
Application of a Ten-Variate Prediction Ellipsoid for
Normalized Data and Machine Learning Algorithms for
Face Recognition

Sergiy Prykhodko1,2 and Artem Trukhov1

1 Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Ave., 9, Mykolaiv, 54007, Ukraine
2 Odesa Polytechnic National University, Shevchenko Ave., 1, Odesa, 65044, Ukraine

Abstract
Face recognition plays a pivotal role in enhancing security, improving efficiency, and enabling
innovative applications across diverse industries, making it an indispensable tool in today's world. This
study presents a comparative investigation between prediction ellipsoid and machine learning
algorithms, such as a one-class support vector machine, isolation forest, and an autoencoder based on a
neural network, in the context of face recognition. The construction of a prediction ellipsoid is based on
the assumption of a multivariate normal distribution of the data, however, in real-world scenarios, the
data often deviates from this assumption and may exhibit a non-Gaussian distribution. To mitigate this,
the dataset underwent normalization via the multivariate Box-Cox transformation, facilitating the
development of a decision rule based on a ten-variate prediction ellipsoid for the normalized data. This
approach yielded notable enhancements in accuracy and method robustness. All the developed models
have shown good efficiency in their respective performances. However, the application of the
multivariate Box-Cox normalizing transformation significantly enhanced the performance of the
prediction ellipsoid. As a result, the ten-variable prediction ellipsoid for normalized data has
demonstrated superior efficiency compared to the other models. The study also highlights the critical
role of feature dimensionality in face recognition, emphasizing the necessity of expanding the number
of features and utilizing more complex models to achieve optimal performance.

Keywords
Face recognition, multivariate normal distribution, Box-Cox transformation, machine learning1

1. Introduction

Face recognition, a quintessential task in computer vision, holds significant importance in various
fields, including security, surveillance, human-computer interaction, and biometrics. It entails
identifying or verifying individuals by analyzing and comparing facial features captured through
images or videos.

The face recognition task contains several crucial steps, each essential for ensuring the
system's accuracy, robustness, and reliability [1]. Firstly, image preprocessing enhances the
quality and consistency of facial images for subsequent analysis. Next, face detection locates and
recognizes faces within an image, laying the foundation for recognition procedures. This step
employs methods like the Viola-Jones, MTCNN, or computer vision libraries such as DLib.
Following detection, feature extraction characterizes each face uniquely. This involves capturing
geometric characteristics like distances between facial landmarks, e.g., eyes, nose, and mouth,
generating a distinctive feature vector. The final step involves the application of decision rules to
determine whether the feature vector belongs to the representative of the target class.

Traditionally, face recognition systems have been approached through classification methods,
where the goal is to classify an input face image into one of several predefined classes. However,
these methods often face challenges in scenarios where the available data for training does not
adequately represent the entire population, leading to poor performance on novel faces. To
address this limitation, the one-class classification approach has emerged. This approach, closely
related to anomaly detection [2], focuses on learning representations of a single class, typically

CMIS-2024: Seventh International Workshop on Computer Modeling and Intelligent Systems, May 3, 2024,
Zaporizhzhia, Ukraine

 sergiy.prykhodko@nuos.edu.ua (S. Prykhodko); artem.trukhov@gmail.com (A. Trukhov)

 0000-0002-2325-018X (S. Prykhodko); 0000-0002-7160-8609 (A. Trukhov)

© 2024 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

the target, without explicit knowledge of the negative classes, representatives of these classes are
considered anomalies.

In the domain of face recognition, one-class classification stands as a pivotal methodology,
enabling the identification of target classes amidst varying data distributions. Prediction ellipsoid
and machine learning methods emerge as frontrunners among the popular approaches in this
realm [3-5]. Given their significance in the field, this study aims to compare these diverse
approaches in the context of face recognition tasks, examining their performance, robustness, and
applicability.

2. Literature review

The field of face recognition has seen significant advancements in recent years, with various
techniques developed such as linear discriminate analysis, support vector machine, and principal
component analysis combined with face recognition by using K-Nearest-Neighbor and neural
networks, including convolutional neural networks [6]. Traditional methods for face recognition
typically rely on supervised learning approaches, where the system is trained on a dataset
containing samples from each class or individual to be recognized. However, these methods
require a predefined set of classes or identifiers, which makes them less suitable for scenarios
where comprehensive training data is not available or when the study population is highly
diverse. Another disadvantage is that such systems are poorly suited for the development of an
identification model, where it is necessary to verify whether a specific individual belongs to a
particular class. This makes one-class classification particularly well-suited for scenarios where
only data from the target class is available or when the negative class is poorly defined. That is
why for abnormal image detection, abnormal event detection, active authentication, and
antispoofing one-class classification methods are extensively used [7].

Among the common approaches to one-class classification, prediction ellipsoid [3, 4] and
machine learning methods [5] have emerged as popular choices. Notable examples include one-
class support vector machine (OCSVM) [8, 9], isolation forest (IF) [10], and autoencoder (AE) [11,
12]. OCSVM is a support vector machine trained on a target class of data, learning a decision
boundary that separates the data points from the origin in the feature space while maximizing
the margin. IF is an ensemble learning method that isolates anomalies by randomly selecting
features and partitioning data points until anomalies are isolated into small partitions, requiring
fewer splits compared to target points. AE is a neural network designed to learn efficient
representations of data by encoding the input into a lower-dimensional space–encoder, and then
reconstructing the original input from this space-decoder, anomalies are discerned by evaluating
the reconstruction error, with heightened errors indicating potential outliers.

The application of a prediction ellipsoid relies on the assumption of a multivariate normal
distribution within the data, which may not always hold, this discrepancy necessitates the
utilization of normalization transformations [13]. These transformations aim to align the data
more closely with the assumptions of a multivariate normal distribution, thereby enhancing the
accuracy and robustness of the analysis. Normalization techniques encompass various
approaches, including univariate transformations such as logarithmic or Box-Cox
transformations, which operate independently on each feature. Conversely, multivariate
transformations like the multivariate Box-Cox transformation consider inter-feature
relationships, resulting in more effective normalization of the data [14].

Our study primarily investigates the method based on prediction ellipsoid and machine
learning algorithms, such as OCSVM, IF, and AE, which are commonly utilized and offer distinct
approaches to one-class classification. Specifically, OCSVM delineates a discerning boundary
around normal instances, IF isolates anomalies through iterative partitioning of the feature space,
AE employs a neural network approach, and the prediction ellipsoid separates normal instances
from potential outliers based on their position in the feature space.

In the realm of face recognition, where accuracy and efficiency are paramount, it's imperative
to evaluate the efficacy of different approaches. While prediction ellipsoid offers interpretability
and computational efficiency, they may encounter limitations with non-Gaussian data
distributions. In contrast, machine learning methods such as OCSVM, IF, or AE present alternative
methodologies, each with unique strengths and challenges.

3. Face detection and feature extraction

In the domain of computer vision, a variety of techniques are employed for detecting faces in
images, each characterized by distinct strengths and functionalities. Notable among these
methods are the Viola-Jones, Multi-Task Cascaded Convolutional Neural Network (MTCNN), and
DLib toolkit [15].

The Viola-Jones represents a classic yet effective approach to face detection, renowned for its
simplicity and efficiency. Operating by scanning images at multiple scales, it utilizes a predefined
set of features to pinpoint regions of interest potentially containing faces. It is implemented in the
Python OpenCV library.

MTCNN, on the other hand, stands out as a deep learning-based face detection tool prized for
its remarkable accuracy and resilience. Comprising three stages—face detection, bounding box
regression, and facial landmark localization—MTCNN leverages a cascade of convolutional neural
networks to precisely identify faces in images while concurrently estimating facial landmarks.
This method is particularly advantageous for applications necessitating precise localization of
facial features.

DLib emerges as a comprehensive C++ toolkit with formidable capabilities in facial detection
and recognition. Leveraging a Histogram of Oriented Gradients and Linear Support Vector
Machine face detector, DLib excels in detecting faces and estimating 68 facial points. These points
facilitate accurate detection and localization of facial features, enabling seamless implementation
of face alignment, merging, and other transformations.

While all face detection methods exhibit commendable performance in high-quality images,
they display variations in performance under different conditions. MTCNN and DLib demonstrate
comparable accuracy, with MTCNN exhibiting superior performance in recognizing faces in small
images and low-light conditions. In contrast, the Viola-Jones method may encounter challenges
with distortions. Performance evaluations conducted using a standardized test dataset reveal
that Viola-Jones operates at the highest speed, processing 11.25 frames per second (fps), followed
closely by DLib at 9.41 fps, and MTCNN at 4.92 fps.

Given its good speed and proficiency in extracting a substantial number of key points, DLib
emerges as the preferred choice for face detection and feature extraction tasks, particularly in
scenarios where real-time processing or high throughput is essential.

A program was created using the DLib computer vision library in Python to generate feature
vectors. Once a face is detected in the input image, the program begins several image-processing
tasks. These tasks include cropping and aligning the face to ensure that the eyes are aligned at the
same level. This preprocessing step helps reduce distortions caused by the face's orientation in
the input image. In the last phase, the program extracts a series of attributes from the aligned
image. Each attribute denotes the pixel distance between facial landmarks identified by the DLib
library. It used 17 key landmarks across the face (fig. 1).

Utilizing the pixel distances between these landmarks, a feature vector composed of 10
distinct attributes was meticulously crafted. Symmetrical distances were thoughtfully averaged
to derive the following features:

1. The eyes-to-nose midpoint distance indicates the facial symmetry and proportionality
between the eyes and the nose.
2. The eyes-to-mouth center distance reflects the vertical alignment and proportionality
between the eyes and the mouth.
3. The eyes-to-eyebrows center distance offers insights into the spatial relationship
between the eyes and the eyebrows.
4. The eyebrows-to-nose bridge distance delineates the vertical dimension and
proportionality between the eyebrows and the nose bridge.
5. The eye's corners-to-nose bridge distance provides insights into the lateral dimension
and proportionality between the eye's corners and the nose bridge.
6. The eyebrows distance.
7. The nose-to-mouth midpoint distance offers insights into the vertical alignment between
the nose and the mouth.
8. The corners of the mouth distance, reflect the width of the mouth.
9. The edges of the nose distance, delineate the width of the nose.

10. The mouth-to-chin distance provides insights into the vertical dimension between the
mouth and the chin.

Figure 1: Distances between facial landmarks used to generate the feature vector

To adapt to variations in facial positioning within the image and varying distances from the

camera, a normalization procedure is implemented. This involves dividing each feature by the
distance between the eyes. By scaling each feature relative to the interocular distance, the
normalization process ensures that facial characteristics remain consistent across different
images and distances, enhancing the robustness and accuracy of subsequent analysis and
recognition tasks.

For the research, the well-known dataset Pins Face Recognition was chosen, which is used in
building decision rules for facial recognition. To ensure the reliability and accuracy of the study,
the dataset underwent filtering, followed by additional downloading of photos from open sources
and expansion of the dataset. In total, 400 high-quality photos were obtained, 200 for each of the
two faces. Consequently, 400 feature vectors were acquired, each corresponding to a single photo,
comprising 10 elements. Out of these, 100 vectors of a single person were used to construct a
prediction ellipsoid and train the machine learning models for identifying the individual, while
the remaining 300 photos were allocated as the test set.

4. Materials and methods

4.1. Prediction ellipsoid for normalized data

In the construction of the prediction ellipsoid, each observation's squared Mahalanobis distance
is calculated and compared to critical values derived from the Chi-square distribution [16].

(𝑋 − 𝑋̅)𝑇𝑆𝑋
−1(𝑋 − 𝑋̅) ≤ 𝜒𝑘,𝛼

2 , (1)

where 𝛼 is the confidence level, 𝑘 is the number of dimensions in the data,

𝑆𝑋 =
1

𝑁
∑(𝑋𝑖 − 𝑋̅)(𝑋𝑖 − 𝑋̅)𝑇 .

𝑁

𝑖=1

 (2)

Figure 2 illustrates the example of a 3-variate prediction ellipsoid. In our study, we use a 10-
variate prediction ellipsoid. Objects within its boundaries are classified as the target class, while
those outside are identified as anomalies.

Figure 2: Example of a 3-variate prediction ellipsoid

Since the prediction ellipsoid relies on the assumption of data normality, the Mardia test was

employed to evaluate the departure of the multivariate data distribution from normality.

𝛽1 =
1

𝑁2
∑∑{(𝑋𝑖 − 𝑋̅)𝑇𝑆𝑋

−1(𝑋𝑗 − 𝑋̅)}
3
;

𝑁

𝑗=1

𝑁

𝑖=1

 (3)

𝛽2 =
1

𝑁
∑{(𝑋𝑗 − 𝑋̅)𝑇𝑆𝑋

−1(𝑋𝑗 − 𝑋̅)}
2

𝑁

𝑗=1

. (4)

It is a statistical test used to assess whether a dataset follows a multivariate normal
distribution. It measures the multivariate skewness 𝛽1 (3) and multivariate kurtosis 𝛽2 (4) of the
data to determine how closely it resembles a normal distribution in multiple dimensions. This
test is particularly useful in various fields such as statistics, econometrics, and multivariate
analysis, where the assumption of multivariate normality is important for accurate interpretation
and analysis of data.

Based on the results of the Mardia test, it is evident that the multivariate distribution of the
training sample deviates from Gaussian. This is indicated by the test statistic for multivariate
skewness 𝑁𝛽1/6, which measures 289.20, surpassing the quantile of the Chi-Square distribution
set at 277.77 for 220 degrees of freedom and a significance level of 0.005. Conversely, the test
statistic for multivariate kurtosis 𝛽2 with a value of 122.35 does not exceed the Gaussian
distribution quantile, which stands at 127.97 for a mean of 120, a variance of 9.6, and a
significance level of 0.005. Consequently, it is imperative to apply a normalizing transformation
like the Box-Cox transformation on a non-Gaussian random vector 𝑋 = {𝑋1, 𝑋2, … , 𝑋10}

𝑇, to
convert it into a Gaussian random vector 𝑍 = {𝑍1, 𝑍2, … , 𝑍10}

𝑇.
The Box-Cox transformation is a statistical technique used to stabilize variance and make data

conform more closely to the assumptions of normality. It is typically applied to univariate data,
but there is also a multivariate extension known as the multivariate Box-Cox transformation.

𝑍𝑗 = 𝑥(λ𝑗) = {
(𝑋

𝑗

λ𝑗 − 1)/λ𝑗, λ𝑗 ≠ 0;

ln(𝑋𝑗), λ𝑗 = 0.
 (5)

In the multivariate context, the BCT aims to normalize data across multiple variables
simultaneously. It is designed to address situations where there are multiple correlated variables

and normalizing each variable individually may not be sufficient to achieve multivariate
normality. The multivariate BCT involves estimating transformation parameters for each variable
in the sample, similar to the univariate case. However, it also considers the interrelationships
between variables to ensure that the transformation maintains the structure of the multivariate
distribution. One of the methods to determine parameters for each variable in the dataset
involves maximizing the log-likelihood of the transformed data:

𝑙(𝑋, θ) = ∑(

𝑘

𝑗=1

λ𝑗 − 1)∑ln(𝑥𝑗𝑖) −
𝑁

2
ln[det(𝑆𝑍)] ,

𝑁

𝑖=1

 (6)

where 𝑆𝑍 is calculated as (2) using the normalized sample 𝑍 instead of 𝑋.
Following the completion of the task utilizing the maximum likelihood method of the

logarithmic function (6), the ensuing parameter estimates were acquired: λ1̂ = -0.5799,

λ2̂ = -0.9732, λ3̂ = 0.4871, λ4̂ = 2.888, λ5̂ = 4.0714, λ6̂ = -0.231, λ7̂ = 0.087, λ8̂ = -1.2973,
λ9̂ = -1.1866, λ10̂ = 1.3321.

As a result of the BCT application with components (5), a sample was obtained, featuring the
resulting vector of means: 𝑍̅ = {0.52627; 0.13911; -0.91083; 0.25654; -0.24379; 1.13224;
-1.14383; -0.26329; 2.03304; -0.34494}.

The covariance matrix of the normalized sample 𝑆𝑍 is:

[

0. 0244 0. 0213 −0. 022 −0. 046 −0. 056 −0. 038 −0. 023 0. 0470 0. 0262 −0. 022
0. 0213 0. 0211 −0. 042 0. 0477 −0. 053 0. 0317 0. 0211 −0. 044 0. 0228 0. 0313
−0. 022 −0. 042 0. 0237 0. 0336 0. 0651 0. 0212 0. 0238 −0. 034 −0. 022 0. 0219
−0. 046 0. 0477 0. 0336 0. 0466 −0. 063 0. 0323 0. 0338 −0. 032 −0. 033 0. 0312
−0. 056 0. 0528 0. 0651 0. 0627 0. 0748 0. 0516 0. 0521 −0. 064 −0. 042 0. 0517
−0. 038 0. 0317 0. 0212 0. 0323 0. 0517 0. 0285 0. 0227 0. 0312 −0. 021 0. 0489
−0. 023 0. 0211 0. 0238 0. 0338 0. 0521 0. 0227 0.0105 −0. 039 −0. 023 0. 0238
0. 0470 −0. 044 −0. 033 −0. 032 −0. 064 0. 0312 −0. 039 0. 0271 0.0139 0. 0217
0. 0262 0. 0228 −0. 022 −0. 033 −0. 042 −0. 021 −0. 023 0.0139 0.0857 0. 0212
−0. 022 0. 0313 0. 0219 0. 0312 0. 0517 0. 0489 0. 0238 0. 0217 0. 0212 0. 0231]

The normalized sample shows no departure from the multivariate normal distribution. This is
supported by the test statistics: the multivariate skewness test statistic 𝑁𝛽1/6, measuring at
265.59 does not exceed the critical value of 277.77, and the multivariate kurtosis test statistic 𝛽2,
recorded at 121.52, is lower than the critical value of 127.97.

After applying the normalization transformations, a ten-variate prediction ellipsoid is
constructed based on equation (1):

(𝑍 − 𝑍̅)𝑇𝑆𝑍
−1(𝑍 − 𝑍̅) ≤ 𝜒10, 0.005

2 . (7)

The quantile value of the Chi-square distribution is 25.19 for 10 degrees of freedom and a
significance level of 0.005.

4.2. Machine learning algorithms

Several popular techniques in machine learning serve as effective tools for outlier detection and
can be used for face recognition, including a one-class support vector machine, isolation forest,
and autoencoder. These methods are particularly notable for their application in unsupervised
learning and they can be trained only on data from the target class, studying the features of the
provided data.

4.2.1. One-class support vector machine

OCSVM constructs a decision function or boundary that effectively separates the target data
from the rest of the feature space. This boundary is established by finding a hyperplane with a
maximum margin and optimizing the distance between the hyperplane and the origin in the high-
dimensional feature space.

In an OCSVM, an implicit transformation function φ(∙) is employed, it is a non-linear projection
that is evaluated through a kernel function, which serves as a mapping from the original feature
space to a potentially higher-dimensional feature space: 𝑘(𝑥, 𝑦) = φ(𝑥) ∙ φ(𝑦) [17]. Commonly
used kernel functions include: the linear kernel, which computes dot products in the original

feature space and is suitable for linearly separable data; the polynomial kernel captures non-
linear relationships between data points by raising dot products to specified powers, allowing for
the modeling of complex decision boundaries; the radial basis function kernel, employing a
Gaussian function, is highly effective in capturing intricate relationships between data points,
particularly in scenarios where data is not linearly separable; lastly, the sigmoid kernel, based on
the hyperbolic tangent function, adeptly captures non-linear patterns in the data, making it useful
for handling complex relationships between features and classes.

Subsequently, the algorithm learns a decision boundary aimed at segregating the majority of
the data from the origin, it is defined as [18]:

𝑔(𝑥) = 𝜔𝑇φ(𝑥) − 𝜌,
where 𝜔 the normal vector of the hyperplane, 𝜌 is the bias.

Formulating OCSVM as a quadratic optimization problem, the main aim is to minimize the
weight vector while simultaneously maximizing the margin, subject to specific constraints:

𝑚𝑖𝑛𝜔,ξ,𝜌

||𝜔||2

2
− 𝜌 +

1

νN
∑ξ𝑖 ,

𝑁

𝑖=1

subject to: 𝜔𝑇φ(𝑥𝑖) ≥ 𝜌 − ξ𝑖, ξ𝑖 ≥ 0,

where ξ𝑖 is slack variables, it is utilized to model separation errors; ν ∈ (0,1] is the regularization
parameter, it characterizes the solution by setting an upper bound on the fraction of outliers, such
as the training examples regarded as out-of-class, and simultaneously establishes a lower bound
on the number of training examples utilized as support vectors [19].

The optimization problem is typically solved in its dual form, resulting in a decision function
that can classify new data points as either belonging to the target class or representing anomalies.
This function yields a positive value for the target and a negative value otherwise:

𝑓(𝑥) = 𝑠𝑔𝑛(𝑔(𝑥)).

In Python, implementing OCSVM typically involves creating a OneClassSVM object from the
SVM module in sci-kit-learn. This allows users to adjust essential parameters such as the choice
of kernel function, regularization parameter ν, and kernel-specific parameters. The model is
configured with a ν parameter of 0.15, which determines the fraction of training errors and the
upper bound on the fraction of training set outliers. For the kernel function, the radial basis
function is utilized. This kernel is popular for SVMs due to its flexibility in capturing non-linear
relationships between data points. Additionally, the gamma parameter is set to auto, which
means its value is automatically calculated based on the inverse of the number of features.
Gamma defines the influence range of a single training example, with low values meaning far and
high values meaning close.

4.2.2. Isolation forest

Departing from traditional approaches reliant on profiling normal data points, isolation forest
takes a unique route by directly focusing on isolating anomalies. This method hinges on
constructing isolation trees, binary trees where internal nodes represent features and split
values, while leaf nodes represent individual data points [20].

The process of constructing isolation trees initiates with the random selection of a feature and
split value within its range. This randomness recurs until each data point is secluded in its own
leaf node, or until a predetermined maximum tree depth is attained. The method's ability to
efficiently isolate anomalies sans prior knowledge of the dataset's distribution stems from this
stochastic feature and split value selection. Anomalies, expected to be inherently easier to isolate
than normal data points, typically reside in sparser regions of the feature space. Consequently,
they necessitate fewer splits along paths from the root to leaf nodes for isolation. Hence, the
average path length from the root to leaf nodes for each data point is computed across all trees
within the forest [21].

Subsequently, an anomaly score is computed for each data point based on its average path
length [22]:

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛) ,

where 𝐸(ℎ(𝑥)) =
∑ ℎ𝑖(𝑥)𝑡

𝑖=1

𝑡
 is the average length of 𝑥 over 𝑡 isolation trees; 𝑐(𝑛) is the average

length of unsuccessful search in a binary tree:
𝑐(𝑛) = 2𝐻(𝑛 − 1) − (2(𝑛 − 1)/𝑛),

where 𝐻(𝑖) = ln(𝑖) + γ, γ is Euler’s constant.
Data points with shorter path lengths, indicative of proximity to the root, are deemed more

likely to be anomalies, while those with longer paths are considered more typical. A threshold is
established to classify data points as anomalies or normal points based on their anomaly scores,
with points above the threshold classified as anomalies and those below as normal.

Isolation forest harnesses an ensemble of these isolation trees, where each tree operates
independently, contributing to the final anomaly score for a given data point. This ensemble
approach enhances the algorithm's robustness and accuracy, rendering it more adept at handling
noise and data variability.

The IsolationForest algorithm is implemented in the widely-used Python machine learning
library sci-kit-learn and offers various adjustable parameters for optimizing its performance.
Among these is the contamination parameter, essential for determining the threshold in the
decision function, which distinguishes new data points as either target or anomalous [23]. After
conducting experiments, a value of 0.08 was selected for the contamination parameter as it
strikes the optimal balance between detecting true anomalies and minimizing false alarms.

 Other significant parameters of the IsolationForest model include: n_estimators, specifying
the number of decision trees within the forest, set to 100; max_samples, indicating the maximum
number of samples used for training each tree, set to 256; and max_features, determining the
maximum number of features used for splitting each node, set to 1.0, indicating that all features
are used. These parameter settings were chosen based on their widespread usage and their
ability to strike an optimal balance between model complexity and computational efficiency.

To classify a sample as either target or anomalous, the anomaly score is compared to a
threshold value. These scores can range from positive to negative, with negative values indicating
samples more likely to be the target and positive values indicating samples more likely to be
anomalous. The selection of the threshold value depends on the specific application and the
characteristics of the data. In our case, a threshold value of 0 yielded the best results.

4.2.3. Autoencoder

An autoencoder is a form of artificial neural network employed for learning efficient data
representations, dimensionality reduction, and detecting anomalies. It is an unsupervised
learning method composed of two primary components: an encoder and a decoder. The main
objective of an autoencoder is to learn a condensed and meaningful representation of the input
data, referred to as the latent space or bottleneck, by reconstructing the input data with minimal
loss [24].

The encoder's role is to map the input data to the latent space, compressing the information
into a lower-dimensional representation. It is generally a neural network with multiple layers,
where each layer applies a non-linear transformation to the input data. The encoder's output, the
latent space, captures the most significant features and patterns in the input data.

In contrast, the decoder is responsible for reconstructing the input data from the latent space
representation. It is also a neural network with multiple layers, but its architecture is typically
the inverse of the encoder's architecture. The decoder takes the latent space representation as
input and tries to recreate the original input data by applying a series of non-linear
transformations through its layers.

During training, the autoencoder learns to minimize the reconstruction error, which is the
discrepancy between the original input data and the reconstructed data. This is usually
accomplished by optimizing a loss function, such as mean squared error or binary cross-entropy,
using gradient-based optimization techniques like backpropagation.

In the context of recognition, the autoencoder is trained using target class instances, enabling
it to learn the patterns and structure of normal data. When presented with new data, the
autoencoder will reconstruct the input with a low reconstruction error if the input is the target.
However, if the input is an anomaly, the reconstruction error will be higher, as the autoencoder

has not been trained to reconstruct such instances effectively [25]. By setting an appropriate
threshold on the reconstruction error, it is possible to detect and distinguish anomalies from
target instances.

When considering the development of autoencoder models, various machine learning
frameworks present distinct advantages. TensorFlow and PyTorch emerge as prominent
contenders in this domain. TensorFlow, originating from Google, offers a rich ecosystem of tools
and libraries, rendering it a favored option among both researchers and practitioners. Its
utilization of a static computation graph facilitates efficient optimization and distributed
computing, making it particularly suited for handling large-scale neural network models.
Conversely, PyTorch, hailing from Facebook's AI Research lab, emphasizes flexibility and user-
friendliness. With its dynamic computation graph and intuitive API, PyTorch becomes the
preferred choice for swift prototyping and experimentation [26].

In the creation of autoencoder models, TensorFlow and Keras were selected due to their
collective strengths in flexibility, scalability, and usability. Keras, functioning as a high-level
neural networks API layered atop TensorFlow, streamlines the process of constructing and
training autoencoder models. Meanwhile, TensorFlow furnishes the foundational infrastructure
for proficient computation, ensuring optimal performance throughout the training and inference
phases.

Figure 3: Autoencoder structure

Before feeding the data into the neural network, min-max normalization is applied to each

feature individually. This normalization method scales each feature to a range [0, 1] [27]. By
applying min-max normalization, all features are brought to the same scale and are constrained
within the desired range, promoting stable and efficient learning processes. The autoencoder
model is designed with an input layer that receives data in the shape of a 10-variate
representation. The model consists of a series of fully connected layers for both encoding and
decoding operations. The encoding phase compresses the input data into a lower-dimensional
representation, gradually reducing the dimensionality from 10 to 8 and then further down to 6,
forming a bottleneck in the network architecture [28]. This bottleneck layer restricts the model's
capacity to capture the most salient features of the input data, forcing it to learn a compact
representation that captures essential information. Each encoding layer utilizes rectified linear

unit (ReLU) activation functions, which introduce non-linearity to the model and facilitate the
extraction of complex features from the input data. Following the encoding layers, the decoding
phase reverses the process, reconstructing the original input dimensions. The decoded layers
expand the dimensionality back to 8 and finally, to the original 10 dimensions. Similar to the
encoding layers, ReLU activation functions are employed in the decoding layers, preserving the
non-linear relationships learned during the encoding phase. The final layer of the model uses a
sigmoid activation function, ensuring that the output values are within the range [0, 1]. This
activation function is commonly used for binary classification tasks and reconstruction problems,
providing smooth and interpretable output. The autoencoder structure (fig. 3) is similar to [29].

To train the model, the Adam optimizer is utilized with binary cross-entropy loss, a common
choice for reconstruction tasks aiming to minimize the difference between the input and
reconstructed data. Adam optimizer is an adaptive learning rate optimization approach that
combines the advantages of both AdaGrad and RMSProp [30]. It dynamically adjusts the learning
rate during training, allowing for faster convergence and improved performance. Binary cross-
entropy loss, on the other hand, measures the dissimilarity between the input and the
reconstructed data, particularly suitable for binary classification problems where each instance
belongs to one of two classes. This configuration ensures efficient training of the autoencoder
model, optimizing its ability to capture the underlying patterns in the data while minimizing
reconstruction error.

The training process spans 100 epochs, with a batch size of 8 instances per batch. Shuffling the
data at each epoch introduces randomness and prevents the model from memorizing the training
data order, aiding in generalization.

4.3. Evaluation metrics

Various evaluation metrics are employed to assess the effectiveness of created models in
recognition of the target instances or anomalies. Commonly used metrics include accuracy,
precision, recall (sensitivity), specificity, and the F1 score [31, 32]. While accuracy provides a
broad perspective on correctness, precision, recall, specificity, and the F1 score offers nuanced
insights into the model's efficacy in detecting anomalies.

The evaluation metrics are derived from a confusion matrix, which offers four distinct
measures. True Positive (TP) represents instances where the model correctly identifies an
anomaly as such. False Positive (FP) instances occur when the model inaccurately labels a target
instance as an anomaly. True Negative (TN) denotes instances where the model accurately
identifies target instances. Lastly, False Negative (FN) instances arise when the model incorrectly
labels target instances as normal.

Accuracy acts as a gauge for overall correctness, derived from the ratio of correctly classified
instances to the total number of instances :

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
.

Precision, on the other hand, quantifies the proportion of correctly identified anomalies
among all instances classified as anomalies. This metric is calculated as the ratio of true positives
to the sum of true positives and false positives:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
.

Recall, also termed sensitivity, represents the proportion of actual anomalies correctly
identified by the model. It serves as a pivotal indicator of the model's ability to detect all
anomalies within the dataset:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 .

Specificity provides complementary insights by measuring the proportion of true negatives
and correctly predicted target instances, among all actual target instances. It highlights the
model's capacity to accurately identify target instances while minimizing false alarms.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 .

The F1 score is the harmonic mean of precision and recall:

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 .

5. Results

Table 1 presents a comparison of recognition performance of prediction ellipsoid for non-
Gaussian data (PENGD) (1), prediction ellipsoid for normalized data (PEND) (7), one-class
support vector machine (OCSVM), isolation forest (IF) and autoencoder (AE).

Table 1
Comparison of models

Model Precision Recall Specificity F1 score Accuracy

PENGD 0.9598 0.9550 0.9200 0.9574 0.9433
PEND 0.9848 0.9750 0.9700 0.9793 0.9733
OCSVM 0.8878 0.9100 0.7700 0.8988 0.8633
IF 0.9393 0.9300 0.8800 0.9347 0.9133
AE 0.9366 0.9600 0.8700 0.9481 0.9300

In general, all developed models have good efficiency. The OCSVM exhibited the lowest

performance among the models evaluated, with scores generally lower across precision, recall,
specificity, F1 score, and accuracy. The IF demonstrated competitive performance across most
metrics, falling between the scores of OCSVM and the other models. This indicates that IF may
offer a decent compromise between simplicity and performance, making it a viable choice
depending on the specific requirements of the application.

AE showed performance comparable to PENGD, with scores across various metrics similar to
or slightly lower than PENGD. However, by employing normalization techniques, PEND achieved
notable enhancements in performance compared to both AE and PENGD. This underscores the
importance of normalizing transformation in enhancing prediction ellipsoid models for
recognition, particularly in scenarios involving non-Gaussian data.

6. Discussion

As evidenced by the results, the prediction ellipsoid for normalized data consistently
outperformed machine learning models such as OCSVM, IF, and AE. Compared to the prediction
ellipsoid for non-Gaussian data, the application of a ten-variate Box-Cox transformation
significantly improved the model. This highlights the importance of applying a normalizing
transformation to data with a non-Gaussian distribution. The choice of an appropriate
normalization technique is far from trivial and exerts a profound influence on the efficacy and
robustness of the created model. Univariate normalization methods often fall short of capturing
the intricate relationships between features, leading to suboptimal results. In contrast,
multivariate normalization techniques offer a more comprehensive approach by considering the
correlations and interdependencies between multiple features. By applying the ten-variate Box-
Cox transformation, the prediction ellipsoid can account for correlations between features. This
approach enables the model to more accurately represent the underlying data distribution,
leading to enhanced robustness and efficiency.

It should be noted that a crucial aspect in the construction of a prediction ellipsoid is the
definition of the confidence level. In our study, a confidence level of 0.005 was selected, aligning
with its widespread usage in outlier detection tasks [33].

The main advantage of using the prediction ellipsoid for normalized data lies in its ability to
enhance prediction accuracy and reliability. Normalizing the data not only facilitates the
development of more accurate prediction ellipsoid but also ensures they capture the underlying
patterns and relationships within the data more effectively, leading to more reliable and precise
predictions. Additionally, by transforming the data to data with the Gaussian distribution, the
prediction ellipsoid gains increased robustness and resilience.

The application of prediction ellipsoid for normalized data has some disadvantages. Firstly, a
substantial dataset size is often required to robustly study the model's performance, typically
necessitating a minimum of 100 instances to yield meaningful insights. Additionally, the process
of identifying an appropriate normalizing transformation can be intricate and resource-intensive,
particularly in cases where the underlying data distribution is complex or poorly understood. The
last one is the necessity of selecting a confidence level, which can have a significant impact on the
interpretation and reliability of the prediction ellipsoid.

It's important to acknowledge the inherent limitations of the prediction ellipsoid model. One
notable constraint is its inherent design to recognize and delineate prediction regions for
individual instances rather than accommodating multiple instances simultaneously. While the
model excels in providing localized predictions for individual data points, its applicability to
scenarios involving collective analysis or batch processing may be limited, warranting careful
consideration in practical deployment scenarios.

Future research could involve exploring alternative normalizing transformations, such as the
multivariate Johnson transformation. In addition, it's important to consider the impact of model
complexity and feature richness on performance. While the models evaluated in this study
demonstrate commendable results with the available features, there's a clear indication that
employing more complex models and incorporating a broader range of features could yield even
better outcomes. This emphasizes the necessity of advancing both model architecture and feature
selection techniques to effectively address the intricacies present in the data.

7. Conclusions

The study examined various one-class classification methods in the context of face recognition.
Various models were constructed including prediction ellipsoid for normalized data and machine
learning algorithms such as OCSVM, IF, and AE. These methodologies aim to unveil anomalies
within a dataset by apprehending its underlying structure, often gleaned from instances
representing the target class.

The application of the ten-variate Box-Cox transformation significantly enhanced the
performance of the prediction ellipsoid, which led to a 3% increase in recognition accuracy.
Consequently, the model surpassed the performance of the considered machine learning
methods. This underscores the significance of applying normalization techniques to non-
Gaussian data. The primary advantage of utilizing the prediction ellipsoid for normalized data is
its capacity to enhance prediction accuracy and reliability. Normalizing the data not only
facilitates the development of more precise prediction ellipsoids but also ensures they capture
the underlying patterns.

The main disadvantage of the developed model lies in the complexity and resource-intensive
nature of determining the appropriate normalizing transformation. This challenge is particularly
pronounced in cases where the underlying data distribution is complex or poorly understood,
especially when dealing with high-dimensional data.

An essential aspect of employing the method involves determining the confidence level, with
a confidence level of 0.005 utilized in the study.

Future research could explore the impact of employing alternative normalizing methods, such
as the multivariate Johnson transformation, to further enhance model performance. Additionally,
deeper investigations into the reasons behind the observed performance differences among
models and the potential benefits of incorporating more complex models with a broader array of
features could contribute to the advancement of one-class classification methodologies in face
recognition tasks.

References

[1] Y. Kortli, M. Jridi, A. Al Falou, M. Atri, Face Recognition Systems: A Survey. Sensors. 2020
20(2):342. doi:10.3390/s20020342.

[2] H. Marques, L. Swersky, J. Sander, R. Campello, A. Zimek, On the evaluation of outlier
detection and one-class classification: a comparative study of algorithms, model selection,

and ensembles. Data Min Knowl Disc 37, 1473–1517, 2023. doi: 10.1007/s10618-023-
00931-x.

[3] V. Bezerra V, V. da Costa, S. Barbon Junior, R. Miani, B. Zarpelão, IoTDS: A One-Class
Classification Approach to Detect Botnets in Internet of Things Devices. Sensors. 2019;
19(14):3188. doi:10.3390/s19143188.

[4] S. Kim, D. Park, J. Jung, Evaluation of One-Class Classifiers for Fault Detection: Mahalanobis
Classifiers and the Mahalanobis–Taguchi System. Processes. 2021; 9(8):1450.
doi:10.3390/pr9081450.

[5] A. Nassif, M. Talib, Q. Nasir, F. Dakalbab, Machine learning for anomaly detection: A
systematic review, in: IEEE Access, 9, 78658-78700. 2021.
doi:10.1109/ACCESS.2021.3083060.

[6] L. Li, X. Mu, S. Li and H. Peng, A Review of Face Recognition Technology, in: IEEE Access, vol. 8,
pp. 139110-139120, 2020. doi: 10.1109/ACCESS.2020.3011028.

[7] P. Perera, P. Oza, V. Patel, One-Class Classification: A Survey. ArXiv. 2021. doi:
10.48550/arXiv.2101.03064.

[8] N. Seliya, A. Abdollah Zadeh, M. Taghi, A literature review on one-class classification and its
potential applications in big data. Journal of Big Data 8, 2021: 1-31. doi: 10.1186/s40537-
021-00514-x.

[9] N. Damer, J. H. Grebe, S. Zienert, F. Kirchbuchner, A. Kuijper, On the Generalization of
Detecting Face Morphing Attacks as Anomalies: Novelty vs. Outlier Detection, 2019 IEEE
10th International Conference on Biometrics Theory, Applications and Systems (BTAS),
Tampa, FL, USA, 2019, pp. 1-5. doi: 10.1109/BTAS46853.2019.9185995.

[10] H. Xu, G. Pang, Y. Wang, Y. Wang, Deep Isolation Forest for Anomaly Detection, in: IEEE
Transactions on Knowledge and Data Engineering, vol. 35, no. 12, pp. 12591-12604, 1 Dec.
2023, doi: 10.1109/TKDE.2023.3270293

[11] T. Vaiyapuri, A. Binbusayyis, Application of deep autoencoder as an one-class classifier for
unsupervised network intrusion detection: a comparative evaluation. PeerJ Computer
Science 6:e327, 2020. doi:10.7717/peerj-cs.327.

[12] P. Oza and V. M. Patel, Active Authentication using an Autoencoder regularized CNN-based
One-Class Classifier,"2019 14th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2019), Lille, France, 2019, pp. 1-8. doi: 10.1109/FG.2019.8756525.

[13] S. Prykhodko, A. Prykhodko, I. Shutko, Estimating the Size of Web Apps Created Using the
CakePHP Framework by Nonlinear Regression Models with Three Predictors, in: 2021 IEEE
16th International Conference on Computer Sciences and Information Technologies (CSIT).
Vol. 1. IEEE, 2021. doi: 10.1109/CSIT52700.2021.9648680

[14] S. Prykhodko, L. Makarova, K. Prykhodko, A. Pukhalevych, Application of Transformed
Prediction Ellipsoids for Outlier Detection in Multivariate Non-Gaussian Data, in: 2020 IEEE
15th Inter-national Conference on Advanced Trends in Radioelectronics,
Telecommunications and Computer Engineering (TCSET), pp 359-362, 2020. doi:
10.1109/TCSET49122.2020.235454.

[15] J. Avanija, K. Madhavi, G. Sunitha, S. Sangapu, S. Raju, Facial Expression Recognition using
Convolutional Neural Network, in: 2022 First International Conference on Artificial
Intelligence Trends and Pattern Recognition (ICAITPR), pp. 1-7, 2022. doi:
10.1109/ICAITPR51569.2022.9844221.

[16] T. Etherington, Mahalanobis distances for ecological niche modelling and outlier detection:
implications of sample size, error, and bias for selecting and parameterising a multivariate
location and scatter method. PeerJ, 9. 2021. doi: 10.7717/peerj.11436.

[17] R. Ghiasi, M. A. Khan, D. Sorrentino, C. Diaine, A. Malekjafarian, An unsupervised anomaly
detection framework for onboard monitoring of railway track geometrical defects using one-
class support vector machine. Engineering Applications of Artificial Intelligence, 133,
108167, 2024. doi:10.1016/j.engappai.2024.108167.

[18] S. Todkar, V. Baltazart, A. Ihamouten, X. Dérobert, D. Guilbert, One-class SVM based outlier
detection strategy to detect thin interlayer debondings within pavement structures using
Ground Penetrating Radar data. Journal of Applied Geophysics, 192, 104392, 2021. doi:
10.1016/j.jappgeo.2021.104392.

[19] T. Duong, NS. Vo, L. Nguyen, QT. Vien, VD. Nguyen, Anomaly Detection Using One-Class SVM
for Logs of Juniper Router Devices. Industrial Networks and Intelligent Systems. INISCOM
2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol 293. Springer, Cham. 2019. doi:10.1007/978-3-030-
30149-1_24.

[20] J. Lesouple, C. Baudoin, M. Spigai, JY. Tourneret, Generalized isolation forest for anomaly
detection, Pattern Recognition Letters, Volume 149, 2021, Pages 109-119, ISSN 0167-8655.
doi:10.1016/j.patrec.2021.05.022.

[21] Y. Chabchoub, M. U. Togbe, A. Boly, R. Chiky, An In-Depth Study and Improvement of Isolation
Forest, in: IEEE Access, vol. 10, pp. 10219-10237, 2022. doi:
10.1109/ACCESS.2022.3144425.

[22] S. Imashev, Extended isolation forest–application to outlier detection in geomagnetic data,
in: IOP Conference Series: Earth and Environmental Science. Vol. 929, No. 1, p. 012022. 2021,
November. doi: 10.1088/1755-1315/929/1/012022.

[23] M. U. Togbe, M. Barry, A. Boly, Y. Chabchoub, R. Chiky, J. Montiel, T.V. Tran, Anomaly detection
for data streams based on isolation forest using scikit-multiflow, in: Computational Science
and Its Applications–ICCSA 2020: 20th International Conference, Cagliari, Italy, July 1–4,
2020, Proceedings, Part IV 20 (pp. 15-30). Springer International Publishing. doi:
10.1007/978-3-030-58811-3_2.

[24] W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei, F. Sabrina, Improving Performance of Autoencoder-
Based Network Anomaly Detection on NSL-KDD Dataset, in: IEEE Access, vol. 9, pp. 140136-
140146, 2021, doi: 10.1109/ACCESS.2021.3116612.

[25] Z. Wang, Y-J. Cha, Unsupervised deep learning approach using a deep auto-encoder with a
one-class support vector machine to detect damage. Structural Health Monitoring. 2021;
20(1):406-425. doi:10.1177/1475921720934051.

[26] O-C. Novac, MC. Chirodea, CM. Novac, N. Bizon, M. Oproescu, OP. Stan, CE. Gordan, Analysis
of the Application Efficiency of TensorFlow and PyTorch in Convolutional Neural Network.
Sensors. 2022; 22(22):8872. doi:10.3390/s22228872.

[27] B. Min, J. Yoo, S. Kim, D. Shin, D. Shin, Network Anomaly Detection Using Memory-Augmented
Deep Autoencoder, in: IEEE Access, vol. 9, pp. 104695-104706, 2021. doi:
10.1109/ACCESS.2021.3100087

[28] M. Sewak, S. K. Sahay, H. Rathore, An overview of deep learning architecture of deep neural
networks and autoencoders. Journal of Computational and Theoretical Nanoscience, 17(1),
182-188. 2020. doi: 10.1166/jctn.2020.8648.

[29] W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei, F. Sabrina, Improving Performance of Autoencoder-
Based Network Anomaly Detection on NSL-KDD Dataset, in: IEEE Access, vol. 9, pp.
140136-140146, 2021. doi: 10.1109/ACCESS.2021.3116612.

[30] I. H. Kartowisastro, J. Latupapua, A Comparison of Adaptive Moment Estimation (Adam) and
RMSProp Optimisation Techniques for Wildlife Animal Classification Using Convolutional
Neural Networks. Revue d'Intelligence Artificielle, Vol. 37, No. 4, pp. 1023-1030. 2023.
doi: 10.18280/ria.370424.

[31] W. Hilal, S. A. Gadsden, J. Yawney, Financial Fraud: A Review of Anomaly Detection
Techniques and Recent Advances. Expert Systems with Applications. Volume 193, 2022,
116429, ISSN 0957-4174. doi:10.1016/j.eswa.2021.116429.

[32] S. Nurmaini, A. Darmawahyuni, AN. Sakti Mukti, MN. Rachmatullah, F. Firdaus, B. Tutuko,
Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification.
Electronics. 2020; 9(1):135. doi:10.3390/electronics9010135.

[33] S. Prykhodko, N. Prykhodko, L. Makarova, K. Pugachenko, Detecting outliers in multivariate
non-Gaussian data on the basis of normalizing transformations, in: Proceedings of the First
Ukraine Conference on Electrical and Computer Engineering (UKRCON), IEEE, 2017, pp.
846–849. doi:10.1109/UKRCON.2017.8100366.

https://doi.org/10.18280/ria.370424

