face 
communication, it has become increasingly clear that the use of IT, in general, and electronic 
communications, in particular, provides not only cost-effective healthcare but also a way to 
ensure remote communication between medical staff and patients or their carers.  

The use of the Internet in medical activities has become a reality in recent years, and 
telemedicine, or virtual hospitals, has moved from the stage of science fiction to reality [1]. The 
development of the information society, the increase in the number of people with access to 
computers, even the elderly (including the development of introductory computer courses for 
them), the diversification of information, and the need for rapid interaction have led to the 
adaptation of medical units to the means of information transmission to make them more 
attractive and more accessible to operate and use. Developing systems with guaranteed quality 
information should be a constant concern of public health professionals, who should work with 
IT specialists to create their web pages. 

Many Internet sites are trying to establish themselves as sources of medical information and 
as a means of connecting patients with doctors. The number of visitors to these sites and the 
considerable number of sites indicate public interest in these services. Therefore, they need to 
use the available technologies to communicate effectively with patients, continue to improve 
them and create new ones. 

The development and improvement of clinic and hospital websites should be the focus of 
attention for healthcare and informatics professionals. Clinic and hospital websites should ensure 
compliance with ethical rules, be functional and professional from an informatics point of view, 
and provide adequate information to potential clients of medical units. Websites are a means of 
communication and a convenient IT tool for better management of these structures. 
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The study aims to selection the methods and tools for developing a chatbot for a clinic/hospital 
information resource. 

2. Theoretical background 

2.1. Analysing the need to use chatbots 

Researchers have looked into how people engage with chatbots in both lab and real-world 
environments in order to analyze user behavior. In contrast to user interactions during chats with 
other users, [1] observed that user interactions with chatbots involved longer conversations with 
more and shorter messages, as well as lower saturation than user interactions during chats with 
other users. In [4] studied the real-world use of a voice conversational agent and found that the 
real-world context posed challenges to the conversation and led to frequent failures in the 
chatbot interaction. Such studies provide insights into how users behave when interacting with 
or responding to chatbots. As a result, they offer helpful advice for designing chatbot interactions, 
for instance, to reduce usability problems and enhance conversational recovery. 

In [5] investigated users' motivations for using chatbots. As a result, they offer helpful advice 
for designing chatbot interactions, for instance, to reduce usability problems and enhance 
conversational recovery. Researchers [6] also looked into user preferences for various chatbot 
personas and discovered that people like personas that show engagement and productivity. [7] 
studied users' experiences with voice chatbots and found that users struggle to understand 
chatbot features and interact effectively with them; they suggested that a game could be a helpful 
entry point for learning chatbot features and interacting effectively. 

Relevant insights into chatbot use and user experience can also be gleaned from the literature 
on dialogue system evaluation, for example, regarding frameworks and metrics for dialogue 
evaluation [8], which target constructs such as efficiency, effectiveness, and user satisfaction with 
tasks: task-oriented systems, relevance, and human-likeness for systems focused on small talk 
[9]. Furthermore, competitions for dialogue systems, like the Alexa Prize [10], in which groups 
compete to create voice chatbots capable of social interaction, greatly advance our knowledge of 
user preferences and views of chatbots. But further research is needed to determine how 
pragmatic and hedonic characteristics, taken separately or together, affect the chatbot user 
experience as a whole. 

Therefore, lessons have been learned that apply, in particular, to task-oriented chatbots [11]. 
1. In task-oriented chatbots, usefulness is paramount. For task-oriented chatbot 

applications, solving user problems and helping users achieve their goals efficiently and 
effectively is critical to ensuring a quality chatbot experience. Providing valuable 
assistance and support is essential for sustained engagement, and for almost all chatbot 
applications, it is crucial to interpret user intent and provide appropriate responses 
correctly. Although chatbots are still a new form of interactive system, it is essential for 
service providers to carefully ensure that their chatbots serve their intended purposes 
and that these purposes are perceived as valuable by their users. 

2. Hedonic attributes can improve the user experience in task-oriented chatbots. For many 
task-oriented chatbot applications, the user experience can be enhanced by combining 
pragmatic and hedonic chatbot attributes. While a very useful chatbot can provide a good 
user experience, this experience can be further enhanced by carefully incorporating 
content and chatbot characteristics perceived as pleasant, engaging, or playful. 

3. User reports are valuable. Understanding how users work with chatbots is difficult. 
Nevertheless, understanding such experiences is crucial for chatbot service providers to 
increase the acceptance of chatbots among the public. With the research approach 
presented here, we have demonstrated the feasibility and benefits of collecting user 
reports using a questionnaire based on critical incident techniques. We hope this will 
serve as an example of how service providers can approach the collection of high-quality 
user reports that provide much-needed rich information about the chatbot experience. 

4. Different users have different needs. The natural language interaction in chatbots makes 
them very suitable for personalisation. An example is our finding that pragmatic and 
hedonic chatbot attributes have different meanings for chatbot users of varying age 



groups. However, the ability to personalise chatbots has not been sufficiently 
implemented. On the contrary, current chatbots typically display the same personality and 
provide the exact content regardless of user characteristics. Chatbot service providers can 
benefit from investing in understanding the needs of their different user groups and 
configuring chatbots that can adapt accordingly. 

2.2. Concepts, methods and algorithms of chatbot development 

A chatbot is a computer program developed based on neural networks and machine learning 
technologies that allow communication in audio or text format. A chatbot performs specific tasks 
(e.g., obtaining reference information, performing calculations) or for entertainment. 

Typically, a chatbot prompts the user to choose an option from a list of options. That is, 
obtaining information or performing other tasks is done by selecting the suggested answers or 
categories, and the user does not enter text into the chat window. More sophisticated bots can 
enter text and receive information per the user's request. 

Virtual chatbots allow you to place orders or communicate online.  
Chatbots can be divided into the following areas of application: 
 p2p - personal communications (for personal communication); 
 b2c - consumer (support for company customers on the corporate website and in mobile 

applications). 
Chatbots mainly use artificial intelligence to communicate with users, providing relevant 

content and up-to-date offers. They operate based on a set of instructions or use machine 
learning.   

Some of the main concepts associated with chatbot technology are as follows [12]: 
 Pattern matching, which is based on typical stimulus-response blocks. A sentence 

(stimulus) is entered, and a response (reaction) is generated according to the data entered 
by the user. 

 AIML (Artificial Intelligence Markup Language) is based on Pattern recognition or Pattern 
matching concepts. 

 Latent semantic analysis can be used with AIML to develop chatbots. It is used to identify 
similarities between words as a vector representation. 

 Chatscript, the successor to AIML, is an expert system consisting of an open-source 
scripting language and an engine that runs it. Chatscript includes rules associated with 
topics, finding the best element that matches the user's query string, and executing the 
rule in that topic. 

 RiveScript is a plain-text string scripting language for developing chatbots and other 
conversational objects. RiveScript is open source with interfaces for Go, Java, JavaScript, 
Perl, and Python. 

 Natural language processing (NLP) is a field of artificial intelligence that studies the 
computer-assisted manipulation of texts or natural language speech. 

 Natural Language Understanding (NLU) is the foundation of any NLP task. It is a technique 
for implementing natural user interfaces such as chatbots. NLU seeks to extract context 
and meaning from user input, which may be unstructured and respond appropriately to 
the user's intentions [1]. 

A bot's intelligence level depends solely on how it is programmed. A chatbot based on machine 
learning performs better because it understands commands and language. Therefore, users do 
not need to enter exact words to get relevant answers. In addition, the bot learns from 
interactions with customers and can quickly solve similar situations when they arise. Each such 
dialogue improves the bot's intelligence [12]. 

Chatbots can use neural networks as a language model [13]. For example, generative pre-
trained transformers (GPTs), which use a transformer architecture, have become standard for 
building sophisticated chatbots. The "pre-training" in its name refers to the process of initial 
training on a large text corpus that provides a solid foundation for the model to perform well on 
subsequent tasks with a limited amount of task-related data. An example of a GPT chatbot is 
ChatGPT. Despite criticism about its accuracy, ChatGPT has attracted attention for its detailed 



answers and historical knowledge. Another example is BioGPT, developed by Microsoft, which 
focuses on answering biomedical questions. 

Here are the most common limitations [14]: 
 Since the I/O database is fixed and limited, chatbots can crash while processing an 

unsaved query. 
 Chatbot performance heavily depends on speech processing and is limited by 

disturbances such as accents and spelling or grammatical errors. 
 Chatbots cannot answer several questions simultaneously, limiting their communication 

capabilities. 
 Chatbots require a large amount of conversational data to train them. Based on deep 

learning algorithms to create new answers word by word based on user input, generative 
models are usually trained on a large dataset of natural language phrases. 

 It is difficult for chatbots to manage non-linear conversations that need to flow naturally 
and be relevant to the topic of the conversation with the user. 

 As is usually the case with technological changes to existing services, some consumers, 
most often older ones, are uncomfortable with chatbots due to their limited 
understanding, which makes it evident that machines are processing their queries. 

3. Proposed methodology. 

Before you start working on a chatbot for a ready-made web resource, you should first 
understand the basic algorithms and concepts of chatbot technology development using Python. 

It was decided that the chatbot would be based on a DNN (Deep Neural Network) to identify 
sentence patterns provided by the user as input and select a random answer related to this query. 
The chatbot will be implemented using Python libraries, such as the NLTK library in Python, 
which has functions that help identify the most relevant words in a sentence or paragraph, link 
them to their root meaning, and shorten them. This process is known as Stemming. The words 
are then converted to their corresponding numerical values, as neural networks only understand 
numbers. The process of converting text to numeric values is known as One-Hot Encoding. Once 
the data preprocessing is complete, we will create the neural networks using TFlearn and feed 
them with training data. After successful training, the model should be able to predict tags related 
to the user's query. 

To train our chatbot, we need the "intents.json" file. Each intent contains a tag, templates, 
answers, and context. The templates are the data the user will likely enter, and the answers are 
the chatbot's results. This file contains general greeting phrases, questions about which doctors 
work in the clinic, and questions about the appointment, such as the appointment cost, which 
days you can make an appointment, and how you can make an appointment.  

The challenge now is to get the model to learn the relationship between patterns and tags so 
that when a user enters a particular phrase, it can identify the corresponding tag and produce one 
of the answers resulting from the query. 

The first step is to download the Punkt model provided by the NLTK library. In NLTK, PUNKT 
is an unsupervised learning model, meaning it can be trained on unlabeled data (data that has not 
been annotated with information about characteristics, properties, or categories is called 
unlabeled data). 

Using unsupervised techniques, it generates a list of sentences from the text by developing a 
model for sentence starters, prepositional phrases, and contractions. It must be trained on a 
significant amount of open text in the target language without prior use. 

Next, look at the libraries and modules that will be used to implement a chatbot.  The NLTK 
supports research and teaching in NLP and related fields, including empirical linguistics, 
cognitive science, artificial intelligence, information retrieval, and machine learning. NLTK is 
successfully used as a training tool and a platform for prototyping and building research systems. 
When working on any project in natural language processing, NLTK is the most critical module 
used. 

TensorFlow is an open-source machine learning software library for a range of tasks 
developed by Google to meet its need for systems that can build and train neural networks to 



detect and decipher patterns and correlations, similar to the learning and understanding used by 
humans. It is currently used for both research and product development at Google. 

TensorFlow provides a library of ready-made algorithms for numerical computing 
implemented through data flow graphs. The nodes in such graphs execute mathematical 
operations or input/output points, while the graph's edges represent multidimensional data 
arrays (tensors) that flow between the nodes. Nodes can be assigned to computing devices and 
run asynchronously, processing all the parallel tensors that fit them together. This allows for the 
simultaneous operation of nodes in a neural network by analogy with the simultaneous activation 
of neurons in the brain. 

However, TensorFlow is a low-level library. Using TensorFlow directly is challenging, as the 
API is highly verbose and prone to subtle actions. It is difficult to detect errors in TensorFlow. To 
overcome these difficulties, a shell called TFLearn was developed. 

TFlearn is a modular and transparent deep-learning library built on top of TensorFlow. It was 
developed to provide a higher-level API for the TensorFlow library to make experiments easier 
and faster while remaining fully transparent and compatible. 

After pre-loading the "intents.json" file and receiving the data, it is necessary to start pre-
processing it, as shown in Fig. 1. 

 

 
Figure 1: Preliminary data processing 

 

This recognises words and removes duplicate words from the word list. For this task use the 
Lancaster Stemmer algorithm to reduce words to their base (Figure 2). First, take a quick look at 
what stemming is. Stemming is the process of shortening a word to its base. A word stem is a 
word's base or root form and does not have to be an existing word. 

Lancaster is one of the most aggressive stemmers because it tends to overstep many words. A 
Lancaster stemmer consists of a set of rules, where each rule specifies either the deletion or 
replacement of an ending. In addition, some rules are restricted to intact words, and some rules 
are applied iteratively as the word passes through them. 

Because of the strict rules, there are two additional conditions to prevent different short-root 
words from occurring: 

 If the word starts with a vowel, at least two letters must remain after the root (owing -> 
ow, but not ear -> e). 

 If the word begins with a consonant, at least three letters must remain after the root letter, 
and at least one of them must be a vowel or "y" (speaking -> say, but not string -> str). 

The Lancaster header stemmer has over 100 rules. 
 

 
Figure 2: One-Hot coding and training data preparation. 

 



The resulting training and output data are encoded in One-Hot mode. The words are converted 
into ones and zeros, which are then added to the training list and the output list and then 
converted into NumPy arrays. We need to create our model using neural networks (Figure 3). 

 

 
Figure 3: Creating a model using neural networks. 

 
The first layer is the input layer, with a parameter of equally sized input data. The following 

three middle layers are the hidden layers responsible for all input processing. The output layer 
provides the probabilities of different words in the training data. 

The training data is fitted into the model, and epochs are set to 500, during which the training 
will continue until it reaches 500 iterations. An epoch in a neural network trains the neural 
network with all the training data in one cycle. Using more than one epoch is necessary to get 
good performance from the non-training data (in practice, this can be roughly estimated using a 
set of delays); usually (but not always), this takes more than one pass of training data. 

We have trained the model with a list of words, or a so-called bag of words, so we also need to 
do the same to make predictions. We can now create a function that will give us a bag of words to 
predict for our model (Figure 4). 

 

 
Figure 4: Function to provide a set of words for model prediction. 

 
This function helps to create a word pack for our model.  
Now we need to create a chat function that brings all of this together (Figure 5). 
 

 
Figure 5: Chat function. 

 



First, the model predicts outcomes using the word packet and user data and then returns a list 
of probabilities. Among the probabilities, the highest number is likely to be the result the user 
expects. So, we choose the index of the highest probability and find the tag and answers of that 
particular index. Then, we can select some random answers from the list of answers. Fig. 6  shows 
how a chatbot can identify a user input pattern and respond accordingly. 

 

 
Figure 6: An example of how a chatbot works. 

 
We can see that the chatbot provides correct answers to user queries after the training. Typing 

in common phrases results in the chatbot answering the question, and typing in quit results in 
the chatbot terminating the conversation. 

3.1. Analysis of chatbot performance and its results in charts and graphs 

TensorBoard was used to visually analyse the chatbot. TensorBoard is a tool for providing 
measurements and visualisations required during the machine learning workflow. It allows you 
to track experiment metrics such as loss and accuracy, visualise the model graph, plot 
embeddings in a lower dimensional space, and much more. First, you must update the code, as 
shown in Figure 7. 

 

 
Figure 7: Listing of changes in the code. 

 
TFLearn supports a detailed level for automatic management of the results: 
0: Losses and performance (best speed). 
1: Loss, metrics and gradients. 
2: Loss, metrics, gradients and weights. 
3: Loss, metrics, gradients, weights, activations, and sparsity (best visualisation). 
For the tensoboard_verbose property, the value three was chosen for the best visualisation.  
Accordingly, the logs will be stored in subdirectories with a time stamp so that you can easily 

select different training runs. To do this, create a log_dir variable that stores the subdirectory's 
name.  

You can then launch Tensorboard to visualise the performance. 
The TensorBoard Graphs dashboard is a tool for exploring your TensorFlow model. You can 

quickly view a conceptual graph of the model's structure to ensure it matches your intended 
design. You can also view the operational level graph to understand how TensorFlow 
understands the application. Examining the operational level graph can give you insight into how 
to modify your model. This is the tool that will be used for visual analysis. 

As a result, we get the following graphs of accuracy and training losses, shown in Figs. 8-9. 



 
Figure 8: Accuracy chart. 

 
Figure 9: Schedule of losses during training. 

 
In most cases, accuracy increases as loss decreases, but this is not always true. Accuracy and 

loss have different definitions and measures. They often appear to be inversely proportional, but 
the two have no mathematical relationship.  

Low precision but high loss means the model makes significant errors in most data. However, 
if both loss and accuracy are lacking, the model makes minor errors in most data. However, if 
both are high, it results in significant errors in some data. Finally, if precision is high and loss is 
low, the model makes minor errors in only some data, which would be ideal. 

Based on the data obtained, we can conclude that the chatbot learns quickly from the data 
provided and makes a small number of errors, indicating the low complexity of the data provided. 

4. Results 

An untrained ChatterBot instance starts without knowing how to communicate. Each time a 
user enters a statement, the library stores the text they entered and the text to which the 
statement was a response. As ChatterBot receives more data, the number of responses it can 
respond to and the accuracy of each response about the input statement increase. 

The program selects the most appropriate answer by looking for the closest matching known 
statement that reaches the input and then choosing an answer from the list of available responses 
to that statement (Figure 10). 

Taking into account the process of the frame, we first initialise the ChatBot instance as shown 
in Fig. 11. 

ChatterBot preprocessors are simple functions that modify the input statement that the 
chatbot receives before processing the statement by the logic adapter. 

Logic adapters define the logic of how ChatterBot chooses a response to a given input 
statement. 

A typical Boolean adapter will use two main steps to return a response to an input statement. 
The first step involves searching the database for a known statement that matches or closely 
matches the input statement. Once a match is selected, the second step consists of establishing a 
general answer to the chosen match. Often, several existing statements will answer an available 
game, and the BestMatch logic adapter will determine the answer based on the best-known match 
with the given statement. 

 



 
Figure 10: Diagram of the ChatterBot workflow. 

 

 
Figure 11: Initialising a ChatBot instance. 

 

The best match adapter uses a function to compare the input statement with known 
statements. When it finds the closest match to the input operator, it uses another function to 
select one of the available answers to that operator. 

We need to train the bot with training data to provide the bot with some knowledge. The 
training data is filled in a list that will represent the conversation. ChatterBot uses natural 
language processing to learn the data provided to the bot. Fig. 12 shows a listing of the training 
data file with site navigation, and Fig. 13 lists the training data file for delivering essential medical 
advice for minor medical problems. 

 
Figure 12: Listing a file with training data with site navigation. 



 
Figure 13: Listing of a file with training data on giving basic health advice. 

 

Further, these data should be processed as shown in Fig. 14. 
 

 
Figure 14: Data processing. 

 

After that, we use the processed data to train the bot, as shown in Fig. 15. 
 

 
Figure 15: Training a chatbot with processed data. 

 

Now the chatbot is ready to use. Fig. 16 shows an example of how a chatbot works. 
 

 
Figure 16: An example of how a chatbot works. 

 
The client side of the site was developed using React. The main page of the site looks like this, 

as shown in Fig. 17. 
 

 
Figure 17: The main page of the site. 



The main menu contains links to other sections of the website, which the user can access by 
clicking on. For example, clicking on the About link opens the section with information about the 
clinic. 

When you click the Book Appointment button on the main page, a form for leaving a request 
for an appointment with a doctor opens. 

The chatbot connects to a web resource using the Flask library on the backend, which was 
developed in Python, and the fetch method on the client side was developed with React.  

The chatbot is available to users by clicking the Chatbot button in the main menu—an example 
of how the chatbot works is shown in Fig. 18. 

 

 
Figure 18: An example of how a chatbot works. 

5. Discussion 

The developed chatbot communicates exclusively in English. Therefore, the disadvantages 

include localisation in one language.  

This is not critical, as English is an international language, firstly, and secondly, there is room 

for improvement and the addition of other functions. To further add other languages of 

communication, it will be necessary to train the proposed models in other languages.  

The question of how much a chatbot can provide a correct and adequate answer to a user is 

also debatable. For this purpose, it is worth conducting an experiment on the quality of 

communication between a healthcare professional as a user and a chatbot. As a result, it would 

be possible to identify the existing shortcomings that need to be eliminated. 

6. Conclusions 

The study examined the concepts, methods, and algorithms for developing websites for clinics 
and chatbots. The study also examined the necessity of using chatbots for general web resources 
and their future prospects. 

A chatbot was developed without using the ChatterBot framework. A full description of the 
data source used to train the chatbot was provided, and its structure and the implemented 
methods, algorithms, and libraries used to develop and train the chatbot were presented and 
described. We also conducted a visual analysis, reported its results, and drew conclusions about 
the chatbot's performance. After that, a chatbot was developed using the ChatterBot framework, 
which will be used for the finished web resource. The implemented methods and the process of 
developing and training a chatbot were described, and an example of its operation was presented. 

In addition, the article demonstrates how the developed chatbot was integrated with the 
developed web resource and demonstrates the operation of the chatbot. As a result, the article 
studies the concepts and technologies of chatbot development, develops its chatbot connected to 
the developed web resource, and explores its necessity and relevance. 



Since this chatbot was developed specifically for a hospital website, it is distinguished by 
training models for medical terminology. According to the analysis of existing chatbots, this is 
rare in this sector. 

Further research includes experimental testing of the proposed chatbot in medical institutions 
and its expert evaluation. The possibility of adding several languages for communication is also 
among the prospects for further research. 
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