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Abstract 
Part of Industry 4.0 is building computer systems by combining artificial intelligence with robotics. Such 

computer systems play an important role in the planning of cargo transportation in supply chain 
management. One of the approaches to building such computer systems is the use of multi-agent systems. 

The aim of the work is to create a methodology for constructing proactive agents based on reinforcement 

learning to solve the problem of optimal planning of cargo transportation. To solve the problem of 

insufficient efficiency of computer agents, the existing methods of statistical and machine learning were 
investigated. To date, the most efficient approaches to creating proactive agents are reinforcement learning 

approaches. The formalization of the functioning of proactive agents is performed. As a part of creating a 

model for the functioning of proactive agents based on reinforcement learning, a procedure for generating a 

quasi-optimal action plan is proposed that models the planning function of a proactive agent, which speeds 
up the decision-making process. Multi-agent reinforcement learning methods are proposed, which are close 

to random search at the initial iterations, and close to directed search at the final iterations. This is ensured by 

the use of dynamic parameters and allows the increase in the learning rate by approximately 10 times while 

maintaining the mean squared error of the method.  
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1. Introduction 

The fourth industrial revolution or Industry 4.0 has brought about rapid changes in technology, 

manufacturing and social processes in the 21st century due to increasing interconnection and 

intelligent automation. Part of this phase of industrial change is the integration of artificial intelligence 

with robotics, which blurs the boundaries between the physical, digital and biological worlds and is 

based on parallel and distributed computing [1]. 

Such computer systems play an important role in the planning of cargo transportation in supply 

chain management (CSM) [2] and audit [3-4]. One of the approaches to building such computer 

systems is the use of multi-agent systems. 

Despite a large number of studies on the problem of improving the efficiency of supply chains and 

reducing logistics costs, some questions remain open. The complexity of supply chains is constantly 

increasing due to globalization and beyond. If earlier goods were purchased in centralized 

hypermarkets, now online trading is developing with its unique SCM stages. 

The aim of the work is to create a methodology for constructing proactive agents based on 

reinforcement learning to solve the problem of optimal planning of cargo transportation. To achieve 

the goal, the following tasks were set and solved: 

• formalization of the functioning of proactive agents; 

• propose models for the functioning of proactive agents with a utility function based on 

reinforcement learning; 

• propose a multi-agent reinforcement learning method with time difference and dynamic 

parameters; 
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• propose a multi-agent reinforcement learning method based on Monte Carlo and dynamic 

parameters; 

• propose a multi-agent reinforcement learning method based on adaptive dynamic 

programming and dynamic parameters. 

2. Formulation of the research problem 

The problem of increasing the efficiency of optimal cargo transportation planning comes down to the 

problem of finding such a set of plans }{ 


, that delivers a minimum of the mean square error (the 

difference between the cost of the resulting plan and the cost of the optimal plan), 
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F , where P  – power of multiple plans, 



.– th received plan, 



.– th optimal plan, )(f  – cost function of the plan (for example, the length of the route in the case of 

the traveling salesman problem). 

3. Literature review 

Currently, the main types of computer agents of multi-agent systems are reactive and proactive agents 

[5-6]. 

Typically, a simple reactive agent has a set of behaviours (production rules), a database (stores its 

current state), and a knowledge base (stores its behaviours). A simple reactive agent makes a decision 

based on production rules. Each production rule consists of an antecedent (one or more perceptions) 

and a consequent (action). 

Advantages of simple reactive agents [5-6]:  

1. Simplicity of software implementation.  

2. Ease of organization of multi-agent interaction.   

3. High decision-making speed.  

4. High probability of making the right decision. 

Disadvantages of simple reactive agents [5-6]:  

1. Simple reactive agents require a lot of information about their current state to determine an 

acceptable action.  

2. Simple reactive agents do not take into account information about the current state of other 

agents.  

3. Weak adaptability of simple reactive agents.  

4. The behaviour of simple reactive agents is not based on a formal mathematical apparatus. 

5. In the case of a large base of production rules, it is difficult to create a simple reactive agent. 

6. Lack of logical inference leads to low autonomy. 

Typically, a reactive agent with an internal state has a database (stores its current state), a 

knowledge base (stores knowledge about the world changes both independently and dependent on the 

agent's actions) and an inference engine. A reactive agent with an internal state makes a decision 

through logical inference.  

Advantages of reactive agents with an internal state [5-6]:  

1. The behaviour of reactive agents with an internal state is based on a formal mathematical 

apparatus (first-order predicate logic).  

2. The presence of a logical inference leads to high autonomy. 

Disadvantages of reactive agents with an internal state [5-6]:  

1. Insufficient decision-making speed.  

2. The complexity of organizing multi-agent interaction.  

3. The complexity of the implementation of the perception function that maps signals from 

receptors into formulas in the language of first-order predicate logic.  

4. The complexity of the formal description in the language of the first-order predicate logic of 

the dynamic environment. 

Typically, a proactive agent has a database (stores information about its internal state, as well as 

the selected goal), a knowledge base (stores knowledge about the world changes both independently 

and dependent on the actions of the agent) and an inference engine. The proactive agent makes a 



decision about choosing a goal from a set of possible goals and how to achieve it by forming an action 

plan based on  logical inference. A proactive agent may also be based on a utility function. 

The advantages and disadvantages of proactive agents and reactive agents with an internal state are 

practically the same [5-6]. 

Thus, the current problem is the low efficiency of the considered software agents. 

At present, instead of expert systems with logical inference used in decision-making agents, 

reinforcement learning is actively used [7-8]. The main areas of single-agent reinforcement learning 

are:  

• dynamic programming [9-10];  

• adaptive dynamic programming [11-12];  

• Monte Carlo [13-14];  

• temporal-difference learning [15-16];  

• policy-based methods [17-18];  

• actor-critic methods [19-20]. 

Today, multi-agent methods are actively developed [21–22].  

The advantages of reinforcement learning over inference are:  

• no labeled data sets are required, this is especially relevant for large amounts of data [23-24]; 

• there is no imitation of a teacher, but a new solution can be proposed that people have not 

even thought about [25-26]; 

• the quality criterion / utility function is used [27-28]. 

Disadvantages of reinforcement learning based on dynamic programming [9-10]: 

• a priori knowledge about the probabilities of transitions between states is required; 

• action is not selected (for a fixed policy). 

Disadvantages of reinforcement learning based on adaptive dynamic programming [11-12]:  

• action is not selected (for a fixed policy);  

• cannot directly optimize the policy;  

• a large number of interactions between the agent and the environment;  

• converges to the global optimum only in the case of a finite number of actions and states;  

• susceptible to retraining. 

Disadvantages of Monte Carlo based reinforcement learning [13-14]: 

• action is not selected (for a fixed policy); 

• cannot directly optimize the policy; 

• a large number of long trajectories is required; 

• updating the value of the cost function only after receiving the entire trajectory; 

• does not always converge to the global optimum; 

• susceptible to retraining. 

Disadvantages of reinforcement learning based on temporal-difference learning [15-16]: 

• the policy is fixed, so no action is selected (if TD-learning); 

• cannot directly optimize the policy; 

• a large number of interactions between the agent and the environment; 

• converges to the global optimum only in the case of a finite number of actions and states; 

• susceptible to undertraining (if one-step TD learning).  

Disadvantages of policy-based reinforcement learning [17-18]: 

• requires a large number of long trajectories; 

• does not always converge to the global optimum; 

• subject to retraining. 

Disadvantages of actor-critic reinforcement learning [19-20]: 

• a large number of long trajectories (if MC learning) or a large number of interactions between 

the agent and the environment (if TD learning); 

• does not always converge to the global optimum (if MC learning) or converges to the global 

optimum only in the case of a finite number of actions and states (if TD learning); 

• subject to retraining (if MC training); 

• susceptible to undertraining (if one-step TD training). 

 



4. Formalization of models of proactive agents functioning 

For such agents, the internal state is called belief, the possible goal is called desire, the best goal is 

called intention. 

Formalization of the functioning of a proactive agent. 

Perception function (1) 

PerEsee →:  (1) 

maps the current state of the environment E into a new perception Per. 

The state change function next is called the belief change function brf (2) 

BelPerBelbrf →:  (2) 

and maps belief (internal state) Bel (belief) and perception Per into belief (internal state) Bel. 

Changing the intention (the best goal) is the sequential execution of the function for selecting the 

set of wishes (possible goals) options and the filtering function filter, which ensures the choice of the 

intention (the best goal) from the set of desires (possible goals). 

Function to generate possible variants options (3) 

Des→IntBeloptions:  (3) 

maps belief (internal state) Bel and intention (best goal) Int into a set of desires (possible goals) Des. 

Filter function filter (4) 

IntIntBelfilter →Des:  (4) 

maps belief (internal state) Bel, a subset of desires (possible goals) Des and intention (best goal) Int to 

intention (best goal) Int. 

Plan   is a sequence of actions  

},...,{
1 n

= , 

where each 
i

  is an element of the set Ac . 

,...},{
10
=Plan  – set of all plans.  

Instead of an action selection function action a new planning function plan is used (5) 

PlanIntBelplan → Ac:  (5) 

which maps a belief (internal state) Bel, an intention (best goal) Int, and a subset of actions Ac into 

Plan. 

5. Modelling the functioning of proactive agents with a utility function 
through reinforcement learning  

Let a utility function u assign a utility to a state and be represented as (6) 

)),((max))((
))((

ass
sa

nQnu
nA

= , (6) 

where )),(( asnQ  – state-action cost function (profit in case of state )(ns  and action a), 

))(( nA s  – set of actions available in state )(ns . 

Let there be a memory of reproducing experiments (7) 

)}),,,(,,{( ssasas = RM , (7) 

where ),,( sas R  – reward (reward for the transition from state s to state s  as a result of action a). 

Then, for a proactive agent with a utility function, the procedure for generating an action plan   

for the transition from the internal state (belief) 
0
s  to the target state (intention) 

*
s  models the 

planning function plan and is presented in the following form. 

1. Initialization  

0
)0( ss = , iteration number 1=n . 

2. Choice of action (8) and observation of the internal state (9) 

)),1((maxarg)(
))1((

asy
sa

−=
−

nQn
nA

, (8) 

ssayssssasas =→==− )()()1(:)),,,(,,( nnnMR . (9) 

3. Termination condition 

If Nn  , then 1+= nn , go to step 2, otherwise ))(),...,1((π nyy= . 



The paper proposes reinforcement learning methods based on temporal-difference learning, based 

on Monte Carlo and based adaptive dynamic programming. 

6. Multi-agent reinforcement learning with temporal-difference and 
dynamic parameters 

The method consists of the following steps. 

1. Initialization. 

1.1. The maximum number of iterations N , the number of agents K , the maximum length of the 

states’ sequence T, the discrete set of states S , the discrete set of actions )(sA , Ss , the reward 

),( asR , )(sAa , Ss , the parameters max

1

min

1
, , max

2
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2
,  (control the learning rate), 

10
max

1
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1
 , 10
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2
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2
 , the parameters maxmin

,  (control the ε-greedy policy), 

10
maxmin  , the parameters 

maxmin
,  (control discounting), 10

maxmin   are set. 

1.2. Reward tables are initialized for the kth agent  

)],([ asQQ
kk

= , 

0),( =asQ
k

, )(sAa , Ss , Kk ,1 . 

1.3. The reward table is initialized for a swarm of agents  

)],([ asQQ
swarmswarm

= ,  

0),( =asQ
swarm

, )(sAa , Ss . 

2. Iteration number n=1. 

3. The parameters are calculated (10)-(13) 
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4. The number of the moment in time is set 1=t . 

5. The initial state 
kt
s , Kk ,1  is observed for each kth agent. 

6. For each kth agent, action 
kt
a  is chosen using the ε-greedy policy π. If )()1,0( nU  , then 

choose action 
kt
a  randomly from the set of allowed actions )(

kt
sA , otherwise choose action 

kt
a  

in the form (14) 

),(maxarg
)(

bsQa
kt

sAb
kt

kt
=

, 
)(

kt
sAb

), 
(14) 

i.e.  

)(
ktkt
sa =

, Kk ,1 . 

7. For each kth agent, a reward ),(
ktkt
asR , Kk ,1  is calculated. 

8. For each kth agent a new state 
ktkt
as = , Kk ,1  is observed. 

9. For each kth agent, the value of the combinations of the state-action cost functions of the swarm 

and the kth agent is calculated, i.e.  

),(
ktktswarm
asQ

 
and ),(

~
ktktk
asQ

, 

in the form (15) 

),()(),())(1(),(
~

22 ktktkktktswarmktktk
asQnasQnasQ +−=

, Kk ,1 . (15) 



10. For each kth agent, the value of the cost function of the state-action ),(
ktktk
asQ  is calculated 

as (16) 
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, Kk ,1 . (16) 

11. Calculate the value of the cost function of the state-action of the swarm of agents 

),(
ktktswarm
asQ  for each kth agent in the form (17) 
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12. For each kth agent, the current state
ktkt
ss = , Kk ,1  is set. 

13. If the current time is not the last, i.e. Tt , then increase the iteration number, i.e. 1+=tt , 

go to step 6. 
14. If the current iteration is not the last one, i.e. Nn  , then increase the iteration number, i.e. 

1+= nn , go to step 3. 

Note. Upon completion of the method, plan ),...,,...,(
1 kTktkk

yyy=  is formed for each kth agent 

(18) 

),(maxarg
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ktk
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kt

kt
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, Ss , Kk ,1 . 
(18) 

The plan of the agent that satisfies the quality criterion better than others is selected. 

7. Multi-agent Monte Carlo reinforcement learning with dynamic 
parameters 

This method is presented in the following form. 

1. Initialization. 

1.1. The maximum number of iterations N , the number of agents K , the discrete set of states S , 

the discrete set of actions )(sA , Ss , the reward ),( asR , )(sAa , Ss , the parameters 

max

1
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, ,

max
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,  (control the learning rate), 10
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1
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parameters 
maxmin

,  (control the ε-greedy policy), 10
maxmin  , the parameters 

maxmin
,  (control discounting), 10

maxmin   are set. 

1.2. Reward tables are initialized for the kth agent  

)],([ asQQ
kk

= ,  

0),( =asQ
k , )(sAa , Ss , Kk ,1 . 

1.3. The reward table is initialized for a swarm of agents  

)],([ asQQ
swarmswarm

=
, 

0),( =asQ
swarm , )(sAa , Ss . 

1.4. Tables of the number of transitions for the kth agent are initialized  

)],([ asDD
kk

= ,  

0),( =asD
k , )(sAa , Ss , Kk ,1 . 

2. Iteration number 1=n . 

3. The parameters are calculated (19)-(22) 
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4. Trajectory ),,,...,,,(
000 kTkTkTkkkk

rasras=  is generated for each kth agent, and )(
ktkt
sa = , 

),(
ktktkt
asRr = , as a result of action 

kt
a  a new state 1,+tks  and reward 

kt
r , are observed, state 

0k
s  can change at each iteration, the policy of choosing action π is ε-greedy, Kk ,1 . 

5. Number of the moment in time Tt= . 

6. Calculate for each kth agent the profit in the form of a discounted amount of reward from time t 

to time T (23) 


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−=
T

tt

tk

tt
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rnR )()( , Kk ,1 . (23) 

7. For each kth agent, the value of the combinations of the state-action cost functions of the swarm 

and the kth agent is calculated, i.e.  

),(
ktktswarm
asQ

 and 
),(

~
ktktk
asQ

, 

in the form (24) 
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8. For each kth agent, the transition counter ),(
ktktk
asD  is increased, i.e.  

1),(),( +=
ktktkktktk
asDasD , Kk ,1 . 

9. For each kth agent, the value of the cost function of the state-action ),(
ktktk
asQ  is calculated as 

(25) 
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10. Calculate the value of the cost function of the state-action of the swarm of agents 

),(
ktktswarm
asQ  for each kth agent in the form (26) 
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11. If 0t , then 1−=tt , go to step 6. 

12. If the current iteration is not the last one, i.e. Nn  , then increase the iteration number, i.e. 

1+= nn , go to step 3, otherwise stop. 

Note. Upon completion of the method, plan ),...,,...,(
1 kTktkk

yyy=  is formed for each kth agent 

(27) 
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, Ss , Kk ,1 . 
(27) 

 

The plan of the agent that satisfies the quality criterion better than others is selected. 

8. Multi-agent reinforcement learning method based on adaptive 
dynamic programming and dynamic parameters 

The method consists of the following steps. 

1. Initialization. 



1.1. The maximum number of iterations N , the number of agents K , the maximum length of the 

states’ sequence T, the discrete set of states S , the discrete set of actions )(sA , Ss , the 

parameters max

1

min

1
, , max
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2
,  (control the learning rate), 10
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10
max

2

min

2
 , the parameters maxmin

,  (control the ε-greedy policy), 10
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the parameters 
maxmin

,  (control discounting), 10
maxmin   are set. 

1.2. Reward tables are initialized for the kth agent  

),( asQ
k

, 0),( =asQ
k

, )(sAa , Ss , Kk ,1 . 

1.3. The reward table is initialized for a swarm of agents  

),( asQ
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, 0),( =asQ
swarm

, )(sAa , Ss . 

1.4. The tables of the number of transitions for the kth agent are initialized  

),( asD
k

, 0),( =asD
k

, )(sAa , Ss , Kk ,1 . 

1.5. The state observation quantity tables for the kth agent are initialized  

)(sD
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, 0)( =sD
k

, Ss , Kk ,1 . 

2. Iteration number n=1. 

3. The parameters are calculated (28)-(31) 
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4. The number of the moment in time is set 1=t . 

5. The initial state 
kt
s , Kk ,1  is observed for each kth agent. 

6. For each kth agent, action 
kt
a  is chosen using the ε-greedy policy π. If )()1,0( nU  , then 

choose action 
kt
a  randomly from the set of allowed actions )(

kt
sA , otherwise choose action 

kt
a  

in the form (32) 

),(maxarg
)(

bsQa
kt

sAb
kt

kt
=

, 
)(

kt
sAb

), 
(32) 

i.e.  

)(
ktkt
sa =

, Kk ,1 . 

7. For each kth agent, a reward ),(
ktkt
asR , Kk ,1  is calculated. 

8. For each kth agent a new state 
ktkt
as = , Kk ,1  is observed. 

9. The transition function is calculated (33) 

)(

),(
),|(

ktk

ktktk

ktktktk
sD

asD
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, 
(33) 

and in advance  

1)()( +=
ktkktk
sDsD , 1),(),( +=

ktktkktktk
asDasD . 

10. For each kth agent, the value of the combinations of the state-action cost functions of the swarm 

and the kth agent is calculated, i.e.  

),(
ktktswarm
asQ  and ),(

~
ktktk
asQ , 

in the form (34) 

),()(),())(1(),(
~

22 ktktkktktswarmktktk asQnasQnasQ +−= , Kk ,1 . (34) 



11. For each kth agent, the value of the cost function of the state-action ),( asQ
k

 is calculated as 

(35) 
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12. Calculate the value of the cost function of the state-action of the swarm of agents 

),(
ktktswarm
asQ  for each kth agent in the form (36) 
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13. For each kth agent, the current state
ktkt
ss = , Kk ,1  is set. 

14. If the current time is not the last, i.e. Tt , then increase the iteration number, i.e. 1+=tt , 

go to step 6. 

15. If the current iteration is not the last one, i.e. Nn  , then increase the iteration number, i.e. 

1+= nn , go to step 3. 

Note. Upon completion of the method, plan ),...,,...,(
1 kTktkk

yyy=  is formed for each kth agent 

(37) 

),(maxarg
)(

asQy
ktk

sAa
kt

kt
= , Ss , Kk ,1 . (37) 

The plan of the agent that satisfies the quality criterion better than others is selected. 

9. Experiments and results 

The numerical study of the proposed methods was carried out using the Python package. 

For multi-agent reinforcement learning methods, the value of parameters 9.0,1.0
max

1

min

1
== ,

9.0,1.0
max

2

min

2
==  (control the learning rate), parameters 9.0,1.0

maxmin ==  (control the ε-

greedy policy), parameters 9.0,1.0
maxmin ==  (control discounting), the number of agents is 

20=K . 

The dependence of parameter )(n  is defined as  

1

1
)()(

minmaxmin

−

−
−+=

N

n
n . 

The dependence of parameter )(n  on the iteration number n is linear and shows that its share 

increases with the iteration number. 

The dependence of parameter )(
1
n , )(

2
n  and )(n  is defined as 
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The dependence of parameter )(
1
n , )(

2
n  and )(n  on the iteration number n is linear; it shows 

that their share decreases with increasing iteration number. 

The results of comparing the proposed temporal-difference reinforcement learning method with 

dynamic parameters and the traditional Q-learning method based on the mean squared error criterion 



and the number of iterations for solving the travelling salesman problem (Berlin52 standard dataset), 

which is used for planning cargo transportation are presented in Table 1. 

 
Table 1 
Comparison of the proposed optimization method with the traditional Q-learning method 

Mean squared error of the method Number of iterations 
proposed existing proposed existing 

0.05 0.05 310 2030 

 
The results of comparing the proposed Monte Carlo based reinforcement learning method with 

dynamic parameters and with the traditional every-visit method based on the mean squared error 

criterion and the number of iterations for solving the travelling salesman problem (Berlin52 standard 

dataset), which is used for planning cargo transportation are presented in Table 2. 

 
Table 2 
Comparison of the proposed optimization method with the traditional every-visit method 

Mean squared error of the method Number of iterations 
proposed existing proposed existing 

0.05 0.05 420 4050 

 
The results of a comparison of the proposed reinforcement learning method based on adaptive 

dynamic programming with dynamic parameters and the traditional passive adaptive dynamic 

programming method based on the mean square error criterion and the number of iterations for 

solving the traveling salesman problem (Berlin52 standard dataset), which is used for freight 

planning, are presented in Table 3. 

 
Table 3 
Comparison of the proposed optimization method with the traditional passive adaptive dynamic 
programming method 

Mean squared error of the method Number of iterations 
proposed existing proposed existing 

0.05 0.05 110 1040 

10. Discussion 

Advantages of the proposed methods: 

1. Modification of reinforcement learning methods due to dynamic parameters allows for an 

increase in the learning rate while maintaining the mean squared error of the method (Tables 1-3). 

2. The use of a multi-agent approach makes distributed computing possible and increases the 

learning speed while maintaining the root-mean-square error of the method (Tables 1-3). 

3. Reinforcement learning methods with dynamic parameters use the ε-greedy approach, which 

is close to random search at initial iterations, and close to directed search at final iterations. This is 

ensured by the use of dynamic parameters and allows for an increase in the learning rate while 

maintaining the mean squared error of the method (Tables 1-3). 

11. Conclusions 

To solve the problem of insufficient efficiency of computer agents, the existing methods of 

statistical and machine learning were investigated. These studies have shown that, to date, the 

most effective approaches to creating proactive agents are reinforcement learning approaches. 

The formalization of the functioning of proactive agents has been conducted. 



As part of creating a model for the functioning of proactive agents based on reinforcement 

learning, a procedure for generating a quasi-optimal action plan is proposed that models the 

planning function of a proactive agent, which speeds up the decision-making process. 

Reinforcement learning methods are proposed, which at the initial iterations are close to 

random search, and at the final iterations are close to the directed search. This is ensured by 

the use of dynamic parameters and multi-agent approach and allows for an increase in the 

learning rate while maintaining the mean squared error of the method. 

The proposed multi-agent methods will be used for freight planning in supply chain 

management and auditing, and were investigated on a standard data set. 
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