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Abstract 
The study aims to develop robust image processing algorithms capable of automatically identifying and 
characterizing individual grains within material microstructures. These algorithms extract essential 
grain properties, including area, shape factor, and orientation angle. Additionally, the study explores 
which grain characteristics are most effective for microstructure comparison. The proposed algorithm 
segments microstructure images to isolate individual grains. Grain properties (e.g., area, perimeter, 
circularity) areare quantified. The distributions of grain characteristics are analyzed using violin plots. 
Both visual comparisons and statistical measures (mean, variance, skewness) informs microstructure 
similarity. Proposed algorithms have been tested on validation images and errors have been estimated. 
Understanding microstructure properties is crucial for material design, quality control, and 
performance optimization. The proposed algorithms contribute to automated microstructure analysis, 
benefiting fields such as materials science, engineering, and manufacturing. 
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1. Introduction 

Algorithms and methods for comparing the microstructures of materials based on their images 
have become the object of considerable attention in modern research. The significance of this 
area lies in the possibility of obtaining information about the properties of materials that affect 
their functionality and application. The development of algorithms for comparing 
microstructures has become an important task in the context of finding optimal solutions in 
materials science. The initiation of this process involved establishing a complex for generating 
microstructures; however, a challenge emerged concerning the comparison between these 
generated structures and real ones. In light of this, the solution to this problem involved the 
development of image processing methods for comparing the generated microstructures with 
experimental data. 

The microstructures of materials play a fundamental role in their properties and functionality, 
determining their mechanical, thermal, and electrical characteristics. The contribution of 
microstructures to the development of science and technology cannot be overstated, as their 
understanding and optimization have a significant impact on the design and production of 
materials. Research emphasizes not only the significant role of the microstructure itself but also 
its components. Particular attention is given to the process of microstructure formation - crystal 
growth. Since physical experiments are difficult to study the characteristics of microstructure 
evolution during grain growth, computer modeling is used as an effective alternative.  

Using the cellular automata method, various models have been considered so far: 2D modeling 
of microstructures [4], [5], 3D modeling of microstructures [6]-[8], [19], [20] modeling using 
probabilities [9], [10], modeling of crystal growth by recrystallization [11]-[12]. The study of 
these models has allowed us to analyze various aspects of the processes of microstructure 
formation, their evolution, and their influence on the properties of materials. The use of different 
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modeling approaches allows for obtaining a more complete understanding of the physical and 
chemical processes that occur during crystal growth and microstructure formation. 

A special application MatViz3D (https://github.com/MME-NTU-KhPI/MatViz3D) has been 
developed for computer modelling of the crystallization process and generation of 
microstructures. The main advantages of the application are the three-dimensional generation of 
microstructures, which allows to obtain detailed and realistic images of the material structure, 
the selection of cell neighborhoods for the diversity of generation, and the ability to follow the 
step-by-step crystallization process. Overall, MatViz3D is a powerful tool for modeling, analyzing, 
and visualizing material microstructures using a variety of approaches and techniques. 

Once the microstructure is generated, it is necessary to conduct research and identify the 
characteristics inherent in the model. The identification of model characteristics is carried out 
through data processing and systematization. Among the tools that can be used for this purpose, 
a special place is occupied by processing data in the form of images. Using techniques such as 
image analysis and image processing, it is possible to identify the main features of 
microstructures, such as grain size, shape, and distribution of grains in space. For example, the 
use of segmentation algorithms can automatically identify individual grains in microstructure 
images, which simplifies further analysis. In addition, the use of image processing techniques to 
determine various characteristics, such as grain size, shape, and texture, provides quantitative 
data that can be used for further analysis and comparison with experimental data or other 
models. This approach to image processing is becoming increasingly common in the study of 
material microstructures and plays an important role in the development of the fields of materials 
science and mechanics [14]-[18]. 

Having processed the image and obtained the grain properties of the microstructures, it 
becomes necessary to develop an algorithm for their comparison. In this context, a special 
emphasis is placed on comparing the distributions and statistical characteristics of each of the 
grain properties. This approach will allow for a deeper analysis and comparison of material 
microstructures, contributing to the further development of the fields of materials science and 
mechanics. 

Although there are already software tools, such as CLEMEX [21] and Fiji [22], designed to 
process images and detect regions on them, this study developed a system for comparing grain 
characteristics that goes beyond the capabilities of these programs. The developed system allows 
for automated comparison of the distribution of microstructure characteristics and determines 
statistical parameters that are not available in existing software. This expands the analytical 
capabilities and provides a deeper understanding of the microstructures of materials. 

2. Problem statement 

The objective of this study is to develop image processing algorithms for automatically identifying 
regions in an image that correspond to individual grains in the microstructure of a material. The 
resulting algorithms should also provide the calculation of the characteristics of each grain, such 
as area, shape factor, orientation angle, etc. 

Further, the developed algorithms will be tested on test images of microstructures, after which 
the results will be presented. Based on the analysis of these results, recommendations should be 
made as to which grain characteristics can be used for more effective comparison of 
microstructures and which may have limited variability and therefore be less important for 
comparison. 

In addition, the study will develop an algorithm for comparing microstructures by analyzing 
the distributions of grain characteristics. For this purpose, violin plots will be used to visualize 
the distributions of grain size and other characteristics. In addition to comparing the visual 
characteristics, the statistical properties of the distributions will be analyzed, which will provide 
additional data on the similarity or difference of microstructures in different cases. 

3. Methodology 

The study and reproduction of microstructures plays a key role in the development of new 
materials with unique properties that will find applications in a wide range of industries, 
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including electronics, aviation, medicine, and energy. Microstructures are defined as the 
organization and arrangement of materials at the microscopic level, and they have a significant 
impact on the properties and behavior of materials. It is important to note that the formation of 
microstructures is a complex and multifactorial problem, which is influenced by a variety of 
factors, including chemical composition, temperature, pressure, cooling rate, and others. 
Furthermore, microstructures can exhibit extreme diversity depending on the type of material, 
the number of impurities, the manufacturing process, and the conditions. 

The key stage is the formation of the internal structure of the material, as it allows analyzing 
the interaction between its elements, such as location, quantity, and nature. This helps to 
determine the optimal conditions for achieving the desired material parameters (e.g. strength, 
wear resistance, thermal conductivity, etc.). The detailed analysis and presentation of such 
material information can enable modeling and simulation with an accurate description of specific 
microstructural features. It also opens up the possibility of performing highly accurate 
engineering calculations using well-known methods, such as the finite element method. 

The ability to characterize microstructural features using statistical methods is a significant 
advance in materials science. This helps to increase the accuracy of material property predictions.  

Conventional techniques and methodologies employed for the quantitative analysis of three-
dimensional structures using data derived from two-dimensional images or their cross-sections 
enable the prediction and determination of three-dimensional structural attributes. These 
encompass parameters such as volume, surface area, boundary length, and other descriptors 
derived from the analysis of images acquired from various orientations or viewpoints. Such 
approaches facilitate the evaluation of geometric and morphological characteristics of structures 
and materials. 

However, there are microstructural parameters that cannot be determined from a single two- 
dimensional section, such as the connectivity of features, the true shape of inclusions, and the 
number of inclusions per unit volume. The need for a more complete characterization of 
microstructures has led to the development of techniques that allow for the direct acquisition of 
three-dimensional microstructural data of grain structures, such as serial sectioning, 
intergranular corrosion, and various X-ray tomography-based techniques. This includes 
references [2] and [3], where the authors quantify a set of microstructural parameters and their 
relationships to determine morphological characteristics using the serial sectioning technique to 
collect 3D crystallographic data. Many of the parameters have been quantified in two-
dimensional space, while only a few have been determined in three-dimensional space, but the 
study of the relationships between these parameters has remained limited [1]. 

Thus, despite the significant progress in microstructure generation and the development of 
related applications, this topic requires further research and development. There is potential for 
improving generation algorithms, expanding the functionality of applications, and improving the 
accuracy of microstructure visualization. This study aims to analyze and compare the structures 
obtained experimentally with similar structures generated by artificial methods in an analytical 
context. The paper uses a set of metrics to compare such structures. Features such as sample and 
inclusion areas, their perimeters, and the ratio of these parameters are analyzed. The concept of 
area equivalence is introduced, and equivalent radii are found. Based on these indicators, the 
results are visualized using histograms and Kernel Density Estimation (KDE). By performing a 
statistical analysis of the results, using mathematical expectation and variance of values, a 
comparison is made, and a conclusion is drawn about the adequacy of the use of computer 
modeling of microstructure and artificial sample generation in comparison with experimental 
data. 

3.1.  Metrics for comparing experimental and generated structures 

Several parameters are employed to ascertain the characteristics of grains, facilitating the 
evaluation of their shape and size. 

• The normalized grain area is determined by the ratio of the grain area to the total image 
area using the formula (1): 

𝐴𝑛 =
𝐴𝑔𝑟

𝐴
,  (1) 



where, 𝐴𝑔𝑟 - is the grain area, and 𝐴 - is the total area of the image. 

• The grain shape coefficient is calculated as the ratio of the grain area to the square of its 
perimeter according to (2): 

𝐶𝑠 = 4𝜋
𝐴𝑔𝑟

𝑃𝑔𝑟
2 , (2) 

where 𝑃𝑔𝑟 - is the perimeter of the grain. 

• The equivalent circle radius of the grain, as the value of the radius of a circle having the 
same area as the area of the grain projection onto the plane, is calculated by (3): 

𝑒с𝑟 = √
𝐴𝑛

𝜋
, (3) 

 
• In addition, the orientation angle 𝜓 which is reflected in the deviation of the major axis of 
the grain 𝑆𝑥 from the horizontal axis. 
• The scale factor of the grain is defined as the ratio of the large to the small grain axes 
according to (4): 

𝑆𝑐 =
𝑆𝑥

𝑆𝑦
, (4) 

where 𝑆𝑥 - is the major axis, and 𝑆𝑦 - is the minor axis of the grain. 

An example of the appearance of an arbitrary grain with the designation of the minor and 
major axes and the orientation angle is shown in Figure 1. 

• The grain inertia tensor is represented as (5): 

𝐼 = (
𝐼𝑥𝑥

𝐼𝑦𝑥

𝐼𝑥𝑦

𝐼𝑦𝑦
), (5) 

where 𝐼𝑥𝑥 and 𝐼𝑦𝑦 - are the principal moments of inertia, and 𝐼𝑥𝑦 (or 𝐼𝑦𝑥 since the inertia tensor is 

symmetric) - is the element representing the moment of inertia between the x and y axes. 
• The grain aspect ratio, which indicates how closely a shape coincides with the rectangle 
described around it, is calculated using the formula (6): 

𝐴𝑅 =
𝐴𝑏

𝐴𝑔𝑟
 , (6) 

where 𝐴𝑏 - is the area of the described grain rectangle. The closer the value of the coefficient is to 
1 means the more rectangular the shape. In the ideal case, when the shape is a pure rectangle, 
this coefficient will be equal to 1. 

• The grain compactness ratio is calculated using formula (7): 

С𝑘 =
𝐴𝑐

𝐴𝑔𝑟
 , (7) 

where 𝐴𝑐  - is the area of the convex polygon that is described around the grain. This coefficient 
provides information on how close the grain is to a round or uniform shape: the larger the 
coefficient, the more compact the grain shape. 

• The ratio of the area to the grain axes, which indicates how elliptical or circular the grain 
shape is, is calculated using formula (8): 

𝐸 =
𝐴𝑔𝑟

𝑆𝑥 ∙ 𝑆𝑦
. (8) 

• The ratio of the inertia tensor to the grain area, which indicates the mass distribution 
relative to the geometric properties of the grain, is calculated using formula (9): 

𝐼𝑎𝑟𝑒𝑎 =
𝐼

𝐴𝑔𝑟
. (9) 

During the research, an issue arose concerning the compatibility of existing image processing 
algorithms, which were primarily tailored for analyzing two-dimensional images, with the three-
dimensional microstructures generated. To address this challenge, the approach involved 
partitioning the three-dimensional microstructure into layers, each of a single voxel thickness, as 
a preliminary step before the analysis of grain properties. This partitioning effectively transforms 



the problem into a series of two-dimensional image sets, facilitating subsequent processing 
procedures. 

 

 
Figure 1: Arbitrary grain with labels for minor and major axes and orientation angle 
 

The generated microstructure is depicted in Figure 2, while the experimental microstructure 
is shown in Figure 3. These images will be utilized in the study for characterization and 
comparison purposes. 

 
Figure 2: Generated microstructure 

 
Figure 3: Experimental microstructure 

 

3.2.  Calculating and visualizing statistical characteristics 

As part of the study, statistical characteristics were calculated for the results of the grain 
characteristics analysis. For each of the characteristics obtained by software, the mean (10), 
standard deviation (11), median (12), mode, range (13), and interquartile range (14) were 
calculated. 

• The average value is calculated as the arithmetic mean of the characteristic values for 
each grain using the formula (10): 

𝜇 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
, (10) 

where 𝑥𝑖 - is the value of the characteristic for each grain, 𝑛 - is the number of grains, and 𝑖 - 
belongs to the set of integers. 

• The standard deviation is defined as the square root of the variance using formula (11): 

𝜎 = √
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1

𝑛
, (11) 

where 𝑥𝑖 - is the value of the characteristic for each grain, 𝑖 - belongs to the set of integers, 𝜇 - is 
the average value, and 𝑛 - is the number of grains. 

• The median for a data set of the form (𝑥1, 𝑥2, . . . , 𝑥₁) is defined as (12): 

𝑀 = {

𝑥𝑖+1
2

,   𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑

𝑥𝑖
2

+ 𝑥 𝑖
2+1

2
,   𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛

, (12) 

  

  

 



where 𝑥𝑖 - are the values of the characteristic for each grain, ordered in ascending order, and 𝑖 -
belongs to the set of integers. 

• The mode (𝑀𝑜) is the most frequent value in the data set. 
• The range is the difference between the maximum and minimum values in the data set, 
determined by formula (13): 

𝑅𝑎𝑛𝑔𝑒 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛, (13) 
where 𝑥𝑚𝑎𝑥 - is the maximum value in the dataset, and 𝑥𝑚𝑖𝑛 - is the minimum value. 

• The interquartile range is the difference between the third (75%) and first (25%) 
quartiles in the dataset, determined by the formula (14): 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1, (14) 
where 𝑄3 - is the third quartile, and 𝑄1 - is the first. 

After these statistics were calculated, the data were visualized using violin plots. This method 
made it possible to compare the distribution of grain property values in the generated and real 
microstructures, providing an opportunity to conclude the interaction and characteristics of the 
grains. 

To build a violin chart, the data is first processed, including filtering by the selected 
characteristic. 

Then, the data is prepared for display, namely, it is combined into one DataFrame, where the 
category (generated or real grains), the name of the property, and its value are indicated. The 
next step is to build the graph itself using the Matplotlib and Seaborn libraries. In a scatterplot, 
each grain property has its distribution of values for the generated and real grains. Adding 
statistical information such as the mean, standard deviation, and median helps to better 
understand the distribution of the data. 

4.  Testing 

4.1.  Testing image processing methods 

One of the objectives of the study is to test the methods of processing images obtained from the 
experiment and generated artificially. The testing process involves the experimental application 
of various in-age processing and analysis algorithms to accurately determine the characteristics 
of the microstructural elements of a material. It is primarily used to study the properties of 
material grains. 

The test results indicate the effectiveness of the chosen approach and the possibility of its 
application in further research in this area. To achieve these goals, four images of different sizes 
were generated (Fig. 2-5), containing the same grain. Each image includes one grain, which is the 
same for all images. The first two samples consist of square grains of 50⨯50 pixels each, with 
sample sizes of 200⨯200 and 250⨯250 pixels, respectively (Fig. 2 and Fig. 3). The third and fourth 
samples contain round grains with a radius of 50 pixels each. The overall dimensions of the 
studied images are 200⨯200 (Fig. 4) and 300⨯300 pixels (Fig. 5). 

For each image, the grain characteristics such as area, normalized area, shape factor, 
equivalent circle radius, orientation angle, scale factor, and inertia tensor were calculated 
according to (1)-(9). The calculated values of the characteristics were compared with the 
analytically calculated values to verify the correctness of the image processing. The results of the 
calculated characteristics are shown in Table 1. 

Analyzing the results, it can be seen that the values of the characteristics do not depend on the 
size of the age, so they can be compared for further study and matching the generated structures 
to the experimental ones. 

Additionally, the calculation of the relative error for the diverse grain characteristics acquired 
from the analysis is presented in Table 1. The relative error is determined through the 
comparison between the software-calculated value of the characteristic and the analytically 
measured value. Elevated relative error values signify substantial deviations between 
measurements, whereas lower values suggest relatively precise measurements. 

In general, the analysis results show very good agreement between the values obtained 
analytically and by software for most grain characteristics. 

 



 
Figure 4: A 200⨯200 pixel sample with 
50⨯50 pixel square grains 

 
Figure 6: A 200⨯200 pixel sample with 
round grains of 50 pixels radius 

 
Figure 5: A 250⨯250 pixel sample with 
50⨯50 pixel square grains 

 
Figure 7: A 300⨯300 pixel sample with 
round grains of 50 pixels radius 

 
For example, for the characteristics 𝐴𝑔𝑟 and 𝐴𝑛 the discrepancy between analytical and 

artificial values does not exceed 1%, which indicates the high accuracy of the analysis methods. 
However, for the characteristics 𝐶𝑠, and 𝑒𝑐𝑟 which reflect the shape and size of the grain, the 
discrepancies between analytical and software values are much larger, reaching almost 15% for 
𝐶𝑠 and 3.7% for 𝑒𝑐𝑟 in some cases. These deviations, especially in the case of 𝐶𝑠 characteristic, 
may be the result of inaccurate calculation of the grain perimeter. This indicates the need to 
improve image processing methods, in particular, to adapt algorithms to the peculiarities of grain 
shape and size. Further research is aimed at improving the methods for calculating these 
characteristics to provide more accurate results. 

4.2 Analysis of the statistical characteristics of the distribution of grain 
properties 

One of the key tasks in materials science is to analyze the microstructures of materials to study 
their mechanical properties and behavior. To do this, it is important to identify the relationship 
between the characteristics of microstructure grains and material properties. A large number of 
methods are used in modern science to analyze microstructures, among which one of the most 
powerful tools is violin plots. Violin plots are an effective tool for comparing the distribution of 
grain characteristics between generated and experimental microstructures. In each scatter plot, 
the distribution of grain characteristics for the generated microstructures is shown on the left 
and for the experimental microstructures on the right. In addition, the graph also provides 
statistical information such as the mean, standard deviation, and median, according to (10)-(12), 
which provides additional context for comparing the distributions. 

In this paper, violin plots are used to compare the distribution of normalized grain area 
(Fig. 6), grain scale factor (Fig. 7), grain shape factor (Fig. 8), equivalent grain circle radius (Fig. 9), 
grain orientation angle (Fig. 10) and other characteristics (Fig.11-19). 

This allows researchers to gain a deeper understanding of the microstructure of the material 
and its impact on material properties. 

Thus, the use of violin plots to compare the distribution of grain characteristics in generated 
and experimental microstructures is a powerful tool in materials science and mechanics research. 
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After constructing the violin plots, a comparative analysis of the statistical characteristics of 

the distribution of grain properties in real and generated microstructures has been carried out. 
The analysis conducted facilitated the identification of similarities and differences between both 
types of microstructures, enabling an assessment of the compliance of the generated 
microstructures with real conditions. The data obtained will be used to further improve the image 
processing algorithms and virtual reconstruction of grain microstructures. Information on the 
analysis of statistical characteristics is presented in Table 2. 

Conclusions 

Throughout this study, the objectives have been attained, yielding significant results 
conducive to the advancement of image processing methodologies and the analysis of material 
microstructures.  



 
Figure 8: Comparison of normalized grain 
area distributions 

 
Figure 9: Comparison of grain-scale factor 
distributions 

 
Figure 10: Comparison of grain shape factor 
distributions 

 
Figure 11: Comparison of the distributions of 
the grain equivalent circle radius 

 
Figure 12: Comparison of grain orientation 
angle distributions 

 
Figure 13: Comparison of grain moment of 
inertia distributions 



 
Figure 14: Comparison of grain moment of 
inertia distributions between grain axes 

 
Figure 15: Comparison of grain aspect ratio 
distributions 

 
Figure 16: Comparison of grain compactness 
ratio distributions 

 
Figure 17: Comparison of the distribution of 
the ratio of the area to the grain axes 

 
Figure 18: Comparison of distributions of the 
ratio of  the main moment of inertia to the 
grain area 

 
Figure 19: Comparison of distributions of the 
ratio of the moment of inertia between the 
axes to the grain area 
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Statistical summary table 
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First, image processing algorithms were developed to automatically detect regions 

corresponding to individual grains in the material microstructure. The successful testing of these 
algorithms on test images enabled the accurate determination of various characteristics of each 
grain, including area, shape factor, orientation angle, and so forth. 



The resulting grain characteristics were further analyzed and it has been found that 
dimensionless characteristics, such as normalized area, equivalent to the radius of a grain circle, 
which is determined based on the normalized area, are most suitable for more efficient 
comparison of microstructures. The study also showed that other dimensionless quantities, such 
as the ratio of the inertia tensor to the grain area, the grain wrapping ratio, the ratio of the area 
to the principal grain axes, and the grain scale factor, are very useful for comparing 
microstructures, as they will not depend on the size of the image itself. Also, when comparing the 
characteristics calculated analytically and software, it has been found that grain properties 
calculated using the perimeter have a larger error, so it is recommended to avoid characteristics 
such as the grain shape coefficient and use characteristics defined as a ratio to the area, such as 
the ratio of the inertia tensor to the grain area. 

Our study also included the development of an algorithm for comparing grain characteristic 
distributions based on the analysis of violin plots and the comparison of statistical properties of 
the distributions. This algorithm will be used to further tune the generation of microstructures 
using the MatViz3D software package. 

The results obtained are an important step towards the further development of image 
processing methods and virtual reconstruction of grain microstructures. They can be used in 
further research in the field of materials science and mechanics to gain new knowledge and 
develop new materials with improved properties. 
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