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Abstract 
The article developed an algorithm for recognizing images of wavelet spectra of Chirp-type radar 
signals. Known augmentation methods cannot be used to expand the data set for training and 
improving the convolutional neural network. Generation of images of signal spectra is carried out with 
the addition of additive noise to the Chirp signal. The frequency modulation coefficient changes 
regardless of the presence of amplitude modulation by a half-sine wave. When preparing the data, the 
limitation of the power range of the Gaussian noise additively added to the signal was applied. 
Limitation is carried out in the frequency domain by comparing the wavelet coherence of the noise and 
the noisy signal using the example of the most common signal with linear frequency modulation of the 
Chirp type. It is shown that the wavelet autocoherence of Gaussian white noise has a constant value 
over the entire range of noise power variation. At the same time, the numerical value of autocoherence 
depends exclusively on the choice of wavelet. The wavelet autocoherence of the noisy signal when the 
noise power changes intersects with the noise autocoherence at the power value, which, in addition to 
the wavelet, depends on the frequency modulation coefficient. The described procedure for preparing 
spectrum images for processing in a neural network increases the probability of recognizing a given 
type of signal due to the exclusion of signals that cannot be recognized due to the lack of distinction 
from noise. For each continuous wavelet, such a level of non-stationarity is determined, at which a 
noisy signal can be recognized. This allows you to expand the database. Perform augmentation by 
changing the wavelet, as well as amplitude modulation of the signal. The effectiveness of the developed 
model was evaluated and the results were compared with known analogues. The trained neural 
network model for image recognition of continuous wavelet spectra using the example of the Chirp 
signal provides up to 100% accuracy of image detection and classification (the best result of the 
analogue is up to 95.7%). 
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1. Introduction 

Since the appearance of radar with pulse compression, the Chirp (Compressed High-Intensity 

Radiated Pulse, LFM) signal has become one of the most common forms of radar signal [1]. 

The radar signal is modulated by phase or frequency, and this makes it possible to separate 

targets in space when receiving signals using special methods, the echoes of which intersect [2]. 

It should also be noted that pulse compression technology was developed for conditions where 
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noise in the receiver always has a wide frequency band and random distribution [3]. It was 

believed that the spectral density of the noise is quite small compared to the echo signal. Since 

the noise intensity in the signal after the compression filter is significantly reduced, it makes it 

possible to identify the target in cases where the amplitude of the echo signal is less than the 

noise level [3, 4]. 

By changing the signal modulation to nonlinear frequency modulation (NLFM), better 

performance values in terms of peak voltage to side lobe ratio (PSLR) can be achieved. Changing 

the modulation of the signal provides a mitigating effect of masking nearby targets and can 

generally increase the useful dynamic range [5]. When adding appropriate amplitude 

modulation, PSLR can reach very low values (about -60 dB) [6]. 

Noise Radar Technology (NRT) is a viable alternative to deterministic waveforms. It uses 

pseudo-random waveforms to implement the noise process [6]. Common to NRT and 

deterministic radar technology is the use of a matched filter or an approximation thereof to 

maximize the signal-to-noise ratio (SNR). However, a noisy radar is capable of transmitting an 

almost unlimited set of realizations ("sampling functions") of a random process with an 

appropriate matched filter adjusted in real time to implement the well-known "correlation 

receiver" [7]. Thus, the main advantage of noise radar technology is the ability to work with 

highly noisy signals, in conditions of interference, since interference is perceived by the radar as 

a kind of noise [6]. 

The greatest contribution to the development of the theory of radar signal processing was 

made by K. Shanon, D. Flynn, S. Kay, A. Widoms, and R. L. Kriplin. Numerous publications in 

recent years by A. Gayvel, E. Liu, E. Monge, J. Delinget and many others confirm that the 

development and improvement of devices for the formation and processing of radar signals is 

an urgent task, especially for our country during a full-scale war. LFM signals can rightly be 

considered today as one of the elements of ensuring information security in telecommunication 

systems [8]. 

2. Analysis of literary data and statement of the problem 

Recognition of images of noisy signals is an urgent task for many fields of technology. The rapid 

development of unmanned aerial vehicle technologies also requires solving the problems of 

image recognition in real time. The task is further complicated by the fact that in real conditions 

more complex forms of radar signals are used than those that have been well studied by 

researchers [9, 10]. Accordingly, there is a need to improve signal processing algorithms and 

image preparation for analysis and classification. 

The development of machine learning made it possible to implement neural networks for 

processing signals of various types: data from sensors [11], audio signals [12] and images [13]. 

In recent years, various architectures of neural networks have been developed, which are 

designed to solve different types of problems. Neural network training methods are constantly 

self-improving and developing, retraining is reduced, and learning speed is increased. The latest 

models are characterized by increased resistance to noise and changes in input data, which 

increases their efficiency. The scaling of neural networks allows processing large data sets and 

solving complex tasks, including the processing of radar signals [14]. 

One of the most common tools for image classification and recognition today is a 

convolutional neural network (CNN) [15]. As a classification method, the convolutional neural 

network was developed and became the most widely used in computer vision technology [16]. 

The restraining factor in the development of CNN models is the presence of an output analog 

signal. A promising approach is the transition to time-frequency images using signal 

classification in convolutional neural networks. A difficult issue is the analysis of non-stationary 

signals. The use of wavelet transformation in time-frequency image research shows good 

results [17]. 



The accuracy of classification of wavelet spectrum images depends on the ability to learn the 

similarity of the neural network. The authors have already investigated the problem of not 

having enough data set for model training [18]. To increase the representativeness of the data 

set and improve the performance of neural networks, in particular, in the areas of computer 

vision and image processing, various augmentation methods are used [19]. 

Geometric transformations such as rotations, shifts, mirroring, scaling change the spatial 

position of the object and the model is able to learn at different positions of the objects. 

Changing the brightness, contrast and color allows you to increase the variety in the training set 

and improve the model's robustness to changes in lighting and color. Adding noise 

corresponding to different distributions helps train the model to effectively recognize objects in 

environments where different levels of noise are present. But in the given task, the known 

methods of augmentation do not allow to obtain the desired result, since the number of 

classification groups is unknown in advance during object recognition. 

The second factor affecting classification accuracy is the influence of conversion parameters, 

frequency modulation coefficient, and noise added to the signal additively. The authors do not 

provide data on the effect of changes in noise power on Chirp-type signals. There is also no 

information on the effect of noise autocoherence on the wavelet autocoherence of a noisy signal, 

the use of additional signal modulation, and the visualization of these changes in the image of 

wavelet spectra. 

The purpose of this article is to develop an algorithm for recognizing images of wavelet 

spectra of Chirp-type radar signals based on the numerical value of the frequency modulation 

coefficient while limiting the power of additively added noise by comparing the autocoherence 

of the signal and noise in the frequency domain using a convolutional neural network model. As 

an algorithm for the image augmentation procedure in the neural network, the method of 

changing continuous wavelets is investigated, and the division of wavelet spectrum images into 

classes is performed by checking the homogeneity of the class according to the Shannon entropy 

value. 

3. Algorithm for image recognition of continuous wavelet spectra of Chirp-

type signals 

3.1. Mathematical model of the Chirp signal in the time domain, taking into 

account the variable coefficient of linear frequency and amplitude 

modulation 

We will use the ratio for the Chirp signal with linear frequency modulation: 

𝑥(𝑡𝑖) = anp cos(2π𝑓0𝑡𝑖 + πβ𝑡𝑖
2) + 𝜂𝑖 , (1) 

where anp –signal amplitude; f0 –initial value of the frequency; β –coefficient of linear frequency 

modulation; η uncorrelated Gaussian noise, mathematical expectation is zero.. 

To take into account the amplitude modulation, we add a multiplier in the form of half-sine 

waves (anp sin(πt)): 

𝑥(𝑡𝑖) = anp sin(π𝑡)cos⁡(2π𝑓0𝑡𝑖 + πβ𝑡𝑖
2) + 𝜂𝑖 . (2) 

The modulation band to use the ratios must satisfy the inequality β<0.5N, where N – length 

of the signal, for our case N=2048, that is, the condition for βmax=512<1024 is fulfilled. 

Let's examine the Fourier spectra of the Chirp signal by changing the coefficient of linear 

frequency modulation using linear frequency modulation and adding amplitude modulation by 

a half-sine wave (Fig. 1). 



 
 

a) b) 

Figure 1: Fourier spectra of the Chirp signal with parameters f0=50 MHz, β=128; 256; 512 for 

signals: a) according to ratio (1); b) by relation (2) 

The results obtained in the graphs of Fig. 1 show that for the same root mean square 

deviation of the additive noise with additional amplitude modulation by a half-sine according to 

the ratio (2), the relative noise level in decibels is higher. 

3.2. Mathematical model of image generation of continuous wavelet spectra for 

Chirp-type signals in the frequency domain 

Wavelet coefficients will be determined by the formula for a continuous wavelet spectrum [9, 

20]: 

𝑊(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)ψ (

𝑡 − 𝑏

𝑎
)

∞

−∞

𝑑𝑡, 
(3) 

f(t) – signal with a random component; 𝜓(
𝑡−𝑏

𝑎
)– the basic wavelet can be chosen from the list 

cgau1, cgau2, cgau3, cgau4, cgau5, cgau6, cgau7, cgau8, cmor, fbsp, gaus1, gaus2, gaus3, gaus4, 

gaus5, gaus6, gaus7, gaus8, mexh, morl, shan; a≠0 scale parameter; b≥0 – shift parameter [20]. 

The studied data are discrete, therefore formula (1) will be presented in the form, by selecting 

two arrays for the scales of coeffs for shifts fred: 

𝑐𝑜𝑒𝑓𝑓𝑠, 𝑓𝑟𝑒𝑑 =
Δ𝑡

√𝑎
∑ 𝑥(𝑡𝑖)𝜓 (

𝑡𝑖 − 𝑏

𝑎
)

𝑁−2

𝑖=0

. 
(4) 

To exclude the dependence on the displacement b, we obtain a representative amplitude of 

the inhomogeneity of the scale coeffs for the displacements fred. The formation of an 

experimental data set (Dataset) for training a convolutional neural network will be carried out 

by generating images of signal spectra with the addition of additive noise to the Chirp signal. We 

will change the frequency modulation coefficient regardless of the presence of amplitude 

modulation by a half-sine wave (Fig. 2). 

The results obtained in the graphs of Fig. 2 for images of wavelet spectra, as well as for 

Fourier spectra, confirm the preliminary conclusion to Fig. 1 that for the same root mean square 

deviation of additive noise with additional amplitude modulation by a half-sine according to the 

ratio (2), the relative noise level in decibels higher. 

 



 
 

a) b) 

Figure 2: Wavelet-spectra of the Chirp signal for the wavelet morl, f0=50 MHz, β=128; 256; 512 

for signals a) according to ratio (1); b) by relation (2) 

3.3. The method of detecting the noise threshold in the frequency domain 

Consider the cross wavelet spectrum to check the level of influence of various interferences 

on the signal: white Gaussian noise and additively added noise. To assess the impact, we use 

autocoherence, which was already used in previous works to solve a similar problem [21]: 

𝑆𝑥 =
Δ𝑡

√𝑎
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. 

(5) 

where 𝜓(
𝑡−𝑏

𝑎
)– the wavelet function; Sx– scale-time spectrum of the signal x(t); Sy– scale-time 

spectrum of the derivative signal 
𝑑𝑥(𝑡𝑖)

𝑑𝑡𝑖
; a– scale factor; b– elimination of the signal along the 

time axis; k2– the square of the coherence coefficient, which varies from zero to one, 

characterizes the level of stationarity of signal observation in the presence of noise. 

It was established that for Gaussian noise, autocoherence according to relation (5) does not 

depend on the power of the noise. It is shown that the self-coherence depends only on the 

wavelet with the help of which a number of large-scale wavelet noise coefficients are formed 

(Fig. 3). The results of studies of the influence of a wider list of wavelet types will be given in 

future publications. 

For the case under consideration, the mexh wavelet provides the minimum self-coherence 

and, accordingly, the maximum non-stationarity. Let's determine the noise threshold for the 

Chirp signal for this wavelet according to ratios (1), (2) with the noise measured in decibels. 

Autocoherence according to relation (5) is used twice: first for noise, and then for a signal with 

the addition of noise (Fig. 4). 

Based on the obtained results (Fig. 4), when preparing the DataSet for the convolutional 

neural network model, we will have to limit the noise levels depending on the value of the 

modulation coefficients and the type of wavelet. 



 

Figure 3: Dependence of the autocoherence of Gaussian noise on a continuous wavelet 

  
a) b) 

Figure 4: Graphs for determining the noise threshold based on the equality of non-stationarity 

of the signal and noise for the signal: a) for relation (1); b) for relation (2) 

3.4. Peculiarities of the algorithm for preparation of the experimental data set CNN 

Convolutional neural networks use images as input data. In this way, special procedures for 

recognizing specific elements or symbols can be introduced into the CNN architecture [22]. 

Changing the architecture of multilayer models such as ResNet50, VGG16, VGG19 by using an 

additional layer does not provide a solution to the problem, complicates fine-tuning of the 

model and increases the training period. 

By analogy with previous works, the TensorFlow framework was used to build a neural 

network model - a computing library for building neural networks of various architectures with 

the Keras deep learning library, which provides full access to the scalability and cross-platform 

capabilities of TensorFlow [23]. Due to the lack of a dataset required for research in the Keras 

library, it is necessary to create your own experimental dataset. The block diagram of the 

developed algorithm for preparing wavelet spectrum images for the built high-precision neural 

network is shown in Fig. 5. 

The accuracy of the deep learning model depends on the procedure for extracting data 

features, which is built on a large number of various experimental data [24]. In the absence of 



such data, the augmentation procedure is used - a method of artificial generation of a "training" 

data set, which is used to train the model. Usually, augmentation is implemented by the 

Tensorflow image generator, with the help of which each "training" image is modified 

randomly: it is rotated to a certain angle, changes its size or contrast, is mirrored [25]. Thanks to 

this approach, an artificial increase in the representativeness of the data set for neural network 

training is achieved [26]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Block diagram of the DataSet preparation algorithm for image recognition of Chirp-

type radar signal spectra taking into account the modulation coefficient 

The obtained set of experimental images is formed into three subsets: training (7056 

samples), validation (2520 samples) and test (504 samples) samples. The training sample is 

used to train the network; the validation sample in the learning process serves to select the 

hyper parameters of the network; a test sample is a set of images used to evaluate the 

performance of the network after training. 

A convolutional neural network is a stack of two-dimensional convolutional layers with the 

activation function of the Rectified Linear Unit (ReLU), which alternate with MaxPooling 2D 

layers. In addition, the depth value of the hidden layers gradually increases from 32 to 64, while 

the size of the feature maps decreases from 248×248 to 29×29. 

The CNN architecture for the detection model is parameterized to train and predict images 

with a size of 250×250 pixels and three RGB channels, and the size of the output images is 

640×480 pixels. The model has a binary output, so the detection task is focused on six classes of 

signals. Each class is configured to detect the signal spectrum belonging to the corresponding 

signal type as listed 128ChirpN, 256ChirpN, 512ChirpN, 128ChirpM, 256ChirpM, 512ChirpM. 

The training schedule of the developed neural network model is shown in Fig. 6 - Fig. 7. The 

calculation was performed for 50 training epochs. The results show that the accuracy of the 

developed model is higher at the validation stage, this is explained by the fact that the 
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generalization of the model training is higher than the training data. Already at the tenth epoch, 

a plateau is noticeable. At the training stage, model losses decrease sharply, which is explained 

by a decrease in the complexity of recognizing signals when they are distorted by the addition of 

noise, changes in the wavelet function, and changes in frequency and amplitude modulation 

coefficients. 

 

Figure 6: Accuracy of training and validation when using Wavelet Dataset 

 

Figure 7: Training and validation losses when using Dataset wavelets 

The loss reduction is associated with the limitation of the upper threshold of additively 

added noise, according to the proposed algorithm for its determination in the frequency 

domain. This excluded from the analysis the images of spectra that have already turned into 

solid noise and their further recognition is not possible at all. 

It should be noted that it is the changes in the frequency and amplitude modulation 

coefficients that cause oscillation, which is particularly noticeable on the validation curve 

(Fig.6– Fig. 7). Accuracy increases rapidly thanks to the proposed algorithm (Fig. 5). According 

to the algorithm, the upper limit of additive noise, which is determined under the conditions of 

the ability to recognize the image of the spectrum, is created using the technology of continuous 



wavelet transformation. At the same time, the limit corresponds to the moment when 

recognition is still possible. 

For the convenience of managing the model, an interface was developed that simplifies the 

visualization of the results of recognizing the component spectra of a complex signal after 

digitization by generating an image from a digital matrix (Fig. 8). 

 
 

  

  

Figure 8: The operation of a simple interface for recognizing the components of the signal 

spectrum: 128ChirpN, 256ChirpN, 512ChirpN, 128ChirpM, 256ChirpM, 512ChirpM 

Checking the accuracy on the test set shows the effectiveness of recognition: 

 
To evaluate the effectiveness of the developed algorithm for preparing images of wavelet 

spectra for a high-precision neural network with augmentation using a continuous wavelet 

transformation and limiting the upper limit of noise in the frequency domain during wavelet 

image generation, we will perform a comparison with a known model [26]. 

The authors of the study [25] investigated the image recognition model of thermal imagers. 

The convolutional neural network model presented in [26] with an artificial increase in 

representativeness provides image classification with an accuracy of up to 99.37% on the test 

sample, but cannot be used for the classification of wavelet spectra, as it analyzes a 

monochrome image. 

The trained neural network model using the Tensorflow library ensures the reliability of 

image detection and classification at the level of up to 95.7% [26]. A neural network with 

augmentation using primitive wavelet spectra and limiting the upper limit of noise in the 

frequency domain for wavelet image generation has an accuracy of up to 100% (Table 1). 

The proposed spectrum recognition system takes into account signal digitization on an 

analog local oscillator. The presence of many signals distorts the shape of the spectrum, which is 

analogous to the use of different wavelets. 

 



Table 1 

Comparative analysis of model training efficiency using continuous wavelet-spectrale 

A set of experimental data 

(Dataset) 

Classification 

accuracy on the 

training sample, 

% 

Classification 

accuracy on the 

validation 

sample, % 

Classification 

accuracy on 

the test 

sample, % 

Without using augmentation 

and limiting the upper limit of 

the noise 

84,3 88,1 93,1 

Augmentation using 

Tensorflow tools, which 

consist of reducing, enlarging 

and rotating images, changing 

the palette 

86,3 89,8 95,7 

Augmentation using 

continuous wavelet spectra 

and limiting the upper limit of 

noise in the frequency domain 

for wavelet image generation 

90,1 92,9 100 

 

Discussion 

In the work, when forming the data, the limitation of the range of the power change of the 

Gaussian noise additively added to the signal was applied. The limitation is carried out in the 

frequency domain by comparing the wavelet coherence of the noise and the noisy signal using 

the example of the most common signal with linear frequency modulation of the Chirp type. 

It was established that the wavelet autocoherence of Gaussian white noise has a constant 

value in the entire range of noise power change. At the same time, the numerical value of 

autocoherence depends exclusively on the choice of wavelet. The wavelet autocoherence of the 

noisy signal when the noise power changes intersects with the noise autocoherence at the 

power value, which, in addition to the wavelet, depends on the frequency modulation 

coefficient. A variable Chirp waveform with additional amplitude modulation by a half-sine 

wave was also investigated. 

The accuracy of recognition of a given type of signal in the developed model was increased 

due to the exclusion from the analysis of signals that cannot be recognized due to lack of 

distinction from noise. For each continuous wavelet, such a level of non-stationarity is 

determined, at which a noisy signal can be recognized. This allows you to expand the database, 

implement augmentation by changing the wavelet, as well as amplitude modulation of the 

signal. 

Conclusions 

An effective algorithm for image recognition of continuous wavelet spectra of noisy Chirp-type 

radar signals under conditions of change in the coefficient of linear frequency modulation has 

been developed. Formation of an experimental data set for training a convolutional neural 

network is carried out by generating images of signal spectra with the addition of additive noise 

to the Chirp signal. The frequency modulation coefficient changes regardless of the presence of 

amplitude modulation by a half-sine wave 

The developed neural network model for image recognition of continuous wavelet spectra 

using the Chirp signal as an example has an accuracy of up to 100% (the best analog result is up 

to 95.7%). 



The prospect of research is a detailed study of the potential of various wavelets or their 

influence on signal recognition. 
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