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Abstract 
Artificial intelligence systems are increasingly used in security-critical applications with limited 
computing resources, which makes them vulnerable to such disturbances as adversarial attack noise, 
out-of-distribution data, and fault injections. To absorb disturbances and adapt the AI system during its 
life cycle, it is necessary to expand the Machine learning operations structure with stages related to the 
implementation of resilience mechanisms. In this case, increasing resilience in one form or another is 
associated with the introduction of redundancy in the form of additional resources to absorb 
disturbances and quickly recover performance. It is proposed to provide Affordable Resilience for 
resource-constrained AI systems by implementing a resilience optimization stage and adding add-ons 
with a small number of parameters that will allow for uncertainty calibration and rapid adaptation to 
labeled and unlabeled data. This approach is also intended to separate the work related to the 
development and deployment of the basic AI model that solves the applied problem and the work 
related to ensuring resilience in the Machine learning operations structure. The experiments were 
conducted on CIFAR-10 and CIFAR-100 datasets using the MobileViT network, which is a modern 
network architecture for visual image analysis in conditions of limited computing resources. We have 
experimentally confirmed the increase in the resilience of an AI system at different stages of its life cycle 
by implementing the stages of resilience optimization, uncertainty calibration, and Test-Time 
Adaptation. Post-hoc resilience optimization improved robustness to fault injection by 5% and 
robustness to adversarial attack by 7%. Moreover, tuning with 10% of the test data allowed for an 
additional 6% increase in robustness to fault injection and 7.1% increase in robustness to adversarial 
attack on the new data. Also, the use of post-hoc resilience optimization increased the integral indicator 
of resilience to task changes by 10.5%. Post-hoc uncertainty calibration makes it possible to further 
increase the robustness of fault injection models by an average of 4.4% and the robustness to 
adversarial attacks by an average of 1.3%. Test-Time Adaptation increases robustness to Fault Injection 
by 6.9% and robustness to Adversarial Attack by 4.72%. 
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1. Introduction 

Artificial intelligence (AI) systems are increasingly deployed on safety-critical but resource-
constrained devices (such as unmanned aerial vehicles, autonomous robots, autopilots). All AI 
systems to some extent are susceptible to data noise through adversarial attacks, novelty in data, 
concept drift, and the injection of faults into the memory of neural weight [1]. Moreover, AI 
systems with constrained resources are more vulnerable to disturbances. The ability to absorb 
disturbances (robustness), graceful degradation due to the impact of disturbances that could not 
be absorbed, and rapid adaptation to new disturbances are considered to be the key features of 
resilient system [2]. 

Traditional approaches in Machine Learning Operations (MLOps) predominantly emphasize 
data integrity, model efficiency, and security aspects but often fall short in tackling resilience 
issues as highlighted in [3]. Considering the critical decisions entrusted to AI systems, insufficient 
resilience may lead to severe implications, including unreliable performance and financial losses. 
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Therefore, this study aims to enrich MLOps methodology by incorporating resilience as a 
fundamental component.  

The object of the research is MLOps process under resource constraints and the impact of 
various types of disturbances on the AI system. The subjects of the research are the architecture 
of MLOps and methods of ensuring the resilience of an AI system with limited resources to various 
types of disturbing influences. The goal is to develop a new MLOps methodology that ensures the 
resilience of resource-constrained AI-system to such negative factors as adversarial attacks, fault 
injections, drift, and out-of-distribution of data.  

2. Related works 

The concept of resilience in AI systems is not new and has been examined across various fields, 
including cybersecurity, manufacturing, and even autonomous vehicles. Techniques like 
adversarial training [4], fault-aware training [5], and uncertainty quantification [6] have been 
employed to improve resilience. The paper [7] proposes the concept of Secure Machine Learning 
Operations paradigm, but without proposals for effectively protecting the same AI system from 
different types of threats. The issue of ensuring compatibility and computational efficiency of 
combining different methods to provide resilience and efficiency of the AI system is not 
considered.  

A number of works consider the aspects of the MLOps methodology for AI systems with 
resource constraints [8, 9]. In addition to typical MLOps aspects, more attention is focused on 
model optimization by quantization or pruning of weights and knowledge distillation. However, 
the online adaptation of resource-constrained AI systems to changes is considered only for 
shallow machine learning models or within the framework of federated learning, which requires 
network communication with distributed nodes. In [2, 4], various types of destructive 
disturbances for AI systems are considered, to which systems with limited resources are most 
vulnerable. However, most existing MLOps frameworks are designed to ensure efficient 
operation rather than resilience to various disturbances in resource-limited environments. 

The papers [10, 11] consider the use of Parameter-Efficient Tuning methods as one of the 
effective approaches to increase computational efficiency and speed of adaptation of AI system 
to changes. The papers [12, 13] consider approaches to Test-Time Adaptation, which increases 
the efficiency of adaptation to novelty in the absence of labeled data. The papers [14, 15] consider 
meta-learning algorithms for increasing the robustness and efficiency of few-shot learning. These 
methods are promising to be combined in the MLOps methodology, but the possible 
configurations of their combination are not well studied. 

3. Resilience-aware MLOps architecture 

Key concepts in MLOps include the delineation of duties and the collaboration among different 
teams. Specialized platform-level solutions that bolster the resilience of any AI model assign the 
task of updates and maintenance to a dedicated team of AI resilience specialists. Additionally, to 
enhance the delineation of responsibilities, new stages in MLOps that focus on resilience should 
be introduced as subsequent (post-hoc) procedures. 

Figure 1 shows a diagram of the proposed resilience-aware MLOps, which additionally 
includes the stages of Post-hoc Resilience Optimization, Post-hoc Uncertainty Calibration, 
Uncertainty Monitoring, Test-Time Adaptation and Graceful Degradation. In addition to 
Uncertainty Monitoring, the Explainable AI mechanism can be used to assist decision-making by 
the human to whom control is delegated in case of uncertainty. The article [16] questions the 
adequacy of existing methods of explaining decisions, so the explanation mechanism will be 
excluded from further consideration, but for generality, the diagram shows this MLOps stage. 
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Figure 1: Basic stages of resilience-aware MLOps 

 
In the phase focused on enhancing resilience, it is suggested to attach computationally efficient 

(meta-)adapters to the existing model to improve robustness and speed up fine-tuning [11]. 
During this enhancement, the weights of the original model are maintained unchanged. Typically, 
the original model comprises specific units or modules, such as a ResNet Block or MobileViT 
Block. To generalize, we will refer to these blocks as frozen operations and denote them as 𝑂𝑃(𝑥). 
The parallel method of connecting an adapter to the frozen blocks of the model is the most 
convenient and versatile approach (Figure 2a). In this case, to ensure the properties of resilience, 
it is proposed to use three consecutive blocks of adapters at once, two of which are tuned during 
meta-training [10]. To balance between different modules, we introduce a channel-wise scaling. 

 

    
a                                                             b 

Figure 2: Design of Parallel Adapter. (a) Parallel correction scheme for the frozen block; (b) 
Model architecture of adapter or meta-adapter 

 
The adapter designs shown in Figure 2b utilize convolutional layers. The convolutional 

adapter shown in Figure 2b can adjust channel compression by a factor of 1, 2, 4, or 8 using the γ 
hyperparameter. 

The base model is trained on the original dataset 𝐷𝑏𝑎𝑠𝑒 = {𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 ; 𝐷𝑏𝑎𝑠𝑒

𝑣𝑎𝑙 } to perform the main 

task under normal conditions. Resilience optimization requires generating a set of synthetic 



disturbance implementations {𝜏𝑖| 𝑖 = 1, 𝑁} [2]. As disturbances 𝜏𝑖 can be considered adversarial 

attacks, fault injection, or switching to a new task. In addition, it is necessary to provide datasets  

𝐷 = {𝐷𝑘
𝑡𝑟; 𝐷𝑘

𝑣𝑎𝑙|𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, that solve other problems for 𝐾 few-shot learning tasks, where fine-

tuning data 𝐷𝑘
𝑡𝑟 is used in the fine-tuning stage and validation set 𝐷𝑘

𝑣𝑎𝑙 is used in the meta-update 
stage. There is given a set of parameters 𝜃, 𝜙, 𝜔 and 𝑊, where 𝜃 are parameters of a pretrained 
and frozen base AI model, 𝜙 and 𝜔 are adaptation parameters of AI model backbone, and 𝑊 are 
task specified head parameters. Head weights 𝑊𝑏𝑎𝑠𝑒 for the main task are pre-trained on the data 
𝐷𝑏𝑎𝑠𝑒. To simplify the description of the problem, we denote the set of all parameters as 𝛯 =<
𝜃, 𝜙, 𝜔, 𝑊 >. Then the meta-learning process for direct maximization of the expected resilience 
indicator can be described by the formula [2, 17] 

𝛯∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝛯

𝐸
𝜏𝑖∼𝑝(𝜏)

[𝑅𝜏𝑖
(𝑈(𝛯, 𝐷))] = 𝑎𝑟𝑔𝑚𝑎𝑥

𝛯
𝐹(𝛯), (1) 

where 𝑈 is an operator that combines disturbance generation and adaptation in T steps, which 
maps the current state of 𝜙 to the new state of 𝜙; 

𝑅𝜏𝑖
 is a function that calculates the value of the resilience indicator on test sample 𝐷𝜏𝑖

𝑣𝑎𝑙 for 𝜏𝑖 

disturbance implementation over model parameters 𝜔 during its adaptation by formula 

𝑅𝜏𝑖
=

1

𝑃0𝑇
∑ 𝑃𝜏𝑖

𝑇

𝑡=1

(𝜃, 𝜔, 𝜙𝑡 , 𝑊𝑡 , 𝐷𝜏𝑖
𝑣𝑎𝑙),  

(2) 

where 𝑃𝜏𝑖
 is a performance metric for current state of model parameters and evaluation data. 

In the implementation of the operator U, it is proposed to use the SGD stochastic gradient 
descent algorithm with T steps. The results of adaptation according to the SGD algorithm are 
proposed to be used for meta-updating the gradient in the outer loop. The metagradient is 
estimated using a Gaussian-smoothed version of the outer loop objective and is calculated 
according to the formula [2, 13] 

𝛻 𝐸
𝑔∼𝑁(0,𝐼)

[𝐹(𝛯 + 𝜎𝑔)] =
1

2𝜎
𝐸[𝑅(𝛯 + 𝜎𝑔) − 𝑅(𝛯 − 𝜎𝑔)]. 

(3) 

A perturbation vector g  is generated for the meta-optimized parameters at the beginning of 

each meta-optimization iteration. Thus, the pseudocode of the proposed resilient-aware meta-
learning algorithm is shown in Figure 3. 

As shown in Figure 3, one type of destructive influence is used within one step of meta-
adaptation. Each step of the meta-adaptation process starts with a random selection of the 
disturbance type. Then, 𝑛 implementations of the disturbance are generated, followed by a nested 
loop of adaptation to each disturbance. Mixing different disturbances at once might not be 
effective. For example, following the injection of faults into the weights of the neural network, we 
would obtain a model that is no longer relevant for conducting adversarial attacks. 

The 𝐴𝑑𝑣_𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛() function is used to generate adversarial samples. Adversarial 
training of differentiated models can be performed using FGSM attacks or other white-box attacks 
[15]. However, to test models, it is proposed to use attacks based on the covariance matrix 
adaptation evolution strategy (CMA-ES) algorithm, which are more universal for any model [18]. 
The amplitude of the perturbation is limited by the 𝐿∞-norm or 𝐿0-norm. If the image is 
normalized by dividing the pixel brightness by 255, then the specified perturbation amplitude is 
also divided by 255. 

The introduction of faults is carried out through the 𝐹𝑎𝑢𝑙𝑡_𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛() function [19]. It is 
recommended to select the fault type that poses the greatest difficulty for absorption, which 
entails generating an inversion of a randomly chosen bit (bit-flip injection) within the model's 
weight. For models that exhibit differentiability, it is advisable to pass the test dataset through 
the network and compute the gradients, which can subsequently be sorted according to their 
absolute values. In the top-k weights exhibiting the highest gradient magnitudes, a single bit is 
inverted at a random position. The proportion of weights subjected to the inversion of a random 
bit can be denoted as the fault rate. 

Changing tasks can be considered as a way to mimic the concept drift and out of distribution 
data. The selection of other tasks can be done either by randomizing the domain of the base task 
or by randomizing tasks of the same domain, or in combination. 

Augmented training data can be used to improve calibration on in-distribution data. Data from 
other datasets with semantically different annotations can be used to generate out-of-



distribution data. Also, for experimental research, Soft Brownian Offset with an autoencoder can 
be used to generate out-of-distribution data [20]. 

 

 
Figure 3: Pseudocode of model-agnostic meta-learning with evolution strategies for AI-system 
resilience optimization 

 
The post-hoc confidence calibration algorithm necessitates the integration of certain 

supplementary components to the frozen model, which are tuned on the calibration data to 
minimize the discrepancy between the predicted confidence and the actual probability. 
Calibration enhancements for classification models encompass techniques such as Isotonic 
Regression, Histogram Binning, Bayesian neural networks, etc [21]. 

Despite the existence of preparatory stages in the form of resilience optimization and 
confidence calibration, unexpected errors in input or model weight, unexpected changes in the 
domain or other distributional shifts can always occur. A promising approach to mitigate such 
disturbances is to use the ideas and methods of Test-Time Augmentation and Test-Time 
Adaptation [12]. It is proposed to calculate the entropy of the marginal probability at the model 
output for its tuning over a certain number of iterations for low confidence predictions by analogy 
with scientific research [13]. But instead of tuning the entire model, it is proposed to tune only 
the adapters. The loss function for test-time adaptation to the input exemplar 𝑥 which may belong 
to a certain category from the set 𝑌, will be  

𝑙(𝜃, 𝑥) ≈ 𝐻(�̅�𝜃(∙ |𝑥)) = ∑ �̅�𝜃(𝑦|𝑥)𝑙𝑜𝑔

𝑦∈𝑌

�̅�𝜃(𝑦|𝑥), (4) 

where �̅�𝜃(𝑦|𝑥) is an estimate of the marginal probability at the model output calculated by the 
formula 



�̅�𝜃(𝑦|𝑥) =
1

𝐵
∑ 𝑝𝜃(𝑦|𝑥�̃�)

𝐵

𝑖=1

, 
(5) 

where 𝑥�̃� is the 𝑖-th augmented version of the input exemplar. 
If, after tuning, the entropy at the model output does not exceed the threshold value, it is 

necessary to switch to the graceful degradation mode. The easiest way to use graceful 
degradation is to hand over control to a human to fine-tune the system on labeled samples. 

Active learning is part of the feedback loop in our MLOps diagram. Unlike traditional MLOps, 
it is not the base model that is fine-tuned, but the adapters and meta-adapters. Re-training of the 
base model and resilience optimization can be performed when a sufficient amount of new 
labeled data is accumulated. 

Test-time adaptation can be performed autonomously in Online Loop, and its results can be 
stored in the local storage. Active Learning requests can be processed asynchronously or 
synchronously depending on the available service resources. 

4. Experiments 

Experimental research is performed using the CIFAR-10 and CIFAR-100 datasets that contain 
annotated images [22]. The CIFAR-10 dataset contains 10 classes and will be considered as the 
main task dataset. The CIFAR-100 dataset contains 100 classes and therefore can be used as a 
source of data describing additional tasks for few-shot learning in the meta-learning process. The 
few-shot learning task has 10 classes that are randomly selected from the set of available classes 
(𝑛𝑤𝑎𝑦 = 10). It is suggested to use T=40 iterations to adapt to disturbances, each iteration 

processing a mini-batch of 4 images (mini_batch_size=4). It is proposed to use 16 images for each 
class (𝑘shot=16) to balance the data during adaptation. The learning rate of the inner loop and the 
outer loop of the resilient-aware meta-learning algorithm is alpha=0.001 and beta=0.0001, 
respectively. The maximum number of iterations of the outer loop of the meta-learning algorithm 
is 300. However, the meta-learning can be stopped earlier if the average integral resilience 
criterion does not increase for 10 consecutive iterations. Experiments used one of the modern 
architectures of visual stranformers Mobile ViT, which is popular in machine vision tasks [23]. 
Adapters and meta-adapters are connected in parallel to each Mobile ViT Block. The following 
parameters are used in the Test-Time Adaptation algorithm: learning rate is 0.001; optimizer is 
SGD. 

The effect of each additional resilience-aware MLOps stage on the accuracy and speed of 
accuracy recovery is investigated by analyzing several MLOps configurations: 

- Config 0 is a traditional MLOps with a fine-tuning stage based on active feedback loop data;; 
- Config 1 is an improvement of Config 0 by adding a fault tolerance optimization stage; 
- Config 2 is an improvement of Config 1 by adding a stage of forecast uncertainty calibration; 
- Config 3 – upgraded Config 2 with Test-Time Adaptation stage. 
CIFAR-10 datasets contain training, validation, and test subsamples. To simplify the 

experiment and analyze the results, we will divide it into 4 parts. Each part of the test data is 
needed to simulate a part of the AI model's life cycle. Let's consider 4 consecutive parts of the life 
cycle: 

- Test 0 – training the AI model on the training dataset and testing the model on the first part 
of the test dataset, followed by selecting 10% of the test data points with the highest uncertainty; 

- Test 1 – fine-tuning the AI model on the selected test data points from the previous test and 
testing the model on the second part of the test dataset under the disturbance, followed by 
selecting 10% of the test data points with the highest uncertainty; 

- Test 2 – fine-tuning the AI model on selected data points from the previous test and testing 
the model on the third part of the test dataset under the disturbance, followed by selecting the 
10% of test data points with the highest uncertainty; 

- Test 3 – fine-tuning the AI model on selected test data points from the previous test and 
testing the model on the fourth part of the test dataset under increased disturbance intensity. 

The graceful degradation mechanism is proposed to be implemented in the simplest form by 
rejecting a decision if the entropy threshold is exceeded. Therefore, the control is transferred to 



a human or a larger and more powerful AI model. In this case, we consider the accuracy of the 
model, which is calculated in two ways: 

- ACC1 is the accuracy of the AI system taking into account all test examples; 
- ACC2 is the accuracy that does not take into account the examples for which the decision was 

rejected due to high uncertainty. 
Conventional MLOps reject decisions based on predictive confidence, while resource-aware 

MLOps reject decisions based on uncertainty. 
For training adapters with meta-adapters, fault injection is carried out by selecting weights 

with the largest absolute gradient values. The proportion of modified weights is fault_rate = 0.1. 
For testing the resulting model, fault injection will be performed by random bit-flips in randomly 
selected weights, the proportion of which (fault_rate) are equals to 0.1 or 0.15. 

The training of the tuners and meta-tuners involves generating adversarial samples using the 
FGSM algorithm with perturbation_level according to L up to 3. However, to test the resulting 
model against adversarial attacks, the adversarial samples are generated using the CMA-ES 
algorithm with perturbation_level according to L-norm are equals to 3 or 5. The number of 
solution generation in the CMA-ES algorithm is set to 10 to reduce the computational cost of 
conducting experiments. 

Instead of directly modeling different types of concept drift or novelty in the data, it is 
proposed to model the ability to quickly adapt to task changes, as this can be interpreted as the 
most difficult case of real concept drift. The preparation for the experiment involved adding 
adapters and meta-adapters to the network, which had been trained on the CIFAR-10 dataset. 
During meta-training, these adapters performed adaptations to either attacks or a 10-class 
classification task, which was randomly generated from a selection of the CIFAR-100 set. 
Subsequently, to verify the capability for rapid adaptation to a new task change, the new task was 
considered either as a classification task with the full set of CIFAR-100 classes. The resilience 
curve is constructed over 40 mini-batch fine-tunings, from which the resilience criterion (2) is 
calculated. 

Taking into account the elements of randomization, it is proposed to use their average values 
when assessing the accuracy of the model. To this end, 100 implementations of a certain type of 
disturbance are generated and applied to the same model or data.  

Uncertainty calibration will be performed on a dataset containing augmented test samples and 
out-of-distribution samples generated by Soft Brownian Offset Sampling. 300 images per class 
are generated for in-distribution test set to calibrate the uncertainty. The total number of out-of-
distribution images is the same as the in-distribution calibration set. In this case, the Soft 
Brownian Offset Sampling algorithm is used with the following parameter values: minimum 
distance to in-distribution data is equal to 25; offset distance is equal to 20; softness is equal to 0. 
Bayesian Binning into Quantiles with 10 bins was chosen as the calibration algorithm. 

5. Results 

Table 1 shows the average values of accuracy (ACC1) and accuracy excluding rejected solutions 
(ACC2) at different life cycle successive stages of the MobileViT model with add-ons under fault 
injection for each MLOps configuration. The average accuracies in Table 1 are calculated based 
on 100 repetitions of the experiments to reduce the effect of randomization. 

Experimental data confirm the increase in fault tolerance for configuration 1 (with resilience 
optimization) compared to configuration 0 and configuration 2 (with uncertainty calibration) 
compared to configuration 1. The dynamics of accuracy growth during adaptation (Tes 1-Test 2) 
is higher for Config 1 and Config 2, and Config 3 is characterized by the highest accuracy values. 
In the last two configurations, even an increase in the fraction of damaged tensors does not lead 
to a significant drop in accuracy compared to the previous configurations. Also, when comparing 
ACC2 with ACC1, it is noticeable that ACC2 is always larger than ACC1. Config 3 ensures recovery 
and improved accuracy even as fault injection intensity increases. Note that the averaged values 
of ACC1 and ACC2 for the MobileViT-based model on Test 0-Test 3 test data with the 
corresponding fault injection rate without fine-tuning on 10% of human-labeled examples are 
0.811 and 0.878, respectively. It proves the importance of using an active feedback loop for 



adaptation. For the average accuracy values in Table 1, the margin of error does not exceed 1% 
at a 95% confidence level. 
 
Table 1 
Accuracy of the MobileViT-based model under the influence of fault injection during the life cycle 
depending on the MLOps configuration 

MLOps 
configuration 

Test 0 Test 1 Test 2 Test 3 

ACC1 ACC2 ACC1 ACC2 ACC1 ACC2 ACC1 ACC2 

Config 0 0.925 0.929 0.802 0.855 0.837 0.887 0.829 0.881 
Config 1 0.929 0.933 0.852 0.870 0.891 0.922 0.889 0.920 
Config 2 0.938 0.941 0.860 0.890 0.917 0.922 0.903 0.918 
Config 3 0.938 0.947 0.920 0.925 0.930 0.943 0.929 0.941 

 
Table 2 shows the average values of accuracy (ACC1) and accuracy excluding rejected 

solutions (ACC2) at different life cycle successive stages of the MobileViT model with add-ons 
under adversarial evasion attacks for each MLOps configuration. The average accuracies in Table 
1 are calculated based on 100 repetitions of the experiments to reduce the effect of 
randomization. 

 
Table 2 
Accuracy values of the MobileViT-based model under adversarial attack during the life cycle 
depending on the MLOps configuration 

MLOps 
configuration 

Test 0 Test 1 Test 2 Test 3 

ACC1 ACC2 ACC1 ACC2 ACC1 ACC2 ACC1 ACC2 

Config 0 0.925 0.929 0.720 0.775 0.787 0.817 0.819 0.821 
Config 1 0.929 0.933 0.782 0.820 0.891 0.922 0.889 0.920 
Config 2 0.938 0.941 0.805 0.830 0.917 0.922 0.903 0.918 
Config 3 0.938 0.947 0.850 0.915 0.890 0.923 0.923 0.929 

 
Experimental data confirm the increase in robustness for configuration 1 (with resilience 

optimization) compared to configuration 0 and configuration 2 (with uncertainty calibration) 
compared to configuration 1. The dynamics of accuracy growth during adaptation (Tes 1-Test 2) 
is higher for Config 1 and Config 2, and Config 3 is characterized by the highest accuracy values. 
Traditional MLOps (config 0) also showed the ability to  quick adaptation during fine-tuning 
(results of Test 1 and Test 2), but it was not successful in performance recovery. Config 1 - Config 
3 show a noticeable recovery in accuracy. Increasing the magnitude of the perturbation (test 3) 
leads to a decrease in accuracy in all configurations, while config 1 - config 3 demonstrate greater 
resilience compared to configuration 0. Config 3 also provides recovery and improved accuracy 
even as adversarial attack intensity increases. Note that the averaged values of ACC1 and ACC2 
on perturbed test data from Test 0-Test 3 stages without fine-tuning on 10% of human-labeled 
examples are 0.791 and 0.802, respectively. It also proves the importance of using an active 
feedback loop for adaptation. For the average accuracy values in Table 2, the margin of error does 
not exceed 1.2% at a 95% confidence level. 

To evaluate the robustness and speed of adaptation of a pre-configured AI system to concept 
drift, it is proposed to calculate the integral resilience criterion (2) in fine-tuning mode (few-shot 
learning) on 10 class subset of CIFAR-100 set (Table 3).  
 
Table 3 
The value of the integral resilience criterion (2) to the change of the medical image analysis task 
depending on the MLOps configuration 

MLOps configuration �̅� 

Config 0 0.751 
Config 1 0.830 



Analysis of Table 3 shows that adding a resilience optimization stage to MLOps increases 
resilience to concept drift, i.e., robustness and speed of adaptation. For the average accuracy 
values in Table 3, the margin of error does not exceed 1.1% at a 95% confidence level. 

According to Table 1, the resilience optimization increased the model's robustness to fault 
injections (inversion of one randomly selected bit in each of 10% of randomly selected weight 
tensors) by 5% on average. After tuning by 10% in the first part of the test data, a 6% increase in 
robustness to fault injections is demonstrated on the next part of the test data, even with an 
increase in the intensity of fault injections (15% of randomly selected weight tensors are 
damaged) compared to the configuration without resilience optimization. Similarly, according to 
Table 2, resilience optimization increases the model's robustness to adversarial attacks  
(maximum amplitude of 3 according to 𝐿∞-norm) by 7%. After tuning on 10% of the first part of 
the test data, a 7.1% increase in robustness is demonstrated even after increasing the disturbance 
intensity (maximum amplitude of 5 according to 𝐿∞-norm) compared to a configuration without 
using resiliency optimization. The results of Table 3 show that the use of resilience optimization 
increases the integral resilience indicator during adaptation to task changes by 10.5% compared 
to the configuration without resilience optimization. 

The analysis of Table 1 and Table 2 shows that the application of Post-hoc Uncertainty 
Calibration makes it possible to further improve the model's accuracy under the influence of fault 
injection by an average of 4.4%, and to improve the model's accuracy under the influence of 
adversarial attack by an average of 1.3%. The analysis of Table 1 shows that The Test-Time 
Adaptation improved the model's accuracy under the influence of fault injections by an average 
of 6.9%. Even with an increase in the intensity of fault injections, the obtained classification 
accuracy using Test-Time Adaptation is approximately equal to the accuracy of the model under 
normal conditions without additional add-ons. Similarly, the analysis of Table 2 shows that The 
Test-Time Adaptation increased the model's accuracy under adversarial attack by an average of 
4.72%. Moreover, even with an increase in the intensity of the attack, the model's accuracy is 
close to its accuracy without the influence of disturbances and without the use of add-ons. 

6. Discussion 

The proposed framework for resilience-aware MLOps facilitates the implementation of diverse 
specific solutions for its distinct stages and mechanisms. The central concept revolves around 
segregating the responsibilities of developers focused on crafting the foundational AI model, 
optimized for nominal operating conditions, and experts tasked with ensuring the intelligent 
system's resilience against disturbances and changes. Developers of the core AI model are 
typically burdened with accounting for data specifics, data collection methodologies, and the 
application itself to tackle the applied data analysis challenge. Addressing issues pertaining to AI 
resilience, encompassing security, trustworthiness, robustness, and rapid adaptation to changes, 
relies on specialized expertise detached from a particular application domain [4]. The primary 
obstacle in separating these tasks stems from the lack of universality in resilience-ensuring 
methods and an incomplete comprehension of the compatibility among methods that cater to 
different aspects of resilience and protection against diverse types of disturbances [2]. 
Determining the compatibility of these methods and combining them judiciously could augment 
flexibility and resilience in accordance with requirements and constraints. 

The proposed implementation of Post-hoc Resilience Optimization represents merely one of 
the viable solutions that demonstrates the fundamental feasibility of segregating the 
development stage of a basic AI model tailored for normal conditions from the supplementary 
components aimed at ensuring resilience against disturbances and changes. The significance of 
employing the proposed Post-hoc Uncertainty Calibration stage has been experimentally 
substantiated. This stage enables, firstly, the detection of disturbances and, secondly, the accurate 
assessment and tolerance of uncertainty. The Test-Time Adaptation stage allows for real-time 
enhancement of robustness to various minor changes in input data or weights.  

Unlike many existing MLOps methodologies, this approach adapts to changes at the level of 
adapters. In this case, adapters can be tuned both on labeled data during the fine-tuning stage and 
on unlabeled data during the Test-Time Adaptations stage. This ensures the continuity of the 
adaptation process regardless of the frequency of feedback. The size and architecture of the 



adapters can vary depending on the architecture of the base model and available resources. The 
key is that the small size of the adapters allows for adaptation on constrained resources. The 
preparatory stage of resiliency optimization is able to configure meta-adapters in such a way that 
adaptation using adapters is accelerated. 

7. Conclusion 

7.1. Summary 

The structure of resilience-aware MLOps for resource-constrained AI-systems has been 
proposed. The main novelty lies in the separate work on creating a basic model for normal 
operating conditions and work on ensuring its resilience. This is significant for the many 
industries, as the developer of the basic model should devote more time to comprehending 
applied field at hand, rather than specializing in a specific area of resilient systems. Therefore, 
Post-hoc Resilience Optimization, Post-hoc Predictive Uncertainty Calibration, Uncertainty 
Monitoring, Test-Time Adaptation and Graceful Degradation are used as additional stages of 
MLOps.  

Resilience optimization aims to maximize robustness to disturbances and the ability to adapt 
quickly. Fault injection attack, adversarial evasion attack, and concept drift are considered as 
disturbances to the AI system. Additional add-ons in the form of adapters and meta-adapters are 
used to optimize the resilience of the AI system. Meta-adapters are updated based on meta-
gradient calculated on results of adaptation to synthetic disturbances. Add-on for post-hoc 
calibration of predictive uncertainty can be tuned on in-distribution and out-of-distribution data. 
Calibrated confidence values at the output of the AI system make it possible to discard a part of 
unabsorbed disturbances to mitigate their impact. It has also been experimentally confirmed that 
the Test-Time Adaptation stage allows to increase the robustness to various small changes in 
input data or weights. 

The experiments were performed on the CIFAR-10 and CIFAR-100 datasets. The use of post-
hoc resilience optimization increased robustness to fault injection by 5% and robustness to 
adversarial attack by 7%. Moreover, tuning on 10% of the test data increased robustness to fault 
injection by 6% and robustness to adversarial attack by 7.1%. In addition, the use of post-hoc 
resilience optimization increased the integral indicator of resilience to task changes by 10.5%. 
Post-hoc uncertainty calibration increases the robustness to fault injection models by an average 
of 4.4% and the robustness to adversarial attacks by an average of 1.3%. The use of Test-Time 
Adaptation additionally increases robustness to Fault Injection by 6.9% and robustness to 
Adversarial Attack by 4.72%. Even an increase in the intensity of attacks does not lead to a 
noticeable decrease in accuracy. 

Thus, experimentally confirmed increase of robustness and speed of adaptation for image 
recognition system during several intervals of the system's life cycle due to the use of resilience 
optimization, uncertainty calibration and Test-Time Adaptation stages.  

7.2. Limitations 

This research is illustrated through a case study of an image classification system and does not 
detail the application of resilience-aware MLOps to self-supervised or reinforcement learning 
systems. However, the overarching structure of resilience-aware MLOps is applicable to all kinds 
of intelligent systems. Additional limitation may be associated with attempts to generalize the 
information found, which could influence the completeness of the literature review. 

The Graceful Degradation stage is excluded from the detailed analysis of their impact on 
resilience. The article focuses on the analysis of the MLOp structure with regard to resilience, as 
well as the peculiarities of implementing the stages of resilience optimization, calibration of 
predictive uncertainty, and test-time adaptation. 

The specifics of implementing each phase on specific IoT, Edge, and other resource-
constrained platforms were not considered. The focus was not on the type of target platform, but 
on identifying new stages of MLOps aimed at ensuring resilience. 



7.3. Future research work 

Future research should focus on the development new flexible adapter and meta-adapter 
architectures as addons for AI system resilience. Special attention should also be paid to the 
question of providing resilience for self-supervised and reinforcement learning systems. Another 
important area of research should be the investigation of methods to ensure resilience to new 
types of attacks on AI systems. 
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