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Abstract 
Face recognition plays a pivotal role in enhancing security, improving efficiency, and enabling 
innovative applications across diverse industries, making it an indispensable tool in today's world. This 
study presents a comparative investigation between prediction ellipsoid and machine learning 
algorithms, such as a one-class support vector machine, isolation forest, and an autoencoder based on a 
neural network, in the context of face recognition. The construction of a prediction ellipsoid is based on 
the assumption of a multivariate normal distribution of the data, however, in real-world scenarios, the 
data often deviates from this assumption and may exhibit a non-Gaussian distribution. To mitigate this, 
the dataset underwent normalization via the multivariate Box-Cox transformation, facilitating the 
development of a decision rule based on a ten-variate prediction ellipsoid for the normalized data. This 
approach yielded notable enhancements in accuracy and method robustness. All the developed models 
have shown good efficiency in their respective performances. However, the application of the 
multivariate Box-Cox normalizing transformation significantly enhanced the performance of the 
prediction ellipsoid. As a result, the ten-variable prediction ellipsoid for normalized data has 
demonstrated superior efficiency compared to the other models. The study also highlights the critical 
role of feature dimensionality in face recognition, emphasizing the necessity of expanding the number 
of features and utilizing more complex models to achieve optimal performance. 
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1. Introduction 

Face recognition, a quintessential task in computer vision, holds significant importance in various 
fields, including security, surveillance, human-computer interaction, and biometrics. It entails 
identifying or verifying individuals by analyzing and comparing facial features captured through 
images or videos. 

The face recognition task contains several crucial steps, each essential for ensuring the 
system's accuracy, robustness, and reliability [1]. Firstly, image preprocessing enhances the 
quality and consistency of facial images for subsequent analysis. Next, face detection locates and 
recognizes faces within an image, laying the foundation for recognition procedures. This step 
employs methods like the Viola-Jones, MTCNN, or computer vision libraries such as DLib. 
Following detection, feature extraction characterizes each face uniquely. This involves capturing 
geometric characteristics like distances between facial landmarks, e.g., eyes, nose, and mouth, 
generating a distinctive feature vector. The final step involves the application of decision rules to 
determine whether the feature vector belongs to the representative of the target class. 

Traditionally, face recognition systems have been approached through classification methods, 
where the goal is to classify an input face image into one of several predefined classes. However, 
these methods often face challenges in scenarios where the available data for training does not 
adequately represent the entire population, leading to poor performance on novel faces. To 
address this limitation, the one-class classification approach has emerged. This approach, closely 
related to anomaly detection [2], focuses on learning representations of a single class, typically 
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the target, without explicit knowledge of the negative classes, representatives of these classes are 
considered anomalies. 

In the domain of face recognition, one-class classification stands as a pivotal methodology, 
enabling the identification of target classes amidst varying data distributions. Prediction ellipsoid 
and machine learning methods emerge as frontrunners among the popular approaches in this 
realm [3-5]. Given their significance in the field, this study aims to compare these diverse 
approaches in the context of face recognition tasks, examining their performance, robustness, and 
applicability. 

2. Literature review 

The field of face recognition has seen significant advancements in recent years, with various 
techniques developed such as linear discriminate analysis, support vector machine, and principal 
component analysis combined with face recognition by using K-Nearest-Neighbor and neural 
networks, including convolutional neural networks [6]. Traditional methods for face recognition 
typically rely on supervised learning approaches, where the system is trained on a dataset 
containing samples from each class or individual to be recognized. However, these methods 
require a predefined set of classes or identifiers, which makes them less suitable for scenarios 
where comprehensive training data is not available or when the study population is highly 
diverse. Another disadvantage is that such systems are poorly suited for the development of an 
identification model, where it is necessary to verify whether a specific individual belongs to a 
particular class. This makes one-class classification particularly well-suited for scenarios where 
only data from the target class is available or when the negative class is poorly defined. That is 
why for abnormal image detection, abnormal event detection, active authentication, and 
antispoofing one-class classification methods are extensively used [7]. 

Among the common approaches to one-class classification, prediction ellipsoid [3, 4] and 
machine learning methods [5] have emerged as popular choices. Notable examples include one-
class support vector machine (OCSVM) [8, 9], isolation forest (IF) [10], and autoencoder (AE) [11, 
12]. OCSVM is a support vector machine trained on a target class of data, learning a decision 
boundary that separates the data points from the origin in the feature space while maximizing 
the margin. IF is an ensemble learning method that isolates anomalies by randomly selecting 
features and partitioning data points until anomalies are isolated into small partitions, requiring 
fewer splits compared to target points. AE is a neural network designed to learn efficient 
representations of data by encoding the input into a lower-dimensional space–encoder, and then 
reconstructing the original input from this space-decoder, anomalies are discerned by evaluating 
the reconstruction error, with heightened errors indicating potential outliers. 

The application of a prediction ellipsoid relies on the assumption of a multivariate normal 
distribution within the data, which may not always hold, this discrepancy necessitates the 
utilization of normalization transformations [13]. These transformations aim to align the data 
more closely with the assumptions of a multivariate normal distribution, thereby enhancing the 
accuracy and robustness of the analysis. Normalization techniques encompass various 
approaches, including univariate transformations such as logarithmic or Box-Cox 
transformations, which operate independently on each feature. Conversely, multivariate 
transformations like the multivariate Box-Cox transformation consider inter-feature 
relationships, resulting in more effective normalization of the data [14]. 

Our study primarily investigates the method based on prediction ellipsoid and machine 
learning algorithms, such as OCSVM, IF, and AE, which are commonly utilized and offer distinct 
approaches to one-class classification. Specifically, OCSVM delineates a discerning boundary 
around normal instances, IF isolates anomalies through iterative partitioning of the feature space, 
AE employs a neural network approach, and the prediction ellipsoid separates normal instances 
from potential outliers based on their position in the feature space. 

In the realm of face recognition, where accuracy and efficiency are paramount, it's imperative 
to evaluate the efficacy of different approaches. While prediction ellipsoid offers interpretability 
and computational efficiency, they may encounter limitations with non-Gaussian data 
distributions. In contrast, machine learning methods such as OCSVM, IF, or AE present alternative 
methodologies, each with unique strengths and challenges.  



3. Face detection and feature extraction 

In the domain of computer vision, a variety of techniques are employed for detecting faces in 
images, each characterized by distinct strengths and functionalities. Notable among these 
methods are the Viola-Jones, Multi-Task Cascaded Convolutional Neural Network (MTCNN), and 
DLib toolkit [15]. 

The Viola-Jones represents a classic yet effective approach to face detection, renowned for its 
simplicity and efficiency. Operating by scanning images at multiple scales, it utilizes a predefined 
set of features to pinpoint regions of interest potentially containing faces. It is implemented in the 
Python OpenCV library.  

MTCNN, on the other hand, stands out as a deep learning-based face detection tool prized for 
its remarkable accuracy and resilience. Comprising three stages—face detection, bounding box 
regression, and facial landmark localization—MTCNN leverages a cascade of convolutional neural 
networks to precisely identify faces in images while concurrently estimating facial landmarks. 
This method is particularly advantageous for applications necessitating precise localization of 
facial features. 

DLib emerges as a comprehensive C++ toolkit with formidable capabilities in facial detection 
and recognition. Leveraging a Histogram of Oriented Gradients and Linear Support Vector 
Machine face detector, DLib excels in detecting faces and estimating 68 facial points. These points 
facilitate accurate detection and localization of facial features, enabling seamless implementation 
of face alignment, merging, and other transformations. 

While all face detection methods exhibit commendable performance in high-quality images, 
they display variations in performance under different conditions. MTCNN and DLib demonstrate 
comparable accuracy, with MTCNN exhibiting superior performance in recognizing faces in small 
images and low-light conditions. In contrast, the Viola-Jones method may encounter challenges 
with distortions. Performance evaluations conducted using a standardized test dataset reveal 
that Viola-Jones operates at the highest speed, processing 11.25 frames per second (fps), followed 
closely by DLib at 9.41 fps, and MTCNN at 4.92 fps.  

Given its good speed and proficiency in extracting a substantial number of key points, DLib 
emerges as the preferred choice for face detection and feature extraction tasks, particularly in 
scenarios where real-time processing or high throughput is essential. 

A program was created using the DLib computer vision library in Python to generate feature 
vectors. Once a face is detected in the input image, the program begins several image-processing 
tasks. These tasks include cropping and aligning the face to ensure that the eyes are aligned at the 
same level. This preprocessing step helps reduce distortions caused by the face's orientation in 
the input image. In the last phase, the program extracts a series of attributes from the aligned 
image. Each attribute denotes the pixel distance between facial landmarks identified by the DLib 
library. It used 17 key landmarks across the face (fig. 1).  

Utilizing the pixel distances between these landmarks, a feature vector composed of 10 
distinct attributes was meticulously crafted. Symmetrical distances were thoughtfully averaged 
to derive the following features: 

1. The eyes-to-nose midpoint distance indicates the facial symmetry and proportionality 
between the eyes and the nose. 
2. The eyes-to-mouth center distance reflects the vertical alignment and proportionality 
between the eyes and the mouth. 
3. The eyes-to-eyebrows center distance offers insights into the spatial relationship 
between the eyes and the eyebrows. 
4. The eyebrows-to-nose bridge distance delineates the vertical dimension and 
proportionality between the eyebrows and the nose bridge. 
5. The eye's corners-to-nose bridge distance provides insights into the lateral dimension 
and proportionality between the eye's corners and the nose bridge. 
6. The eyebrows distance. 
7. The nose-to-mouth midpoint distance offers insights into the vertical alignment between 
the nose and the mouth. 
8. The corners of the mouth distance, reflect the width of the mouth. 
9. The edges of the nose distance, delineate the width of the nose. 



10. The mouth-to-chin distance provides insights into the vertical dimension between the 
mouth and the chin. 
 

 
Figure 1: Distances between facial landmarks used to generate the feature vector 

 
To adapt to variations in facial positioning within the image and varying distances from the 

camera, a normalization procedure is implemented. This involves dividing each feature by the 
distance between the eyes. By scaling each feature relative to the interocular distance, the 
normalization process ensures that facial characteristics remain consistent across different 
images and distances, enhancing the robustness and accuracy of subsequent analysis and 
recognition tasks. 

For the research, the well-known dataset Pins Face Recognition was chosen, which is used in 
building decision rules for facial recognition. To ensure the reliability and accuracy of the study, 
the dataset underwent filtering, followed by additional downloading of photos from open sources 
and expansion of the dataset. In total, 400 high-quality photos were obtained, 200 for each of the 
two faces. Consequently, 400 feature vectors were acquired, each corresponding to a single photo, 
comprising 10 elements. Out of these, 100 vectors of a single person were used to construct a 
prediction ellipsoid and train the machine learning models for identifying the individual, while 
the remaining 300 photos were allocated as the test set. 

4. Materials and methods 

4.1. Prediction ellipsoid for normalized data 

In the construction of the prediction ellipsoid, each observation's squared Mahalanobis distance 
is calculated and compared to critical values derived from the Chi-square distribution [16].  
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where 𝛼 is the confidence level, 𝑘 is the number of dimensions in the data, 
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Figure 2 illustrates the example of a 3-variate prediction ellipsoid. In our study, we use a 10-
variate prediction ellipsoid. Objects within its boundaries are classified as the target class, while 
those outside are identified as anomalies. 

 
Figure 2: Example of a 3-variate prediction ellipsoid 

 
Since the prediction ellipsoid relies on the assumption of data normality, the Mardia test was 

employed to evaluate the departure of the multivariate data distribution from normality. 
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It is a statistical test used to assess whether a dataset follows a multivariate normal 
distribution. It measures the multivariate skewness 𝛽1 (3) and multivariate kurtosis 𝛽2 (4) of the 
data to determine how closely it resembles a normal distribution in multiple dimensions. This 
test is particularly useful in various fields such as statistics, econometrics, and multivariate 
analysis, where the assumption of multivariate normality is important for accurate interpretation 
and analysis of data. 

Based on the results of the Mardia test, it is evident that the multivariate distribution of the 
training sample deviates from Gaussian. This is indicated by the test statistic for multivariate 
skewness 𝑁𝛽1/6, which measures 289.20, surpassing the quantile of the Chi-Square distribution 
set at 277.77 for 220 degrees of freedom and a significance level of 0.005. Conversely, the test 
statistic for multivariate kurtosis 𝛽2 with a value of 122.35 does not exceed the Gaussian 
distribution quantile, which stands at 127.97 for a mean of 120, a variance of 9.6, and a 
significance level of 0.005. Consequently, it is imperative to apply a normalizing transformation 
like the Box-Cox transformation on a non-Gaussian random vector 𝑋 = {𝑋1, 𝑋2, … , 𝑋10}

𝑇, to 
convert it into a Gaussian random vector 𝑍 = {𝑍1, 𝑍2, … , 𝑍10}

𝑇. 
The Box-Cox transformation is a statistical technique used to stabilize variance and make data 

conform more closely to the assumptions of normality. It is typically applied to univariate data, 
but there is also a multivariate extension known as the multivariate Box-Cox transformation. 

𝑍𝑗 = 𝑥(λ𝑗) = {
(𝑋

𝑗

λ𝑗 − 1)/λ𝑗, λ𝑗 ≠ 0;

ln(𝑋𝑗),            λ𝑗 = 0.
 (5) 

In the multivariate context, the BCT aims to normalize data across multiple variables 
simultaneously. It is designed to address situations where there are multiple correlated variables 



and normalizing each variable individually may not be sufficient to achieve multivariate 
normality. The multivariate BCT involves estimating transformation parameters for each variable 
in the sample, similar to the univariate case. However, it also considers the interrelationships 
between variables to ensure that the transformation maintains the structure of the multivariate 
distribution. One of the methods to determine parameters for each variable in the dataset 
involves maximizing the log-likelihood of the transformed data: 

𝑙(𝑋, θ) = ∑(

𝑘

𝑗=1

λ𝑗 − 1)∑ln(𝑥𝑗𝑖) −
𝑁
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where 𝑆𝑍 is calculated as (2) using the normalized sample 𝑍 instead of 𝑋. 
Following the completion of the task utilizing the maximum likelihood method of the 

logarithmic function (6), the ensuing parameter estimates were acquired: λ1̂ = -0.5799, 

λ2̂ = -0.9732, λ3̂ = 0.4871, λ4̂ = 2.888, λ5̂ = 4.0714, λ6̂ = -0.231, λ7̂ = 0.087, λ8̂ = -1.2973, 
λ9̂ = -1.1866, λ10̂ = 1.3321. 

As a result of the BCT application with components (5), a sample was obtained, featuring the 
resulting vector of means: �̅� = {0.52627; 0.13911; -0.91083; 0.25654; -0.24379; 1.13224;  
-1.14383; -0.26329; 2.03304; -0.34494}. 

The covariance matrix of the normalized sample 𝑆𝑍 is: 

[
 
 
 
 
 
 
 
 
 
0. 0244 0. 0213 −0. 022 −0. 046 −0. 056 −0. 038 −0. 023 0. 0470 0. 0262 −0. 022
0. 0213 0. 0211 −0. 042 0. 0477 −0. 053 0. 0317 0. 0211 −0. 044 0. 0228 0. 0313
−0. 022 −0. 042 0. 0237 0. 0336 0. 0651 0. 0212 0. 0238 −0. 034 −0. 022 0. 0219
−0. 046 0. 0477 0. 0336 0. 0466 −0. 063 0. 0323 0. 0338 −0. 032 −0. 033 0. 0312
−0. 056 0. 0528 0. 0651 0. 0627 0. 0748 0. 0516 0. 0521 −0. 064 −0. 042 0. 0517
−0. 038 0. 0317 0. 0212 0. 0323 0. 0517 0. 0285 0. 0227 0. 0312 −0. 021 0. 0489
−0. 023 0. 0211 0. 0238 0. 0338 0. 0521 0. 0227 0.0105 −0. 039 −0. 023 0. 0238
0. 0470 −0. 044 −0. 033 −0. 032 −0. 064 0. 0312 −0. 039 0. 0271 0.0139 0. 0217
0. 0262 0. 0228 −0. 022 −0. 033 −0. 042 −0. 021 −0. 023 0.0139 0.0857 0. 0212
−0. 022 0. 0313 0. 0219 0. 0312 0. 0517 0. 0489 0. 0238 0. 0217 0. 0212 0. 0231]

 
 
 
 
 
 
 
 
 

 

The normalized sample shows no departure from the multivariate normal distribution. This is 
supported by the test statistics: the multivariate skewness test statistic 𝑁𝛽1/6, measuring at 
265.59 does not exceed the critical value of 277.77, and the multivariate kurtosis test statistic 𝛽2, 
recorded at 121.52, is lower than the critical value of 127.97. 

After applying the normalization transformations, a ten-variate prediction ellipsoid is 
constructed based on equation (1): 

(𝑍 − �̅�)𝑇𝑆𝑍
−1(𝑍 − �̅�) ≤  𝜒10,   0.005

2 . (7) 

The quantile value of the Chi-square distribution is 25.19 for 10 degrees of freedom and a 
significance level of 0.005. 

4.2. Machine learning algorithms 

Several popular techniques in machine learning serve as effective tools for outlier detection and 
can be used for face recognition, including a one-class support vector machine, isolation forest, 
and autoencoder. These methods are particularly notable for their application in unsupervised 
learning and they can be trained only on data from the target class, studying the features of the 
provided data. 

4.2.1. One-class support vector machine 

OCSVM constructs a decision function or boundary that effectively separates the target data 
from the rest of the feature space. This boundary is established by finding a hyperplane with a 
maximum margin and optimizing the distance between the hyperplane and the origin in the high-
dimensional feature space.  

In an OCSVM, an implicit transformation function φ(∙) is employed, it is a non-linear projection 
that is evaluated through a kernel function, which serves as a mapping from the original feature 
space to a potentially higher-dimensional feature space: 𝑘(𝑥, 𝑦) = φ(𝑥) ∙ φ(𝑦) [17]. Commonly 
used kernel functions include: the linear kernel, which computes dot products in the original 



feature space and is suitable for linearly separable data; the polynomial kernel captures non-
linear relationships between data points by raising dot products to specified powers, allowing for 
the modeling of complex decision boundaries; the radial basis function kernel, employing a 
Gaussian function, is highly effective in capturing intricate relationships between data points, 
particularly in scenarios where data is not linearly separable; lastly, the sigmoid kernel, based on 
the hyperbolic tangent function, adeptly captures non-linear patterns in the data, making it useful 
for handling complex relationships between features and classes.  

Subsequently, the algorithm learns a decision boundary aimed at segregating the majority of 
the data from the origin, it is defined as [18]: 

𝑔(𝑥) = 𝜔𝑇φ(𝑥) − 𝜌,  
where 𝜔 the normal vector of the hyperplane, 𝜌 is the bias. 

Formulating OCSVM as a quadratic optimization problem, the main aim is to minimize the 
weight vector while simultaneously maximizing the margin, subject to specific constraints: 
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subject to: 𝜔𝑇φ(𝑥𝑖) ≥ 𝜌 − ξ𝑖, ξ𝑖 ≥ 0, 

 

where ξ𝑖  is slack variables, it is utilized to model separation errors; ν ∈ (0,1] is the regularization 
parameter, it characterizes the solution by setting an upper bound on the fraction of outliers, such 
as the training examples regarded as out-of-class, and simultaneously establishes a lower bound 
on the number of training examples utilized as support vectors [19]. 

The optimization problem is typically solved in its dual form, resulting in a decision function 
that can classify new data points as either belonging to the target class or representing anomalies. 
This function yields a positive value for the target and a negative value otherwise: 

𝑓(𝑥) = 𝑠𝑔𝑛(𝑔(𝑥)).  

In Python, implementing OCSVM typically involves creating a OneClassSVM object from the 
SVM module in sci-kit-learn. This allows users to adjust essential parameters such as the choice 
of kernel function, regularization parameter ν, and kernel-specific parameters. The model is 
configured with a ν parameter of 0.15, which determines the fraction of training errors and the 
upper bound on the fraction of training set outliers. For the kernel function, the radial basis 
function is utilized. This kernel is popular for SVMs due to its flexibility in capturing non-linear 
relationships between data points. Additionally, the gamma parameter is set to auto, which 
means its value is automatically calculated based on the inverse of the number of features. 
Gamma defines the influence range of a single training example, with low values meaning far and 
high values meaning close. 

4.2.2. Isolation forest 

Departing from traditional approaches reliant on profiling normal data points, isolation forest 
takes a unique route by directly focusing on isolating anomalies. This method hinges on 
constructing isolation trees, binary trees where internal nodes represent features and split 
values, while leaf nodes represent individual data points [20]. 

The process of constructing isolation trees initiates with the random selection of a feature and 
split value within its range. This randomness recurs until each data point is secluded in its own 
leaf node, or until a predetermined maximum tree depth is attained. The method's ability to 
efficiently isolate anomalies sans prior knowledge of the dataset's distribution stems from this 
stochastic feature and split value selection. Anomalies, expected to be inherently easier to isolate 
than normal data points, typically reside in sparser regions of the feature space. Consequently, 
they necessitate fewer splits along paths from the root to leaf nodes for isolation. Hence, the 
average path length from the root to leaf nodes for each data point is computed across all trees 
within the forest [21]. 

Subsequently, an anomaly score is computed for each data point based on its average path 
length [22]:  

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛) ,  



where 𝐸(ℎ(𝑥)) =  
∑ ℎ𝑖(𝑥)𝑡

𝑖=1

𝑡
 is the average length of 𝑥 over 𝑡 isolation trees; 𝑐(𝑛) is the average 

length of unsuccessful search in a binary tree: 
𝑐(𝑛) = 2𝐻(𝑛 − 1) − (2(𝑛 − 1)/𝑛),  

where 𝐻(𝑖) = ln(𝑖) + γ, γ is Euler’s constant. 
Data points with shorter path lengths, indicative of proximity to the root, are deemed more 

likely to be anomalies, while those with longer paths are considered more typical. A threshold is 
established to classify data points as anomalies or normal points based on their anomaly scores, 
with points above the threshold classified as anomalies and those below as normal. 

Isolation forest harnesses an ensemble of these isolation trees, where each tree operates 
independently, contributing to the final anomaly score for a given data point. This ensemble 
approach enhances the algorithm's robustness and accuracy, rendering it more adept at handling 
noise and data variability. 

The IsolationForest algorithm is implemented in the widely-used Python machine learning 
library sci-kit-learn and offers various adjustable parameters for optimizing its performance. 
Among these is the contamination parameter, essential for determining the threshold in the 
decision function, which distinguishes new data points as either target or anomalous [23]. After 
conducting experiments, a value of 0.08 was selected for the contamination parameter as it 
strikes the optimal balance between detecting true anomalies and minimizing false alarms. 

 Other significant parameters of the IsolationForest model include: n_estimators, specifying 
the number of decision trees within the forest, set to 100; max_samples, indicating the maximum 
number of samples used for training each tree, set to 256; and max_features, determining the 
maximum number of features used for splitting each node, set to 1.0, indicating that all features 
are used. These parameter settings were chosen based on their widespread usage and their 
ability to strike an optimal balance between model complexity and computational efficiency. 

To classify a sample as either target or anomalous, the anomaly score is compared to a 
threshold value. These scores can range from positive to negative, with negative values indicating 
samples more likely to be the target and positive values indicating samples more likely to be 
anomalous. The selection of the threshold value depends on the specific application and the 
characteristics of the data. In our case, a threshold value of 0 yielded the best results. 

4.2.3. Autoencoder 

An autoencoder is a form of artificial neural network employed for learning efficient data 
representations, dimensionality reduction, and detecting anomalies. It is an unsupervised 
learning method composed of two primary components: an encoder and a decoder. The main 
objective of an autoencoder is to learn a condensed and meaningful representation of the input 
data, referred to as the latent space or bottleneck, by reconstructing the input data with minimal 
loss [24]. 

The encoder's role is to map the input data to the latent space, compressing the information 
into a lower-dimensional representation. It is generally a neural network with multiple layers, 
where each layer applies a non-linear transformation to the input data. The encoder's output, the 
latent space, captures the most significant features and patterns in the input data. 

In contrast, the decoder is responsible for reconstructing the input data from the latent space 
representation. It is also a neural network with multiple layers, but its architecture is typically 
the inverse of the encoder's architecture. The decoder takes the latent space representation as 
input and tries to recreate the original input data by applying a series of non-linear 
transformations through its layers. 

During training, the autoencoder learns to minimize the reconstruction error, which is the 
discrepancy between the original input data and the reconstructed data. This is usually 
accomplished by optimizing a loss function, such as mean squared error or binary cross-entropy, 
using gradient-based optimization techniques like backpropagation. 

In the context of recognition, the autoencoder is trained using target class instances, enabling 
it to learn the patterns and structure of normal data. When presented with new data, the 
autoencoder will reconstruct the input with a low reconstruction error if the input is the target. 
However, if the input is an anomaly, the reconstruction error will be higher, as the autoencoder 



has not been trained to reconstruct such instances effectively [25]. By setting an appropriate 
threshold on the reconstruction error, it is possible to detect and distinguish anomalies from 
target instances. 

When considering the development of autoencoder models, various machine learning 
frameworks present distinct advantages. TensorFlow and PyTorch emerge as prominent 
contenders in this domain. TensorFlow, originating from Google, offers a rich ecosystem of tools 
and libraries, rendering it a favored option among both researchers and practitioners. Its 
utilization of a static computation graph facilitates efficient optimization and distributed 
computing, making it particularly suited for handling large-scale neural network models. 
Conversely, PyTorch, hailing from Facebook's AI Research lab, emphasizes flexibility and user-
friendliness. With its dynamic computation graph and intuitive API, PyTorch becomes the 
preferred choice for swift prototyping and experimentation [26]. 

In the creation of autoencoder models, TensorFlow and Keras were selected due to their 
collective strengths in flexibility, scalability, and usability. Keras, functioning as a high-level 
neural networks API layered atop TensorFlow, streamlines the process of constructing and 
training autoencoder models. Meanwhile, TensorFlow furnishes the foundational infrastructure 
for proficient computation, ensuring optimal performance throughout the training and inference 
phases. 
 

 
Figure 3: Autoencoder structure 
 
Before feeding the data into the neural network, min-max normalization is applied to each 

feature individually. This normalization method scales each feature to a range [0, 1] [27]. By 
applying min-max normalization, all features are brought to the same scale and are constrained 
within the desired range, promoting stable and efficient learning processes. The autoencoder 
model is designed with an input layer that receives data in the shape of a 10-variate 
representation. The model consists of a series of fully connected layers for both encoding and 
decoding operations. The encoding phase compresses the input data into a lower-dimensional 
representation, gradually reducing the dimensionality from 10 to 8 and then further down to 6, 
forming a bottleneck in the network architecture [28]. This bottleneck layer restricts the model's 
capacity to capture the most salient features of the input data, forcing it to learn a compact 
representation that captures essential information. Each encoding layer utilizes rectified linear 



unit (ReLU) activation functions, which introduce non-linearity to the model and facilitate the 
extraction of complex features from the input data. Following the encoding layers, the decoding 
phase reverses the process, reconstructing the original input dimensions. The decoded layers 
expand the dimensionality back to 8 and finally, to the original 10 dimensions. Similar to the 
encoding layers, ReLU activation functions are employed in the decoding layers, preserving the 
non-linear relationships learned during the encoding phase. The final layer of the model uses a 
sigmoid activation function, ensuring that the output values are within the range [0, 1]. This 
activation function is commonly used for binary classification tasks and reconstruction problems, 
providing smooth and interpretable output. The autoencoder structure (fig. 3) is similar to [29]. 

To train the model, the Adam optimizer is utilized with binary cross-entropy loss, a common 
choice for reconstruction tasks aiming to minimize the difference between the input and 
reconstructed data. Adam optimizer is an adaptive learning rate optimization approach that 
combines the advantages of both AdaGrad and RMSProp [30]. It dynamically adjusts the learning 
rate during training, allowing for faster convergence and improved performance. Binary cross-
entropy loss, on the other hand, measures the dissimilarity between the input and the 
reconstructed data, particularly suitable for binary classification problems where each instance 
belongs to one of two classes. This configuration ensures efficient training of the autoencoder 
model, optimizing its ability to capture the underlying patterns in the data while minimizing 
reconstruction error. 

The training process spans 100 epochs, with a batch size of 8 instances per batch. Shuffling the 
data at each epoch introduces randomness and prevents the model from memorizing the training 
data order, aiding in generalization. 

4.3. Evaluation metrics 

Various evaluation metrics are employed to assess the effectiveness of created models in 
recognition of the target instances or anomalies. Commonly used metrics include accuracy, 
precision, recall (sensitivity), specificity, and the F1 score [31, 32]. While accuracy provides a 
broad perspective on correctness, precision, recall, specificity, and the F1 score offers nuanced 
insights into the model's efficacy in detecting anomalies.  

The evaluation metrics are derived from a confusion matrix, which offers four distinct 
measures. True Positive (TP) represents instances where the model correctly identifies an 
anomaly as such. False Positive (FP) instances occur when the model inaccurately labels a target 
instance as an anomaly. True Negative (TN) denotes instances where the model accurately 
identifies target instances. Lastly, False Negative (FN) instances arise when the model incorrectly 
labels target instances as normal.  

Accuracy acts as a gauge for overall correctness, derived from the ratio of correctly classified 
instances to the total number of instances : 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. 

Precision, on the other hand, quantifies the proportion of correctly identified anomalies 
among all instances classified as anomalies. This metric is calculated as the ratio of true positives 
to the sum of true positives and false positives:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. 

Recall, also termed sensitivity, represents the proportion of actual anomalies correctly 
identified by the model. It serves as a pivotal indicator of the model's ability to detect all 
anomalies within the dataset: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . 

Specificity provides complementary insights by measuring the proportion of true negatives 
and correctly predicted target instances, among all actual target instances. It highlights the 
model's capacity to accurately identify target instances while minimizing false alarms. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 . 

The F1 score is the harmonic mean of precision and recall: 



𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 . 

5. Results 

Table 1 presents a comparison of recognition performance of prediction ellipsoid for non-
Gaussian data (PENGD) (1), prediction ellipsoid for normalized data (PEND) (7), one-class 
support vector machine (OCSVM), isolation forest (IF) and autoencoder (AE).  
 
Table 1 
Comparison of models 

Model Precision Recall Specificity F1 score Accuracy 

PENGD 0.9598 0.9550 0.9200 0.9574 0.9433 
PEND 0.9848 0.9750 0.9700 0.9793 0.9733 
OCSVM 0.8878 0.9100 0.7700 0.8988 0.8633 
IF 0.9393 0.9300 0.8800 0.9347 0.9133 
AE 0.9366 0.9600 0.8700 0.9481 0.9300 

 
In general, all developed models have good efficiency. The OCSVM exhibited the lowest 

performance among the models evaluated, with scores generally lower across precision, recall, 
specificity, F1 score, and accuracy. The IF demonstrated competitive performance across most 
metrics, falling between the scores of OCSVM and the other models. This indicates that IF may 
offer a decent compromise between simplicity and performance, making it a viable choice 
depending on the specific requirements of the application.  

AE showed performance comparable to PENGD, with scores across various metrics similar to 
or slightly lower than PENGD. However, by employing normalization techniques, PEND achieved 
notable enhancements in performance compared to both AE and PENGD. This underscores the 
importance of normalizing transformation in enhancing prediction ellipsoid models for 
recognition, particularly in scenarios involving non-Gaussian data.  

6. Discussion 

As evidenced by the results, the prediction ellipsoid for normalized data consistently 
outperformed machine learning models such as OCSVM, IF, and AE. Compared to the prediction 
ellipsoid for non-Gaussian data, the application of a ten-variate Box-Cox transformation 
significantly improved the model. This highlights the importance of applying a normalizing 
transformation to data with a non-Gaussian distribution. The choice of an appropriate 
normalization technique is far from trivial and exerts a profound influence on the efficacy and 
robustness of the created model. Univariate normalization methods often fall short of capturing 
the intricate relationships between features, leading to suboptimal results. In contrast, 
multivariate normalization techniques offer a more comprehensive approach by considering the 
correlations and interdependencies between multiple features. By applying the ten-variate Box-
Cox transformation, the prediction ellipsoid can account for correlations between features. This 
approach enables the model to more accurately represent the underlying data distribution, 
leading to enhanced robustness and efficiency. 

It should be noted that a crucial aspect in the construction of a prediction ellipsoid is the 
definition of the confidence level. In our study, a confidence level of 0.005 was selected, aligning 
with its widespread usage in outlier detection tasks [33]. 

The main advantage of using the prediction ellipsoid for normalized data lies in its ability to 
enhance prediction accuracy and reliability. Normalizing the data not only facilitates the 
development of more accurate prediction ellipsoid but also ensures they capture the underlying 
patterns and relationships within the data more effectively, leading to more reliable and precise 
predictions. Additionally, by transforming the data to data with the Gaussian distribution, the 
prediction ellipsoid gains increased robustness and resilience. 



The application of prediction ellipsoid for normalized data has some disadvantages. Firstly, a 
substantial dataset size is often required to robustly study the model's performance, typically 
necessitating a minimum of 100 instances to yield meaningful insights. Additionally, the process 
of identifying an appropriate normalizing transformation can be intricate and resource-intensive, 
particularly in cases where the underlying data distribution is complex or poorly understood. The 
last one is the necessity of selecting a confidence level, which can have a significant impact on the 
interpretation and reliability of the prediction ellipsoid. 

It's important to acknowledge the inherent limitations of the prediction ellipsoid model. One 
notable constraint is its inherent design to recognize and delineate prediction regions for 
individual instances rather than accommodating multiple instances simultaneously. While the 
model excels in providing localized predictions for individual data points, its applicability to 
scenarios involving collective analysis or batch processing may be limited, warranting careful 
consideration in practical deployment scenarios. 

Future research could involve exploring alternative normalizing transformations, such as the 
multivariate Johnson transformation. In addition, it's important to consider the impact of model 
complexity and feature richness on performance. While the models evaluated in this study 
demonstrate commendable results with the available features, there's a clear indication that 
employing more complex models and incorporating a broader range of features could yield even 
better outcomes. This emphasizes the necessity of advancing both model architecture and feature 
selection techniques to effectively address the intricacies present in the data. 

7. Conclusions 

The study examined various one-class classification methods in the context of face recognition. 
Various models were constructed including prediction ellipsoid for normalized data and machine 
learning algorithms such as OCSVM, IF, and AE. These methodologies aim to unveil anomalies 
within a dataset by apprehending its underlying structure, often gleaned from instances 
representing the target class. 

The application of the ten-variate Box-Cox transformation significantly enhanced the 
performance of the prediction ellipsoid, which led to a 3% increase in recognition accuracy. 
Consequently, the model surpassed the performance of the considered machine learning 
methods. This underscores the significance of applying normalization techniques to non-
Gaussian data. The primary advantage of utilizing the prediction ellipsoid for normalized data is 
its capacity to enhance prediction accuracy and reliability. Normalizing the data not only 
facilitates the development of more precise prediction ellipsoids but also ensures they capture 
the underlying patterns. 

The main disadvantage of the developed model lies in the complexity and resource-intensive 
nature of determining the appropriate normalizing transformation. This challenge is particularly 
pronounced in cases where the underlying data distribution is complex or poorly understood, 
especially when dealing with high-dimensional data. 

An essential aspect of employing the method involves determining the confidence level, with 
a confidence level of 0.005 utilized in the study. 

Future research could explore the impact of employing alternative normalizing methods, such 
as the multivariate Johnson transformation, to further enhance model performance. Additionally, 
deeper investigations into the reasons behind the observed performance differences among 
models and the potential benefits of incorporating more complex models with a broader array of 
features could contribute to the advancement of one-class classification methodologies in face 
recognition tasks. 
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