
Multi-Agent Reinforcement Learning Methods with
Dynamic Parameters for Logistic Tasks

Eugene Fedorov1, Olga Nechyporenko1, Yaroslav Korpan1 and Tetiana Neskorodieva2

1Cherkasy State Technological University, Shevchenko blvd., 460, Cherkasy, 18006, Ukraine
2Uman National University of Horticulture, Uman, Instytutska str., 1, Uman, 20305, Ukraine

Abstract
Part of Industry 4.0 is building computer systems by combining artificial intelligence with robotics. Such

computer systems play an important role in the planning of cargo transportation in supply chain
management. One of the approaches to building such computer systems is the use of multi-agent systems.

The aim of the work is to create a methodology for constructing proactive agents based on reinforcement

learning to solve the problem of optimal planning of cargo transportation. To solve the problem of

insufficient efficiency of computer agents, the existing methods of statistical and machine learning were
investigated. To date, the most efficient approaches to creating proactive agents are reinforcement learning

approaches. The formalization of the functioning of proactive agents is performed. As a part of creating a

model for the functioning of proactive agents based on reinforcement learning, a procedure for generating a

quasi-optimal action plan is proposed that models the planning function of a proactive agent, which speeds
up the decision-making process. Multi-agent reinforcement learning methods are proposed, which are close

to random search at the initial iterations, and close to directed search at the final iterations. This is ensured by

the use of dynamic parameters and allows the increase in the learning rate by approximately 10 times while

maintaining the mean squared error of the method.

Keywords 1
supply chain management, multi-agent system, proactive agent, reinforcement learning, dynamic

programming, Monte Carlo, Temporal-Difference Learning

1. Introduction

The fourth industrial revolution or Industry 4.0 has brought about rapid changes in technology,

manufacturing and social processes in the 21st century due to increasing interconnection and

intelligent automation. Part of this phase of industrial change is the integration of artificial intelligence

with robotics, which blurs the boundaries between the physical, digital and biological worlds and is

based on parallel and distributed computing [1].

Such computer systems play an important role in the planning of cargo transportation in supply

chain management (CSM) [2] and audit [3-4]. One of the approaches to building such computer

systems is the use of multi-agent systems.

Despite a large number of studies on the problem of improving the efficiency of supply chains and

reducing logistics costs, some questions remain open. The complexity of supply chains is constantly

increasing due to globalization and beyond. If earlier goods were purchased in centralized

hypermarkets, now online trading is developing with its unique SCM stages.

The aim of the work is to create a methodology for constructing proactive agents based on

reinforcement learning to solve the problem of optimal planning of cargo transportation. To achieve

the goal, the following tasks were set and solved:

• formalization of the functioning of proactive agents;

• propose models for the functioning of proactive agents with a utility function based on

reinforcement learning;

• propose a multi-agent reinforcement learning method with time difference and dynamic

parameters;

CMIS-2024: Seventh International Workshop on Computer Modeling and Intelligent Systems, May 3, 2024,
Zaporizhzhia, Ukraine

 fedorovee75@ukr.net (E. Fedorov); olne@ukr.net (O. Nechyporenko); y.korpan@chdtu.edu.ua (Y. Korpan);
tvnesk1@gmail.com (T. Neskorodieva)

 0000-0003-3841-7373 (E. Fedorov); 0000-0002-3954-3796 (O. Nechyporenko); 0000-0002-1455-5977
(Y. Korpan); 0000-0003-2474-7697 (T. Neskorodieva)

© 2024 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

• propose a multi-agent reinforcement learning method based on Monte Carlo and dynamic

parameters;

• propose a multi-agent reinforcement learning method based on adaptive dynamic

programming and dynamic parameters.

2. Formulation of the research problem

The problem of increasing the efficiency of optimal cargo transportation planning comes down to the

problem of finding such a set of plans }{ 


, that delivers a minimum of the mean square error (the

difference between the cost of the resulting plan and the cost of the optimal plan),

}{
1

2
min))()((

1

=
 →−=  

P

ff
P

F , where P – power of multiple plans,



.– th received plan,



.– th optimal plan,)(f – cost function of the plan (for example, the length of the route in the case of

the traveling salesman problem).

3. Literature review

Currently, the main types of computer agents of multi-agent systems are reactive and proactive agents

[5-6].

Typically, a simple reactive agent has a set of behaviours (production rules), a database (stores its

current state), and a knowledge base (stores its behaviours). A simple reactive agent makes a decision

based on production rules. Each production rule consists of an antecedent (one or more perceptions)

and a consequent (action).

Advantages of simple reactive agents [5-6]:

1. Simplicity of software implementation.

2. Ease of organization of multi-agent interaction.

3. High decision-making speed.

4. High probability of making the right decision.

Disadvantages of simple reactive agents [5-6]:

1. Simple reactive agents require a lot of information about their current state to determine an

acceptable action.

2. Simple reactive agents do not take into account information about the current state of other

agents.

3. Weak adaptability of simple reactive agents.

4. The behaviour of simple reactive agents is not based on a formal mathematical apparatus.

5. In the case of a large base of production rules, it is difficult to create a simple reactive agent.

6. Lack of logical inference leads to low autonomy.

Typically, a reactive agent with an internal state has a database (stores its current state), a

knowledge base (stores knowledge about the world changes both independently and dependent on the

agent's actions) and an inference engine. A reactive agent with an internal state makes a decision

through logical inference.

Advantages of reactive agents with an internal state [5-6]:

1. The behaviour of reactive agents with an internal state is based on a formal mathematical

apparatus (first-order predicate logic).

2. The presence of a logical inference leads to high autonomy.

Disadvantages of reactive agents with an internal state [5-6]:

1. Insufficient decision-making speed.

2. The complexity of organizing multi-agent interaction.

3. The complexity of the implementation of the perception function that maps signals from

receptors into formulas in the language of first-order predicate logic.

4. The complexity of the formal description in the language of the first-order predicate logic of

the dynamic environment.

Typically, a proactive agent has a database (stores information about its internal state, as well as

the selected goal), a knowledge base (stores knowledge about the world changes both independently

and dependent on the actions of the agent) and an inference engine. The proactive agent makes a

decision about choosing a goal from a set of possible goals and how to achieve it by forming an action

plan based on logical inference. A proactive agent may also be based on a utility function.

The advantages and disadvantages of proactive agents and reactive agents with an internal state are

practically the same [5-6].

Thus, the current problem is the low efficiency of the considered software agents.

At present, instead of expert systems with logical inference used in decision-making agents,

reinforcement learning is actively used [7-8]. The main areas of single-agent reinforcement learning

are:

• dynamic programming [9-10];

• adaptive dynamic programming [11-12];

• Monte Carlo [13-14];

• temporal-difference learning [15-16];

• policy-based methods [17-18];

• actor-critic methods [19-20].

Today, multi-agent methods are actively developed [21–22].

The advantages of reinforcement learning over inference are:

• no labeled data sets are required, this is especially relevant for large amounts of data [23-24];

• there is no imitation of a teacher, but a new solution can be proposed that people have not

even thought about [25-26];

• the quality criterion / utility function is used [27-28].

Disadvantages of reinforcement learning based on dynamic programming [9-10]:

• a priori knowledge about the probabilities of transitions between states is required;

• action is not selected (for a fixed policy).

Disadvantages of reinforcement learning based on adaptive dynamic programming [11-12]:

• action is not selected (for a fixed policy);

• cannot directly optimize the policy;

• a large number of interactions between the agent and the environment;

• converges to the global optimum only in the case of a finite number of actions and states;

• susceptible to retraining.

Disadvantages of Monte Carlo based reinforcement learning [13-14]:

• action is not selected (for a fixed policy);

• cannot directly optimize the policy;

• a large number of long trajectories is required;

• updating the value of the cost function only after receiving the entire trajectory;

• does not always converge to the global optimum;

• susceptible to retraining.

Disadvantages of reinforcement learning based on temporal-difference learning [15-16]:

• the policy is fixed, so no action is selected (if TD-learning);

• cannot directly optimize the policy;

• a large number of interactions between the agent and the environment;

• converges to the global optimum only in the case of a finite number of actions and states;

• susceptible to undertraining (if one-step TD learning).

Disadvantages of policy-based reinforcement learning [17-18]:

• requires a large number of long trajectories;

• does not always converge to the global optimum;

• subject to retraining.

Disadvantages of actor-critic reinforcement learning [19-20]:

• a large number of long trajectories (if MC learning) or a large number of interactions between

the agent and the environment (if TD learning);

• does not always converge to the global optimum (if MC learning) or converges to the global

optimum only in the case of a finite number of actions and states (if TD learning);

• subject to retraining (if MC training);

• susceptible to undertraining (if one-step TD training).

4. Formalization of models of proactive agents functioning

For such agents, the internal state is called belief, the possible goal is called desire, the best goal is

called intention.

Formalization of the functioning of a proactive agent.

Perception function (1)

PerEsee →: (1)

maps the current state of the environment E into a new perception Per.

The state change function next is called the belief change function brf (2)

BelPerBelbrf →: (2)

and maps belief (internal state) Bel (belief) and perception Per into belief (internal state) Bel.

Changing the intention (the best goal) is the sequential execution of the function for selecting the

set of wishes (possible goals) options and the filtering function filter, which ensures the choice of the

intention (the best goal) from the set of desires (possible goals).

Function to generate possible variants options (3)

Des→IntBeloptions: (3)

maps belief (internal state) Bel and intention (best goal) Int into a set of desires (possible goals) Des.

Filter function filter (4)

IntIntBelfilter →Des: (4)

maps belief (internal state) Bel, a subset of desires (possible goals) Des and intention (best goal) Int to

intention (best goal) Int.

Plan  is a sequence of actions

},...,{
1 n

= ,

where each
i

 is an element of the set Ac .

,...},{
10
=Plan – set of all plans.

Instead of an action selection function action a new planning function plan is used (5)

PlanIntBelplan → Ac: (5)

which maps a belief (internal state) Bel, an intention (best goal) Int, and a subset of actions Ac into

Plan.

5. Modelling the functioning of proactive agents with a utility function
through reinforcement learning

Let a utility function u assign a utility to a state and be represented as (6)

)),((max))((
))((

ass
sa

nQnu
nA

= , (6)

where)),((asnQ – state-action cost function (profit in case of state)(ns and action a),

))((nA s – set of actions available in state)(ns .

Let there be a memory of reproducing experiments (7)

)}),,,(,,{(ssasas = RM , (7)

where),,(sas R – reward (reward for the transition from state s to state s as a result of action a).

Then, for a proactive agent with a utility function, the procedure for generating an action plan 

for the transition from the internal state (belief)
0
s to the target state (intention)

*
s models the

planning function plan and is presented in the following form.

1. Initialization

0
)0(ss = , iteration number 1=n .

2. Choice of action (8) and observation of the internal state (9)

)),1((maxarg)(
))1((

asy
sa

−=
−

nQn
nA

, (8)

ssayssssasas =→==−)()()1(:)),,,(,,(nnnMR . (9)

3. Termination condition

If Nn  , then 1+= nn , go to step 2, otherwise))(),...,1((π nyy= .

The paper proposes reinforcement learning methods based on temporal-difference learning, based

on Monte Carlo and based adaptive dynamic programming.

6. Multi-agent reinforcement learning with temporal-difference and
dynamic parameters

The method consists of the following steps.

1. Initialization.

1.1. The maximum number of iterations N , the number of agents K , the maximum length of the

states’ sequence T, the discrete set of states S , the discrete set of actions)(sA , Ss , the reward

),(asR ,)(sAa , Ss , the parameters max

1

min

1
, , max

2

min

2
, (control the learning rate),

10
max

1

min

1
 , 10

max

2

min

2
 , the parameters maxmin

, (control the ε-greedy policy),

10
maxmin  , the parameters

maxmin
, (control discounting), 10

maxmin  are set.

1.2. Reward tables are initialized for the kth agent

)],([asQQ
kk

= ,

0),(=asQ
k

,)(sAa , Ss , Kk ,1 .

1.3. The reward table is initialized for a swarm of agents

)],([asQQ
swarmswarm

= ,

0),(=asQ
swarm

,)(sAa , Ss .

2. Iteration number n=1.

3. The parameters are calculated (10)-(13)

1

1
)()(

min

1

max

1

max

11
−

−
−−=

N

n
n

,
(10)

1

1
)()(

min

2

max

2

max

22
−

−
−−=

N

n
n

,
(11)

1

1
)()(

minmaxmax

−

−
−−=

N

n
n

,
(12)

1

1
)()(

minmaxmin

−

−
−+=

N

n
n

.
(13)

4. The number of the moment in time is set 1=t .

5. The initial state
kt
s , Kk ,1 is observed for each kth agent.

6. For each kth agent, action
kt
a is chosen using the ε-greedy policy π. If)()1,0(nU  , then

choose action
kt
a randomly from the set of allowed actions)(

kt
sA , otherwise choose action

kt
a

in the form (14)

),(maxarg
)(

bsQa
kt

sAb
kt

kt
=

,
)(

kt
sAb

),
(14)

i.e.

)(
ktkt
sa =

, Kk ,1 .

7. For each kth agent, a reward),(
ktkt
asR , Kk ,1 is calculated.

8. For each kth agent a new state
ktkt
as = , Kk ,1 is observed.

9. For each kth agent, the value of the combinations of the state-action cost functions of the swarm

and the kth agent is calculated, i.e.

),(
ktktswarm
asQ

and),(

~
ktktk
asQ

,

in the form (15)

),()(),())(1(),(
~

22 ktktkktktswarmktktk
asQnasQnasQ +−=

, Kk ,1 . (15)

10. For each kth agent, the value of the cost function of the state-action),(
ktktk
asQ is calculated

as (16)












=+−









 ++

+−

=


TtasRnasQn

Tt
bsQnasRn

asQn

asQ

ktktktktk

ktk
sAb

ktkt

ktktk

ktktk

kt

),,()(),(
~

))(1(

,),(
~

max)(),()(

),(
~

))(1(

),(

11

)(
1

1

, Kk ,1 . (16)

11. Calculate the value of the cost function of the state-action of the swarm of agents

),(
ktktswarm
asQ for each kth agent in the form (17)












=





),(min),(max),,(min

),(min),(max),,(max

),(

,1,1,1

,1,1,1

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktswarm

asQasQasQ

asQasQasQ

asQ , Kk ,1 . (17)

12. For each kth agent, the current state
ktkt
ss = , Kk ,1 is set.

13. If the current time is not the last, i.e. Tt , then increase the iteration number, i.e. 1+=tt ,

go to step 6.
14. If the current iteration is not the last one, i.e. Nn  , then increase the iteration number, i.e.

1+= nn , go to step 3.

Note. Upon completion of the method, plan),...,,...,(
1 kTktkk

yyy= is formed for each kth agent

(18)

),(maxarg
)(

asQy
ktk

sAa
kt

kt
=

, Ss , Kk ,1 .
(18)

The plan of the agent that satisfies the quality criterion better than others is selected.

7. Multi-agent Monte Carlo reinforcement learning with dynamic
parameters

This method is presented in the following form.

1. Initialization.

1.1. The maximum number of iterations N , the number of agents K , the discrete set of states S ,

the discrete set of actions)(sA , Ss , the reward),(asR ,)(sAa , Ss , the parameters

max

1

min

1
, ,

max

2

min

2
, (control the learning rate), 10

max

1

min

1
 , 10

max

2

min

2
 , the

parameters
maxmin

, (control the ε-greedy policy), 10
maxmin  , the parameters

maxmin
, (control discounting), 10

maxmin  are set.

1.2. Reward tables are initialized for the kth agent

)],([asQQ
kk

= ,

0),(=asQ
k ,)(sAa , Ss , Kk ,1 .

1.3. The reward table is initialized for a swarm of agents

)],([asQQ
swarmswarm

=
,

0),(=asQ
swarm ,)(sAa , Ss .

1.4. Tables of the number of transitions for the kth agent are initialized

)],([asDD
kk

= ,

0),(=asD
k ,)(sAa , Ss , Kk ,1 .

2. Iteration number 1=n .

3. The parameters are calculated (19)-(22)

1

1
)()(

min

1

max

1

max

11
−

−
−−=

N

n
n

,
(19)

1

1
)()(

min

2

max

2

max

22
−

−
−−=

N

n
n

,
(20)

1

1
)()(

minmaxmax

−

−
−−=

N

n
n

,
(21)

1

1
)()(

minmaxmin

−

−
−+=

N

n
n

.
(22)

4. Trajectory),,,...,,,(
000 kTkTkTkkkk

rasras= is generated for each kth agent, and)(
ktkt
sa = ,

),(
ktktkt
asRr = , as a result of action

kt
a a new state 1,+tks and reward

kt
r , are observed, state

0k
s can change at each iteration, the policy of choosing action π is ε-greedy, Kk ,1 .

5. Number of the moment in time Tt= .

6. Calculate for each kth agent the profit in the form of a discounted amount of reward from time t

to time T (23)


=



−=
T

tt

tk

tt

kkt
rnR)()(, Kk ,1 . (23)

7. For each kth agent, the value of the combinations of the state-action cost functions of the swarm

and the kth agent is calculated, i.e.

),(
ktktswarm
asQ

 and
),(

~
ktktk
asQ

,

in the form (24)

),()(),())(1(),(
~

22 ktktkktktswarmktktk
asQnasQnasQ +−=

, Kk ,1 . (24)

8. For each kth agent, the transition counter),(
ktktk
asD is increased, i.e.

1),(),(+=
ktktkktktk
asDasD , Kk ,1 .

9. For each kth agent, the value of the cost function of the state-action),(
ktktk
asQ is calculated as

(25)

)(
),(

)(
),(

~

),(

)(
1),(11

kkt

ktktk

ktktk

ktktk

ktktk
R

asD

n
asQ

asD

n
asQ 


+







 
−=

, Kk ,1 .

(25)

10. Calculate the value of the cost function of the state-action of the swarm of agents

),(
ktktswarm
asQ for each kth agent in the form (26)












=





),(min),(max),,(min

),(min),(max),,(max

),(

,1,1,1

,1,1,1

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktswarm

asQasQasQ

asQasQasQ

asQ

, Kk ,1 .

(26)

11. If 0t , then 1−=tt , go to step 6.

12. If the current iteration is not the last one, i.e. Nn  , then increase the iteration number, i.e.

1+= nn , go to step 3, otherwise stop.

Note. Upon completion of the method, plan),...,,...,(
1 kTktkk

yyy= is formed for each kth agent

(27)

),(maxarg
)(

asQy
ktk

sAa
kt

kt
=

, Ss , Kk ,1 .
(27)

The plan of the agent that satisfies the quality criterion better than others is selected.

8. Multi-agent reinforcement learning method based on adaptive
dynamic programming and dynamic parameters

The method consists of the following steps.

1. Initialization.

1.1. The maximum number of iterations N , the number of agents K , the maximum length of the

states’ sequence T, the discrete set of states S , the discrete set of actions)(sA , Ss , the

parameters max

1

min

1
, , max

2

min

2
, (control the learning rate), 10

max

1

min

1
 ,

10
max

2

min

2
 , the parameters maxmin

, (control the ε-greedy policy), 10
maxmin  ,

the parameters
maxmin

, (control discounting), 10
maxmin  are set.

1.2. Reward tables are initialized for the kth agent

),(asQ
k

, 0),(=asQ
k

,)(sAa , Ss , Kk ,1 .

1.3. The reward table is initialized for a swarm of agents

),(asQ
swarm

, 0),(=asQ
swarm

,)(sAa , Ss .

1.4. The tables of the number of transitions for the kth agent are initialized

),(asD
k

, 0),(=asD
k

,)(sAa , Ss , Kk ,1 .

1.5. The state observation quantity tables for the kth agent are initialized

)(sD
k

, 0)(=sD
k

, Ss , Kk ,1 .

2. Iteration number n=1.

3. The parameters are calculated (28)-(31)

1

1
)()(

min

1

max

1

max

11
−

−
−−=

N

n
n

,
(28)

1

1
)()(

min

2

max

2

max

22
−

−
−−=

N

n
n

,
(29)

1

1
)()(

minmaxmax

−

−
−−=

N

n
n

,
(30)

1

1
)()(

minmaxmin

−

−
−+=

N

n
n

.
(31)

4. The number of the moment in time is set 1=t .

5. The initial state
kt
s , Kk ,1 is observed for each kth agent.

6. For each kth agent, action
kt
a is chosen using the ε-greedy policy π. If)()1,0(nU  , then

choose action
kt
a randomly from the set of allowed actions)(

kt
sA , otherwise choose action

kt
a

in the form (32)

),(maxarg
)(

bsQa
kt

sAb
kt

kt
=

,
)(

kt
sAb

),
(32)

i.e.

)(
ktkt
sa =

, Kk ,1 .

7. For each kth agent, a reward),(
ktkt
asR , Kk ,1 is calculated.

8. For each kth agent a new state
ktkt
as = , Kk ,1 is observed.

9. The transition function is calculated (33)

)(

),(
),|(

ktk

ktktk

ktktktk
sD

asD
assP =

,
(33)

and in advance

1)()(+=
ktkktk
sDsD , 1),(),(+=

ktktkktktk
asDasD .

10. For each kth agent, the value of the combinations of the state-action cost functions of the swarm

and the kth agent is calculated, i.e.

),(
ktktswarm
asQ and),(

~
ktktk
asQ ,

in the form (34)

),()(),())(1(),(
~

22 ktktkktktswarmktktk asQnasQnasQ +−= , Kk ,1 . (34)

11. For each kth agent, the value of the cost function of the state-action),(asQ
k

 is calculated as

(35)












=+−









 ++

+−

=


TtasRassPnasQn

Tt
bsQnasRassPn

asQn

asQ

ktktktktktkktktk

ktk
sAb

ktktktktktk

ktktk

ktktk

kt

),,(),|()(),(
~

))(1(

,),(
~

max)(),(),|()(

),(
~

))(1(

),(

11

)(
1

1

,

Kk ,1

(35)

12. Calculate the value of the cost function of the state-action of the swarm of agents

),(
ktktswarm
asQ for each kth agent in the form (36)












=





),(min),(max),,(min

),(min),(max),,(max

),(

,1,1,1

,1,1,1

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktz
Kz

ktktswarm

asQasQasQ

asQasQasQ

asQ

, Kk ,1 .

(36)

13. For each kth agent, the current state
ktkt
ss = , Kk ,1 is set.

14. If the current time is not the last, i.e. Tt , then increase the iteration number, i.e. 1+=tt ,

go to step 6.

15. If the current iteration is not the last one, i.e. Nn  , then increase the iteration number, i.e.

1+= nn , go to step 3.

Note. Upon completion of the method, plan),...,,...,(
1 kTktkk

yyy= is formed for each kth agent

(37)

),(maxarg
)(

asQy
ktk

sAa
kt

kt
= , Ss , Kk ,1 . (37)

The plan of the agent that satisfies the quality criterion better than others is selected.

9. Experiments and results

The numerical study of the proposed methods was carried out using the Python package.

For multi-agent reinforcement learning methods, the value of parameters 9.0,1.0
max

1

min

1
== ,

9.0,1.0
max

2

min

2
== (control the learning rate), parameters 9.0,1.0

maxmin == (control the ε-

greedy policy), parameters 9.0,1.0
maxmin == (control discounting), the number of agents is

20=K .

The dependence of parameter)(n is defined as

1

1
)()(

minmaxmin

−

−
−+=

N

n
n .

The dependence of parameter)(n on the iteration number n is linear and shows that its share

increases with the iteration number.

The dependence of parameter)(
1
n ,)(

2
n and)(n is defined as

1

1
)()(

min

1

max

1

max

11
−

−
−−=

N

n
n

,

1

1
)()(

min

2

max

2

max

22
−

−
−−=

N

n
n

,

1

1
)()(

minmaxmax

−

−
−−=

N

n
n

.

The dependence of parameter)(
1
n ,)(

2
n and)(n on the iteration number n is linear; it shows

that their share decreases with increasing iteration number.

The results of comparing the proposed temporal-difference reinforcement learning method with

dynamic parameters and the traditional Q-learning method based on the mean squared error criterion

and the number of iterations for solving the travelling salesman problem (Berlin52 standard dataset),

which is used for planning cargo transportation are presented in Table 1.

Table 1
Comparison of the proposed optimization method with the traditional Q-learning method

Mean squared error of the method Number of iterations
proposed existing proposed existing

0.05 0.05 310 2030

The results of comparing the proposed Monte Carlo based reinforcement learning method with

dynamic parameters and with the traditional every-visit method based on the mean squared error

criterion and the number of iterations for solving the travelling salesman problem (Berlin52 standard

dataset), which is used for planning cargo transportation are presented in Table 2.

Table 2
Comparison of the proposed optimization method with the traditional every-visit method

Mean squared error of the method Number of iterations
proposed existing proposed existing

0.05 0.05 420 4050

The results of a comparison of the proposed reinforcement learning method based on adaptive

dynamic programming with dynamic parameters and the traditional passive adaptive dynamic

programming method based on the mean square error criterion and the number of iterations for

solving the traveling salesman problem (Berlin52 standard dataset), which is used for freight

planning, are presented in Table 3.

Table 3
Comparison of the proposed optimization method with the traditional passive adaptive dynamic
programming method

Mean squared error of the method Number of iterations
proposed existing proposed existing

0.05 0.05 110 1040

10. Discussion

Advantages of the proposed methods:

1. Modification of reinforcement learning methods due to dynamic parameters allows for an

increase in the learning rate while maintaining the mean squared error of the method (Tables 1-3).

2. The use of a multi-agent approach makes distributed computing possible and increases the

learning speed while maintaining the root-mean-square error of the method (Tables 1-3).

3. Reinforcement learning methods with dynamic parameters use the ε-greedy approach, which

is close to random search at initial iterations, and close to directed search at final iterations. This is

ensured by the use of dynamic parameters and allows for an increase in the learning rate while

maintaining the mean squared error of the method (Tables 1-3).

11. Conclusions

To solve the problem of insufficient efficiency of computer agents, the existing methods of

statistical and machine learning were investigated. These studies have shown that, to date, the

most effective approaches to creating proactive agents are reinforcement learning approaches.

The formalization of the functioning of proactive agents has been conducted.

As part of creating a model for the functioning of proactive agents based on reinforcement

learning, a procedure for generating a quasi-optimal action plan is proposed that models the

planning function of a proactive agent, which speeds up the decision-making process.

Reinforcement learning methods are proposed, which at the initial iterations are close to

random search, and at the final iterations are close to the directed search. This is ensured by

the use of dynamic parameters and multi-agent approach and allows for an increase in the

learning rate while maintaining the mean squared error of the method.

The proposed multi-agent methods will be used for freight planning in supply chain

management and auditing, and were investigated on a standard data set.

12. References

[1] G. G. Shvachych, O. V. Ivaschenko, V. V. Busygin, Ye. Ye. Fedorov, Parallel computational

algorithms in thermal processes in metallurgy and mining, Naukovyi Visnyk Natsionalnoho

Hirnychoho Universytetu, 4 (2018) 129–137. doi: 10.29202/nvngu/2018-4/19.

[2] O. Grygor, E. Fedorov, O. Nechyporenko, M. Grygorian, Neural network forecasting method for

inventory management in the supply chain, in: CEUR Workshop Proceedings, 2022,

volume 3137, pp. 14-27.

[3] T. Neskorodieva, E. Fedorov, Method for automatic analysis of compliance of expenses data and

the enterprise income by neural network model of forecast, in: CEUR Workshop Proceedings,

2020, volume 2631, pp. 145–158

[4] T. Neskorodieva, E. Fedorov, I. Izonin, Forecast method for audit data analysis by modified

liquid state machine, in: CEUR Workshop Proceedings, 2020, volume 2623, pp. 25-35.

[5] G. Jezic, J. Chen-Burger, M. Kusek, R. Sperka, R. J. Howlett, L. C. Jain (Eds.), Agents and

multi-agent systems: technologies and applications, volume 186 of Smart innovation, systems

and technologies, 2020. doi: 10.1007/978-981-15-5764-4.

[6] S. Russell, P. Norvig, Artificial Intelligence: a Modem Approach, Englewood Cliffs, NJ: Prentice

Hall PTR, 2020.

[7] A. L. C. Ottoni, E. G. Nepomuceno, M. S. de Oliveira, D. C. R. de Oliveira, Reinforcement

learning for the traveling salesman problem with refueling, Complex & Intelligent Systems, 8

(2021) 2001-2015. doi: 10.1007/s40747-021-00444-4.

[8] A. Oroojlooy, D. Hajinezhad, A review of cooperative multi-agent deep reinforcement learning,

Applied Intelligence, 53 (2023) 13677–13722. doi:10.1007/s10489-022-04105-y.

[9] D. Wang, X. Li, P. Xin, A. Liu, J. Qiao, Supplementary heuristic dynamic programming for

wastewater treatment process control, Expert Systems with Applications, 247 (2024) 123280.

doi: 10.1016/j.eswa.2024.123280.

[10] U. Satic, P. Jacko, C. Kirkbride, A simulation-based approximate dynamic programming

approach to dynamic and stochastic resource-constrained multi-project scheduling problem,

European Journal of Operational Research, 315 (2024) 454–469. doi: 10.1016/j.ejor.2023.10.046.

[11] H. Shen, Z. Li, J. Wang, J. Cao, Nonzero-sum games using actor-critic neural networks: A

dynamic event-triggered adaptive dynamic programming, Information Sciences, 662 (2024)

120236. doi: 10.1016/j.ins.2024.120236.

[12] K. Xie, Y. Zheng, Y. Jiang, W. Lan, X. Yu, Optimal dynamic output feedback control of

unknown linear continuous-time systems by adaptive dynamic programming, Automatica, 163

(2024) 111601. doi: 10.1016/j.automatica.2024.111601.

[13] J. Pascal, Artificial neural networks to solve dynamic programming problems: A bias-corrected

Monte Carlo operator, Journal of Economic Dynamics and Control, 162 (2024) 104853. doi:

10.1016/j.jedc.2024.104853.

[14] S. V. Albrecht, F. Christianos, L. Schäfer, Multi-Agent Reinforcement Learning: Foundations

and Modern Approaches, MIT Press, Cambridge, MA, USA, 2023.

[15] X. Chen, G. Yang, Sh. Yang, H. Wang, Sh. Dong, Ya. Gao, Online attentive kernel-based

temporal difference learning, Knowledge-Based Systems, 278 (2023) 110902.

doi:10.1016/j.knosys.2023.110902.

[16] M. S. Stanković, M. Beko, S. S. Stanković, Distributed consensus-based multi-agent temporal-

difference learning, Automatica, 151 (2023) 110922. doi:10.1016/j.automatica.2023.110922.

https://www.semanticscholar.org/author/I.-Izonin/9232848
http://dx.doi.org/10.1007/s40747-021-00444-4

[17] A. S. Stebenkov, N. O. Nikitin, Automated Generation of Ensemble Pipelines using Policy-

Based Reinforcement Learning method, Procedia Computer Science, 229 (2023) 70-79.

doi:10.1016/j.procs.2023.12.009.

[18] F. Huang, X. Deng, Y. He, W. Jiang, A novel policy based on action confidence limit to improve

exploration efficiency in reinforcement learning, Information Sciences, 640 (2023) 119011.

doi:10.1016/j.ins.2023.119011.

[19] J. Zhang, Sh. Han, X. Xiong, Sh. Zhu, Sh. Lu, Explorer-Actor-Critic: Better actors for deep

reinforcement learning, Information Sciences, 662 (2024) 120255.

doi:10.1016/j.ins.2024.120255.

[20] Zh. Zhang, X. Liang, C. Chen, D. Liu, Ch. Yu, W. Li, Defense penetration strategy for

unmanned surface vehicle based on modified soft actor–critic, Ocean Engineering, 304 (2024)

117840. doi: 10.1016/j.oceaneng.2024.117840.

[21] T. Li, K. Zhu, N. C. Luong, D. Niyato, Q. Wu, Y. Zhang, B. Chen, Applications of multi-agent

reinforcement learning in future Internet: A comprehensive survey, IEEE Communications

Surveys & Tutorials, 24 (2) (2022) 1240–1279. doi:10.1109/COMST.2022.3160697.

[22] L. M. Schmidt, J. Brosig, A. Plinge, B. M. Eskofier, C. Mutschler, An introduction to multi-agent

reinforcement learning and review of its application to autonomous mobility, in: IEEE 25th

International Conference on Intelligent Transportation Systems, 2022, pp. 1342–1349.

[23] P. Yadav, A. Mishra, S. Kim, A comprehensive survey on multi-agent reinforcement learning for

connected and automated vehicles, Sensors, 23 (10) (2023) 4710. doi:10.3390/s23104710.

[24] J. Orr, A. Dutta, Multi-agent deep reinforcement learning for multi-robot applications: A survey,

Sensors, 23 (7) (2023) 3625. doi.org/10.3390/s23073625.

[25] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re, S. Spanò, Multi-

agent reinforcement learning: A review of challenges and applications, Applied Sciences, 11 (11)

(2021) 4948. doi: 10.3390/app11114948.

[26] Z. Xu, H. van Hasselt, M. Hessel, J. Oh, S. Singh, D. Silver, Meta-gradient reinforcement

learning with an objective discovered, arXiv:2007.08433, 2020. doi:10.48550/arXiv.2007.08433.

[27] H. Wang , E. Miahi, M. White, M. C. Machado, Z. Abbas, R. Kumaraswamy, V. Liu, A. White,

Investigating the properties of neural network representations in reinforcement learning,

Artificial Intelligence, 330 (2024) 1-24. doi: 10.1016/j.artint.2024.104100.

[28] F. Robertazzi, M. Vissani, G. Schillaci, E. Falotico, Brain-inspired meta-reinforcement learning

cognitive control in conflictual inhibition decision-making task for artificial agents, Neural

Networks, 154 (2022) 283–302. doi: 10.1016/j.neunet.2022.06.020.

https://arxiv.org/search/cs?searchtype=author&query=Xu%2C+Z
https://arxiv.org/search/cs?searchtype=author&query=van+Hasselt%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Hessel%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Oh%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Singh%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Silver%2C+D
https://doi.org/10.1016/j.neunet.2022.06.020

