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Abstract  
Using swarm intelligence techniques for data preprocessing over neuroevolution synthesis of 

artificial neural networks (ANNs) can provide a number of advantages. Therefore, swarm 
analysis techniques such as particle swarm optimization (PSO) or ant colony optimization 
(ACO) can effectively identify the most relevant traits from multidimensional data. This 

reduces the dimension of the input space, mitigating the Curse of dimension and improving 
the effectiveness of ANNs training. In addition, swarm analysis methods can filter out noisy 

or mismatched data points and detect outliers, increasing ANNs resistance to noisy input data 
and expanding generalization capabilities.  
In general, the introduction of swarm intelligence techniques for data preprocessing prior to 

neuroevolution ANNs synthesis results in improved model performance, reduced 
computational complexity, and improved generalization capabilities, making it an appropriate 
approach in machine learning tasks. 

This paper is proposed to consider the implementation of swarm intelligence methods for 
preprocessing to improve the performance of neuromodel synthesis. 
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1. Introduction 

Today, ANN-based neuromodels are widely used to automate and solve many processes and tasks 

of human activity (industry, medicine, operational processes, etc.). ANNs are computational models 

based on the structure and functioning of biological neurons in the human brain. They consist of 

interconnected nodes (neurons) organized in layers, with each neuron performing simple calculations 

and transmitting signals to connected neurons [1]. 

Let's look at how ANNs are used in diagnostic tasks.  

1. Medical image analysis: Anns are used to analyze medical images such as X-rays, magnetic 

resonance imaging, computed tomography, and histopathological images. Convolutional neural 

networks (CNNs), a special type of deep ANNs designed for processing spatial data, are 

particularly effective in tasks such as tumor detection, organ segmentation, and pathology 

classification. CNNs can automatically study image features, providing accurate diagnostics and 

anomaly detection [1]. 

2. Disease diagnosis: Anns are used to diagnose various diseases by analyzing patient data such 

as symptoms, medical history, laboratory tests, and genetic information. Recurrent neural networks 

(RNNs) and long-term short-term memory networks (LSTMs), thanks to their structural features 

(the presence of feedback and gates, which allows to store the context/history of states), are able to 
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process sequential data, used for tasks such as predicting disease progression, identifying risk 

factors, and diagnosing conditions such as heart disease, diabetes, and cancer [1]. 

3. Medical signal processing: Anns are used to process physiological signals such as an 

electrocardiogram (ECG), electroencephalogram (EEG), and electromyogram (EMG). They are 

used for tasks such as detecting arrhythmias, predicting seizures, classifying sleep stages, and 

analyzing muscle activity. Given the nature of the input data that is the result of clinical trials, 

models that best represent time series are used, in particular the RNNs and LSTM networks, which 

perfectly capture time dependencies and patterns in sequential data, making them suitable for 

analyzing medical signals [2]. 

4. Drug discovery and development: Anns are used in drug discovery and development 

processes, including virtual screening, molecular modeling, and drug toxicity prediction. They are 

used to analyze chemical structures, predict drug-target interactions, and develop new compounds 

with desired pharmacological properties. ANN-based models help speed up the drug search 

process and reduce the time and cost associated with developing new drugs [2]. 

5. Predictive and predictive modeling: ANNs are used to build predictive and predictive models 

in healthcare that help clinicians make informed decisions about patient management and 

treatment strategies. These models predict outcomes such as disease progression, treatment 

response, and patient survival based on clinical data, biomarkers, and other relevant factors [3]. 

Overall, ANNs are versatile diagnostic tools that offer the ability to analyze different types of data, 

extract meaningful patterns, and make accurate predictions, thereby improving medical decision-

making and patient care. 

Preprocessing refers to a set of methods applied to raw data before it is passed to a machine 

learning model, such as an ANN. These methods are aimed at converting data to a format that is more 

appropriate to the chosen training method, and at improving the overall performance and effectiveness 

of the model. Preprocessing includes steps such as data cleaning, normalization, object scaling, 

dimensionality reduction, and processing missing values or outliers [4]. 

Pretreatment is crucial for Ann synthesis and training for several reasons. 

1. Normalization and scaling: Anns often work better when input objects are normalized or 

scaled to a similar range. Preprocessing techniques, such as minimum-maximum scaling or Z-

score normalization, ensure that features make an equal contribution to the learning process, 

preventing certain features from dominating the learning process due to differences in scale [5]. 

2. Preprocessing methods allow you to process missing values or outliers in a data set. 

Imputation methods can be used to fill in missing values, while outlier detection and removal 

methods help ensure that extreme values do not have an excessive impact on model behavior [5]. 

3. Object design and selection: preprocessing allows for object design and selection, which 

removes irrelevant or redundant objects and creates new objects to better represent basic patterns 

in the data. This helps improve Model generalization and reduce overtraining [5]. 

4. Dimensionality reduction: large-size data can create problems for ANNs in terms of 

computational complexity and retraining. Dimensionality reduction techniques, such as Principal 

Component Analysis (PCA) or feature selection algorithms, help reduce the number of input 

measurements while preserving as much information as possible, thereby improving the efficiency 

and speed of the model [5]. 

5. Data balancing: classification problems with unbalanced class distributions can use 

preprocessing techniques such as resampling or understated sampling to balance the data set, 

ensuring that the model learns from representative samples of each class [5]. 

In general, preprocessing plays a crucial role in preparing data for Ann synthesis and training, 

ensuring that the model assimilates data efficiently, generalizes well to invisible instances, and 

provides reliable and accurate predictions. 

Swarm intelligence is an area of research inspired by the collective behavior of decentralized, self-

organizing systems in nature, such as ant colonies, flocks of birds, and flocks of fish. Swarm 

intelligence techniques aim to solve complex problems by coordinating the actions of multiple agents, 

each following simple rules, without the need for centralized control or global knowledge. 

Some key characteristics of swarm intelligence include [6]. 



1. Self-organization: swarm-based intelligence systems exhibit emerging behavior where global 

patterns and solutions arise from local interactions between individual agents without explicit 

coordination. 

2. Swarm intelligence relies on distributed decision-making, where each agent makes decisions 

based on local information and interaction with nearby neighbors, rather than relying on 

centralized control or external leadership. 

3. Adaptation and reliability: swarm intelligent systems are often adaptive and resistant to 

environmental changes or disturbances. They can self-adjust environments and reorganize in 

response to dynamic conditions, providing stability and flexibility. 

4. Research and Operation: Swarm Intelligence techniques combine exploration of the search 

space to identify new solutions and use known solutions to effectively optimize performance. 

Swarm intelligence techniques can be applied to neurosynthesis, which involves computer-aided 

design or synthesis of artificial neural networks (ANNs) using optimization techniques. These 

methods can help you explore the wide range of possible neural network architectures, optimize 

network parameters, and improve network performance. Some uses of swarm intelligence techniques 

for neurosynthesis include [7]: 

1. Self-organization: swarm-based intelligence systems exhibit emerging behavior where global 

patterns and solutions arise from local interactions between individual agents without explicit 

coordination. 

2. Swarm intelligence relies on distributed decision-making, where each agent makes decisions 

based on local information and interaction with nearby neighbors, rather than relying on 

centralized control or external leadership. 

3. Adaptation and reliability: swarm intelligent systems are often adaptive and resistant to 

environmental changes or disturbances. They can self-adjust environments and reorganize in 

response to dynamic conditions, providing stability and flexibility. 

4. Research and Operation: Swarm Intelligence techniques combine exploration of the search 

space to identify new solutions and use known solutions to effectively optimize performance. 

5. Swarm intelligence techniques can be applied to neurosynthesis, which involves computer-

aided design or synthesis of artificial neural networks (ANNs) using optimization techniques.  

These methods can help you explore the wide range of possible neural network architectures, 

optimize network parameters, and improve network performance. Some uses of swarm intelligence 

techniques for neurosynthesis include [8]: 

6. Swarm intelligence techniques such as particle swarm optimization (PSO), ant colony 

optimization (ACO), or genetic algorithms (GAs) can be used to find optimal neural network 

architectures by exploring the space of possible configurations, including the number of layers, 

neuron types, connectivity patterns, and more. hyperparameters. 

7. Swarm intelligence techniques can optimize neural network hyperparameters, such as 

learning speed, activation functions, regularization parameters, and network topology, to improve 

performance and generalization. 

8. Swarm intelligence algorithms can help optimize the learning process of neural networks by 

tweaking parameters related to optimization algorithms (such as gradient descent options), 

convergence criteria, and data preprocessing techniques, resulting in faster convergence and 

improved performance. 

9. Ensemble training: swarm intelligence can be used to optimize the creation of ensemble 

models that train and combine multiple neural networks to improve prediction accuracy and 

reliability. 

Overall, swarm intelligence techniques offer powerful neurosynthesis tools to automate the design 

and optimization of neural networks for a variety of applications, including pattern recognition, 

classification, regression, and management tasks [8]. 

2. Related Works 

Let's analyze why preprocessing of input data is necessary for neuroevolution synthesis of 

analytical models based on ANN and what such processes are reduced to [9].  



Normalization and scaling. Preprocessing techniques such as normalization and scaling ensure that 

the input characteristics are at the same scale. This is important because neural networks can be 

sensitive to the magnitude of input values. Data normalization prevents certain functions from 

dominating the training process solely because of their scale, resulting in more stable and effective 

learning [9]. 

Filling in missing values and monitoring emissions. Preprocessing allows you to process missing 

values and outliers in input data. Missing values can be calculated using methods such as calculating 

the Mean, median calculation, or interpolation. Outliers, if left untreated, can negatively affect the 

learning process, distorting the studied model parameters. Preprocessing techniques such as outlier 

detection and removal ensure that the neural network learns from clean and reliable data, resulting in 

improved performance [9]. 

Data reduction and feature selection. Preprocessing allows you to develop and select objects, while 

removing irrelevant or redundant objects and creating new informative objects. This process helps 

reduce the size of the input space by focusing the neural network's attention on the most relevant 

functions and improving its ability to generalize invisible data [10]. 

Data balancing. In classification problems with unbalanced class distribution, preprocessing 

methods can balance a data set by over-sampling minority classes, under-sampling majority classes, 

or using more advanced methods such as the Synthetic Minority over-sampling Technique (SMOTE). 

Data set balancing ensures that the neural network is trained on a representative set of samples from 

each class, preventing it from shifting to the majority class [10]. 

Noise reduction and improved data quality: preprocessing techniques can help filter out noise and 

improve the overall quality of input data. This is especially important in real data sets that may 

contain inappropriate or erroneous information. Noise removal ensures that the neural network 

focuses on basic data patterns, resulting in more accurate and reliable predictions [10]. 

Overall, input preprocessing plays a crucial role in neuroevolution synthesis, ensuring that the 

neural network learns from high-quality, well-structured data. This contributes to more efficient 

learning, faster convergence, and better generalization performance, which ultimately leads to more 

reliable and accurate neural network models [11]. 

Also, when studying the very practical implementation of input preprocessing, it should be noted 

that such processes can help save time during neurosynthesis as follows. 

Obviously, preprocessing techniques such as selecting or extracting objects can reduce the 

dimension of input data by eliminating non-essential or redundant objects. With fewer input 

parameters, the neuroevolution process requires less computational resources and time to study the 

reduced feature space, which leads to faster processing [11]. 

Normalizing or scaling the input data ensures that all functions are on the same scale, preventing 

certain functions from dominating the learning process based solely on their size. Normalized data 

contributes to more efficient learning convergence by reducing the time required for the 

neuroevolution synthesis process [11]. 

Preprocessing methods for handling missing values and outliers ensure that the input data is clean 

and reliable. By removing or attributing missing values and outliers, the neuroevolution process can 

focus on learning based on high-quality data, resulting in faster convergence and more efficient use of 

computational resources. 

In general, pretreatment of input data before neuroevolution synthesis helps optimize the learning 

process, increases the efficiency of model training, and reduces the overall processing time required to 

achieve the desired results [12]. 

Let's take a look at some of the most popular methods of swarm intelligence. 

PSO method: 

• PSO is inspired by the social behavior of flocks of birds or schools of fish; 

• each candidate solution (particle) in the search space adjusts its position based on its own 

experience and the most known position of its neighbors; 

• PSO is relatively easy to implement and can efficiently search in large-dimensional spaces; 

• the method tends to approach local optima quickly, but may have difficulty going beyond 

local optima in multi-modal or deceptive landscapes. 

ACO method [13], [14]: 



• ACO is inspired by the search behavior of ants. 

• artificial ants leave pheromone traces along the edges of the graph representing the problem 

space, and the intensity of pheromone traces reflects the desirability of the path; 

• ACO is excellent in combinatorial optimization problems and is particularly effective in 

solving problems with discrete and undifferentiated objective functions; 

• the method requires careful parameter adjustment and may suffer from slow convergence, 

especially in large and complex problem spaces. 

Firefly algorithm (FA) [13], [14]: 

• FA is inspired by the flashing behavior of fireflies, when brighter fireflies attract others; 

• the method optimizes the set of solutions by iteratively moving brighter solutions to brighter 

ones in the search space; 

• FA is easy to implement and requires no gradient information, making it suitable for 

optimization tasks with complex and multi-modal landscapes.; 

• however, in some cases, FA can suffer from slow convergence and premature convergence, 

especially in multidimensional and nonlinear optimization problems. 

Each of these swarm analysis methods has its own strengths and weaknesses, which makes them 

suitable for different types of optimization problems and subject areas. The choice of method depends 

on factors such as problem complexity, search space characteristics, computational resources, and 

desired convergence properties [13], [14]. 

Let's compare the most well-known methods of swarm intelligence according to the following 

criteria: 

• basic idea: this criterion describes the natural phenomenon or behavior that inspired the 

development of each method. Understanding a biological or natural process can provide insight 

into how the method works and its suitability for various optimization tasks [15], [16]; 

• objective function: refers to the type of optimization problems that each method is primarily 

designed to solve. Some methods are better suited for continuous optimization problems, while 

others are excellent for combinatorial or discrete optimization problems [15], [16]; 

• aggregate initialization: this criterion describes how the initial set of candidate Solutions is 

generated in each method. Random initialization is common, but some methods may have specific 

initialization strategies [15], [16]; 

• environment vs. exploitation research: reflects the balance between research (finding new 

areas of the solution space) and exploitation (refining known promising solutions). Different 

methods may show different trends in research or exploitation [17]; 

• communication mechanism: this criterion refers to how information is exchanged between 

individuals in a swarm. This may include mechanisms such as pheromone traces in ACO or 

brightness-based attraction in FA [17]; 

• convergence properties: describes the speed and efficiency with which a method comes to a 

solution. So, for example, some methods can converge quickly, but run the risk of getting stuck in 

local optimums, while others can converge more slowly, but with better global optimization 

properties [17]; 

• this criterion evaluates how sensitive the method is to the choice of metaparameters. Methods 

that are less sensitive can be easier to configure and more reliable in various problem areas; 

• implementation complexity: it reflects the ease of implementation and computational 

complexity of each method. Methods with simpler implementations may require less computing 

resources; 

• areas of application: this criterion defines the types of optimization problems that each 

method is usually applied to. Understanding typical application areas can help you choose the most 

appropriate method for a particular task [18]-[21]. 

In the table. 1 shows the results of comparison by criteria. 

 

 

 

 

 



Table 1 
Results of comparing PSO, ACO and FA  

Criteria PSO ACO FA 

Nature Inspiration 
Social behavior of bird 
flocks or fish schools 

Foraging behavior of 
ants 

Flashing behavior of 
fireflies 

Objective Function 
Continuous 

optimization problems 
Combinatorial 

optimization problems 

Continuous 
optimization 

problems 

Population Initialization Random initialization Random initialization Random initialization 

Exploration vs. 
Exploitation 

Balanced exploration 
and exploitation 

Exploration focused Exploration focused 

Communication 
Mechanism 

No direct 
communication 

Pheromone-based 
communication 

Attraction based on 
brightness 

Convergence 
Properties 

May converge quickly 
to local optima 

Slow convergence 
May suffer from 

slow convergence 

Robustness to 
Parameter Settings 

Moderately sensitive Sensitive Moderately sensitive 

Implementation 
Complexity 

Relatively simple to 
implement 

Moderate complexity 
Relatively simple to 

implement 

Application Domains 
Continuous 

optimization problems 
Combinatorial 

optimization problems 

Continuous 
optimization 

problems 

 
From the results of the comparison, we can conclude that the FA – method is the most universal in 

order to use it for preprocessing input data in the future. 

2.1. Main features of applying the FA method 

The FA method is a nature-inspired optimization method developed by Xin-she Yang in 2008. It is 

inspired by the blinking behavior of fireflies, where fireflies use bioluminescence to attract partners or 

prey. FA is a metaheuristic algorithm used to solve optimization problems in various fields [1], [6], 

[20]. 

The Firefly method was proposed by Xin-she Yang in 2008. 

The method was developed as a population-based optimization method inspired by the blinking 

behavior of fireflies to solve optimization problems more efficiently. 

Since its introduction, the FA method has gained popularity and has been applied to various 

optimization problems in Engineering, Computer Science, and other fields. 

The main idea of the Firefly algorithm is to simulate the blinking behavior of fireflies to find 

optimal solutions to the optimization problem. The method works on the basis of the following 

principles [1], [6], [20]: 

attraction: fireflies are attracted to each other depending on the brightness of their flashes. 

Similarly, in FA, the attractiveness of a firefly (solution) is determined by its suitability, with brighter 

solutions representing better solutions; 

moving towards brighter solutions: Fireflies tend to move towards brighter fireflies nearby. In FA, 

each Firefly (solution) adjusts its position in the search space, moving towards brighter solutions, and 

the intensity of attraction is determined by the difference in brightness and distance between the 

Fireflies [1], [6], [20]; 



randomization and research: to help explore the search space, FA includes randomization by 

adding a random component to Firefly movement. This ensures that the method does not get hung up 

on local optimums and can explore different areas of the solution space.; 

global optimization: FA aims to find a global optimal solution by iteratively updating Firefly 

positions based on their attractiveness and distance between them. The method converges when the 

Firefly positions no longer change significantly or the predefined completion criterion is met. 

Overall, the FA method is a simple but effective optimization technique inspired by Firefly 

behavior. It is able to effectively solve a wide range of optimization problems and is successfully used 

in various fields due to its simplicity and efficiency [1], [6], [20]. 

Now we can dive into the intricacies of firefly optimization in more detail. The essence of the 

method is clearly shown in Fig. 1. 

 
Figure 1: Fireflies in the search space. Visibility decreases with increasing distance 

3. Proposed method 

Levy's flight function can be incorporated into the Firefly Algorithm (FA) to enhance its 

exploration capability and improve its convergence speed. Levy's flight is a random walk process 

described by Levy distribution, which exhibits heavy-tailed behavior and allows for long-distance 

jumps in the search space. By incorporating Levy's flight function, the fireflies in the FA can explore 

the search space more effectively, leading to better global optimization performance [1], [6], [20]. 

Here's how Levy's flight function can be integrated into the Firefly Algorithm [22]-[25]: 

1. Step 1: Levy Flight Generation: 

• at each iteration of the algorithm, Levy flights are generated for each firefly to determine their 

movement direction and distance; 

• Levy flights are generated using Levy's flight function, which produces step sizes according 

to the Levy distribution. The step sizes are typically drawn from a Levy distribution with a 

specified scale parameter. 

2. Movement of Fireflies: 

• the fireflies adjust their positions based on the generated Levy flights. Each firefly moves a 

distance determined by Levy's flight function in a random direction; 

• the movement of fireflies is guided by their attractiveness, with brighter fireflies attracting 

others more strongly. Fireflies move towards brighter individuals while incorporating Levy flights 

for exploration. 

3. Exploration and Exploitation: 

• Levy flights facilitate exploration by allowing fireflies to make long-distance jumps in the 

search space, enabling the algorithm to escape local optima and explore new regions; 

• at the same time, the attractiveness mechanism of the Firefly Algorithm ensures that fireflies 

tend to converge towards brighter solutions, promoting exploitation of promising regions of the 

search space. 

4. Update Positions and Iteration: 



• after adjusting their positions based on Levy flights and attractiveness, the positions of 

fireflies are updated, and the algorithm proceeds to the next iteration; 

• the process continues until a termination criterion is met, such as a maximum number of 

iterations or convergence of solutions. 

By incorporating Levy's flight function into the Firefly Algorithm, the algorithm gains enhanced 

exploration capabilities, enabling it to efficiently search for global optima in complex optimization 

problems. This modification can lead to improved convergence speed and better overall performance 

of the algorithm across various domains [22]-[25]. 

4. Experimental research 

For the experimental research and comparison of proposed method with another approaches was 

be used the following as the training and testing data: 

• RT-IoT2022 [26], [16]. The RT-IoT2022 is a data sample formed by scientists on the basis of 

the Internet of things infrastructure, when a wide range of Internet of Things devices and a range 

of network attacks are combined in real-time conditions. The sample covers normal and hostile 

network behaviors that model a general view of real-world scenarios; 

• Visegrad Group companies data (VGCD) [27], [16]. This dataset contains information about 

companies from the Visegrad Group countries, which include the Czech Republic, Hungary, 

Poland, and Slovakia. The Visegrad Group is a cultural and political alliance of these four Central 

European countries; 

• Influenza Outbreak Event Prediction via Twitter (IOEP) [28]. This dataset aims to predict 

influenza outbreaks using Twitter data 

The general information about datasets presented in Table 2. 

 

Table 2 
General information about datasets 

Datasets Feature Type Number of Features 
Number of 
Instances 

RT-IoT2022 Real 83 123117 

VGCD Real 83 85 
IOEP Real 523 75839 

 
The meta-parameters for neuroevolution synthesis of models demonstrate at Table 4. 

 

Table 3 
The meta-parameters for neuroevolution synthesis 

Metaparameter Value 

Population size 100 
Elite size 5% 

Activation function (fitness functions) hyperbolic tangent 
Mutation probability 25% 

Crossover type uniform 

Types of mutation 

deleting an interneuronal connection 
removing a neuron 

adding interneuronal connection 
adding a neuron 

changing the activation function 
Clustering method k-nearest neighbors 
Neighbors number 7 

 



The results of the work present at Table 4. 

Table 4 
The work results of proposed method 

Datasets 
ANN time synthesis 

(without feature 
selection) 

ANN time synthesis 
(using PSO) 

ANN time 
synthesis 

(using ACO) 

ANN time 
synthesis 
(using FA) 

Error on test 
sample 

RT-IoT2022 8456 s 7225 s 6935 s 5689 s 0.91 
VGCD 9555 s 8123 s 7456 s 6126 s 0.924 
IOEP 9832 s 8526 s 7626 s 6751 s 0.942 

 

5. Discussions of results 

Analyzing the results obtained, it is worth noting that using any method for data preprocessing 

significantly reduces the time of subsequent synthesis. However, it is the use of FA that demonstrates 

the greatest optimization of synthesis time. This can be explained precisely by better selection of 

informative features. After all, if features can be shortened differently during preprocessing by 

different methods, the FA method helps to better track hidden relationships between data, and 

therefore significantly simplify the process of forming structural relationships between really 

dependent features. 

6. Conclusion 

At the paper examines the using swarm intelligence techniques for data preprocessing over 

neuroevolution synthesis of ANN can provide a number of advantages. Therefore, swarm analysis 

techniques such as particle swarm optimization or ant colony optimization can effectively identify the 

most relevant traits from multidimensional data. This reduces the dimension of the input space, 

mitigating the Curse of dimension and improving the effectiveness of ANNs training. In addition, 

swarm analysis methods can filter out noisy or mismatched data points and detect outliers, increasing 

ANNs resistance to noisy input data and expanding generalization capabilities.  

The results of experiments prove that the new concept has quite acceptable (certifying) indicators 

of time use during the synthesis of neural networks. 
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