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Abstract 
The study is dedicated to considering some examples of computer calculations that are completely 
correct from the point of view of the standards of computer work with numbers and arithmetic 
operations, the result is incorrect to a human performer. It’s demonstrated that mathematically 
correct calculations are often impossible to reproduce correctly within the IEEE-754 standard due to 
the fundamental limitations of the memory allocated to represent a specific number. The authors 
focused on the study of the specified problem using the example of the numpy module, as one of the 
main software tools for modern scientific calculations. The work has methodological value in the 
professional training of specialists in Computer Science. 
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1. Introduction 

The problem of reliability of computer calculations is one of the fundamental problems of 
Computer Science [1], as it lies at the intersection of applied mathematics on the one hand, and 
physical and technical limitations of computer technology on the other. The avoiding the 
fundamentals of binary arithmetic and the principles of the standard for representing numbers 
in computer memory can significantly affect the correctness of both theoretical research (if 
computer technology was used for modeling) and simply the quality of the product when 
developing application programs.  

The problems that can arise due to incorrect representation in computer memory are well 
known. Sometimes they are subtle problems that do not have a significant impact in a 
qualitative sense on a particular result. Therefore, in application activities, floating-point 
computing problems and features of IEEE-754 standard are often overlooked by software 
developers as well as academic researchers. However, there are notorious cases when careless 
handling of computer representation of numbers led to serious tragedies. A well-known 
example of the tragic consequences of such problems is "The Patriot Missile Failure" [2-3]. The 
main problem was that the time value in tenths of a second was multiplied by a factor of 0.1 to 
get a representation of time in seconds. This calculation was done using a 24-bit fixed-point 
register. The Patriot battery lasted about 100 hours and the accumulated error was about 0.34 
seconds. One can also recall the precedent of "The Explosion of the Ariane 5" [4-5].As a result of 
computer calculations, a 64-bit floating-point number was converted to a 16-bit signed integer. 
The number was greater than 32,768, and so the conversion failed. An error in the system for 
calculating the horizontal velocity of the rocket relative to the platform resulted in damage 
estimated at 500 million dollars. Some examples of real losses caused by rounding errors or 
problems in representing numbers in computer memory are given in [6]. 
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The limitation on the amount of memory allocated by computer technology for number 
processing imposes fundamental limitations on the possibilities and logic of the organization of 
computer calculations. It’s also requires the involvement of specific mathematical research 
methods.  

The standard and most popular tool for computer calculations, especially in machine 
learning tasks, is the Python programming language, in particular with its powerful extension 
NumPy module. It allows you to efficiently work with large multidimensional arrays and 
matrices, along with a large library of mathematical functions. The NumPy module provides 
much wider possibilities for working with mathematical functions and objects compared to the 
math module. The NumPy is an effective tool for providing complex mathematical calculations 
not only in the tasks of machine learning and data analysis, but is also an indispensable 
component in the implementation of a large volume of computer calculations in a wide class of 
modern engineering and scientific tasks [7-10]. 

The investigation considers the main aspects related to the problems of computer 
calculations within the IEEE-754 [11] standard, the main technical standard format for 
representing floating-point numbers (floating-point numbers) (discussing possible alternatives 
to the IEEE-754 standard, such as Unum [12] and Posit [13-14] go beyond the scope of the 
presented work).  

The history of the development of computing and the basics of the theory of computing with 
floating-point numbers are described in [15-16]. Important related issues of floating-point 
computing are presented in [17-18]. Recently, the research in the direction of computer-
assisted proof for various classes of mathematical problems [19] is more developed. In this 
work, the authors touch on possible incorrect cases of the possible use of proof calculations in 
case of failure to take into account certain features of the representation of numbers in the 
computer memory.  

The presented work is a continuation of the authors' research [20-21]. Previously, the 
authors investigated rather complex cases of violation of the correctness of computer 
calculations, the example of Ramp [22] and the sequence of Müller [15]. The works of [20-21] 
investigated the mathematical aspects of computer calculations, in particular the convergence 
and stability of computer calculations. The authors focused more on the methodological 
principles of teaching the topic of accuracy of calculations for the Computer Science specialty 
students in the presented work. Based on the teaching experience, the authors believe that a 
detailed study of the problem of the incorrectness of computer calculations on trivial examples 
(rather than specially designed ones) will allow students to take a more serious and attentive 
approach to the problems of computer calculations. 

2. Methods 

Let's consider the numeric data types of the NumPy library, one of the most popular Python 
libraries for scientific computing. Figure 1 shows the hierarchical diagram of the numpy.generic 
data class, the base class for numpy scalar types. We not consider components of numpy.generic 
like nympy.bool_, nympy.object_, nympy.datetime64 or nympy.flexible. 

 
Figure 1: Numpy number types 

Floating point numbers according to the IEEE 754 standard are presented in the form 

𝑛𝑢𝑚𝑏𝑒𝑟 = (−1)𝑠 × 1. 𝑀 × 2𝐸  



where S is number sign (signum), M is mantissa, E is number order (exponent). Figure 2 shows 
the distribution of bits of a single-precision number in the binary32 format (the most significant 
bit is the sign, the order of the number is preserved using 8 bits, 23 bits are allocated to the 
mantissa – a total of 32 bits). 

 
Figure 2: Single precision number (IEEE-754) 

The value ranges of the types of floating point numbers are presented in Table 1. 

Table 1 
Floating-point types 

Numpy type Alias Precision floating-point number type 

half float16 sign bit, 5 bits exponent, 10 bits mantissa 

single float32 sign bit, 8 bits exponent, 23 bits mantissa 

double float64 sign bit, 11 bits exponent, 52 bits mantissa 

longdouble float128 sign bit, 15 bits exponent, 64 bits mantissa 

The mantissa is normalized (the integer part is equal to one), as we can see from the formal 
representation of the number n. To calculate the order, a constant shift exponent is used, which 
for single-precision numbers is 127 (or 01111111 in binary code). 

Let's consider for the clarity, what will happen to the representation of the rational number 
1

3⁄  according to the described principles of IEEE 754. Mathematically, in the decimal and binary 

number systems, we have 
1

3⁄ = 0. (3)10 = 0. (01)2. 

For a single-precision number, we can write 
1

3⁄ = (−1)0 ∙ 1.01010101010101010101011 ∙ 2−10, 

i.e S = 0 (number is positive), M = 01010101010101010101011 (since the first discarded bit 
was a unit, according to the rules of the standard, we add 1 to the mantissa), E = -10 (the order 
is -2 in the decimal number system). 

We have float32-approximation to the 1 3⁄  in the mathematical form 

(0.01010101010101010101011)2 = 0 ∙ 2−1 + 1 ∙ 2−2 + 0 ∙ 2−3 + 1 ∙ 2−4 + 1 ∙ 2−5 … = 

                                                                    = ∑
1

22𝑘
+

1

225
= (0.3333333432674407958984375)10

12

𝑘=1

 

The obtained approximate value of the number is greater than the real value 1 3⁄ . Everything 

is still correct in the mathematical sense 

0. (01)2 = ∑
1

22𝑘
=

1
4⁄

1 − 1
4⁄

= 1
3⁄

∞

𝑘=1

 

Let's consider an important concept of the theory of computer calculations – machine epsilon 
[23]. This is numerical value below which it is impossible to specify the relative accuracy for any 
algorithm that produces real numbers. 

A close concept, but not identical, is the concept of machine zero. That is a numerical value 
with such a negative order that the computer perceives it as zero. 

In fact, to get the machine epsilon value in Python you can use the function numpy.finfo() for 
specific floating point number formats. But it seems appropriate to give a software 
implementation (Listing #1) of calculating the values of machine epsilon and machine zero, in 
order to understand the essence of these concepts in a constructive way. 

Listing #1 
1 
2 

from numpy import * 
def machineEpsilon(float_format = float): 



3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

    iteration_count_eps = 1 
    mach_eps = float_format(1) 
    while   float_format(1) + float_format(mach_eps)\ 
            /float_format(2) != float_format(1): 
        iteration_count_eps += 1 
        mach_eps /= float_format(2) 
    return mach_eps, iteration_count_eps 
     
def machineZero(float_format = float): 
    iteration_count_zero = 0 
    mach_zero = float_format(1) 
    while   float_format(mach_zero)\ 
            /float_format(2) != float_format(0): 
        iteration_count_zero += 1 
        mach_zero /= float_format(2) 

         return mach_zero, iteration_count_zero 
  
Result:  

 Machine Epsilon 
<class 'numpy.float16'>: (0.000977, 11) 
<class 'numpy.float32'>: (1.1920929e-07, 24) 
<class 'numpy.float64'>: (2.220446049250313e-16, 53) 
<class 'numpy.longdouble'>: (1.084202172485504434e-19, 64)) 

  
 Machine Zero 

<class 'numpy.float16'>: (6e-08, 24) 
<class 'numpy.float32'>: (1e-45, 149) 
<class 'numpy.float64'>: (5e-324, 1074) 
<class 'numpy.longdouble'>: (4e-4951, 16445) 

We see that a specific machine epsilon, like a machine zero, is not fundamental. The order of 
given numbers is important. The value of the iteration_count_eps variable is the negative power 
order 𝟐−𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧_𝐜𝐨𝐮𝐧𝐭_𝐞𝐩𝐬 . As we can see, for the machine epsilon for the corresponding type of 
floating point numbers, the iteration_count value is one more than the number of bits allocated 
for the mantissa value for the corresponding type. This makes sense because it implies the 
precision limits for the corresponding numeric type. 

As for the results for machine zero, the given values are the smallest numbers below which 
the computer already perceives as zero. 

That is, in fact, the machine zero is a number 2−(iteration_count_zero+1). It is obvious that it is 
possible to obtain the order of the machine zero without computer calculations using the 
formula 

mantissa + 2exponent−1, 

where the exponent and the mantissa determine the number of bits for the corresponding data 
type. 

3. Results and Discussion 

3.1. Restrictions on calculations in integers 

Let's consider one interesting example of working with integers when overflowing a bit grid. 
This problem itself is well known, but when training specialists, it is important to 

demonstrate that the results obtained are incorrect to a human programmer, but are 
nevertheless absolutely correct from the point of view of executing the program within the 
framework of existing standards. A simple example is the calculation of the value of the factorial 
of some natural number n. With implementing directly in Python (the factorial function from 
the math module), there are no problems with accuracy. Python implements the BigInt [24] 



mechanism by default, that is, the value of an integer is not limited by the number of bits and 
can expand to the limit of available memory. At the same time, using the capabilities of the 
numpy module allows you to explore in more detail the nuances of factorial calculation for 
different types of integers. 

Table 2 lists [25] some of the signed and unsigned integer types available in numpy. 
The second column in Table 1 is the alias of the corresponding data types on the Linux 

x86_64 platform. 
Table 3 shows the results of calculating the factorials of the number n in Python depending 

on the types of integers. The correct result is obtained using Python's standard int() (the BigInt 
concept mentioned above). 

As we can see from Table 3, when calculating the factorial using the int32 type, starting with 
n = 13, the calculation result is incorrect. Using the int32 and int64 types, starting with a count 
of 21!, Python throws an OverFlowError exception. 

Note that the numpy.intc and numpy.int_ types are analogues of the int and long long types in 
C, while the generation of the OverFlowError exception is a feature of the numpy module itself, 
while in C we would get the corresponding values 

int factorial(21) = – 1195114496,  
long long (21) = – 4249290049419214848. 

We obtained a paradoxical result, that the product of natural numbers is equal to a negative 
number. 

In integers in the int and long long formats, everything is calculated correctly. 

Table 2 

Integer types (Signed integer types) 

Numpy type Alias Range of Values 

byte int8 -27 … 27-1 -128 .. 127 

short int16 -215 … 215-1 -32768 .. 32767 

intc  int32 -231 … 231-1 -2147483648 .. 2147483647 

int_ int64 -263 … 263-1 -9223372036854775808 .. 9223372036854775807 

Integer types (Unsigned integer types 

ubyte uint8 0 … 28-1 0 .. 255 

ushort uint16 0 … 216-1 0 .. 65535 

uintc uint32 0 … 232-1 0 .. 4294967295 

uint uint64 0 … 264-1 0 .. 18446744073709551615 

The real value is 21! in decimal and binary number systems is 

21! = (51090942171709440000)10, 
21! = 
(101100010100000111011111010011011010111000110001000000000000000000)2 

Table 3 
Factorial calculation depending on integer type 

n Correct value n! int32(n!) int64(n!) 

1 1 1 1 
2 2 2 2 
3 6 6 6 
4 24 24 24 
5 120 120 120 
6 720 720 720 
7 5040 5040 5040 
8 40320 40320 40320 



9 362880 362880 362880 
10 3628800 3628800 3628800 
11 39916800 39916800 39916800 
12 479001600 479001600 479001600 
13 6227020800 1932053504 6227020800 
14 87178291200 1278945280 87178291200 
15 1307674368000 2004310016 1307674368000 
16 20922789888000 2004189184 20922789888000 
17 355687428096000 -288522240 355687428096000 
18 6402373705728000 -898433024 6402373705728000 
19 121645100408832000 109641728 121645100408832000 
20 2432902008176640000 -2102132736 2432902008176640000 
21 51090942171709440000 OverFlowError OverFlowError 

An entry in binary code is 66 bits long, while the int type in C is 32 bits long (the most 
significant bit is the sign), and the long long type is 64 bits long. This means that in binary code, 
discarding the higher bits, we will actually get 

int factorial(21) = (10111000110001000000000000000000)2 

long long (21) = 
(1100010100000111011111010011011010111000110001000000000000000000)2 

Taking into account the fact that we are working with sign types and the presented results 
are written in additive code, the reverse conversion to the decimal numbering system will give 
the numbers – 1195114496 and –4249290049419214848, respectively, that is, the calculation 
is correct not from a mathematical point of view, but according to standards and algorithms 
work with integer types. 

In order to increase the accuracy of calculations and obtain correct calculation results, it is 
often recommended to use floating-point number types instead of integer data types. 
Sometimes it can give a certain effect, but it is also significantly limited, and the correctness of 
the obtained results also requires mandatory verification. 

We will use the floating point data types presented in Table 1 instead of integer types in the 
described example of calculating the factorial of a number. 

The float32 type ceases to guarantee an exact result already at n = 14: 

float32(14!) = (87178289152)10 

while the correct value 14! = 87178291200. In terms of the IEEE-754 standard, Python 
calculates again without errors. 

After converting to binary code, we have 

(87178291200)10 = (1010001001100001110110010100000000000)2 

float32(87178291200) =  0 10100011 01000100110000111011001 
 sign exponent mantissa 

that is, we discard "0100000000000" in the lower bits, which is exactly 2048 in the decimal 
number system. The number 2048 is the error between the actual calculation value of 14! and 
the result of the calculation is float32(14!). 

Starting with n = 23, the type of floating point numbers float64 starts to return an incorrect 
result. The value of the factorial for n > 25 is incorrect even for the longdouble type, while we 
will get a value of longdouble(26!) greater than the real value of 26!, which also follows from the 
peculiarities of the application of the IEEE-754 standard: 

longdouble (403291461126605635584000000) = 
                    
0 100000001010111            

sign exponent            
0100110110011000010010011110101000110111111011101010110010010010 

mantissa 
In the decimal code, the specified number is converted as 
403291461126605635592388608. 
 



3.2. Homer Simpson’s numbers 

Let's consider another example of manipulating integer formats. The images in Figure 3 are 
stills from the episode "The Wizard of Evergreen Terrace" [26] and the episode "Treehouse of 
Horror VI. Homer3 (Homer Cubed)" [27] of the popular animated series The Simpsons. 

Mathematical statements relating to Fermat's Great Theorem will be true when checked with 
a calculator [28]. Let's consider the first example when working with numeric data types from 
the numpy module. 

Of course, the actual numerical values do not match 

398712 + 436512 = 63976656349698612616236230953154487896987106 
 447212 = 63976656348486725806862358322168575784124416 

Note that an attempt to convert any number to int32, int64 (uint32, uint64) types generates 
an OverflowError error. 

Direct conversion to float32 also generates an OverflowError, so let's try to consider a 
mathematically identical expression 

398.712 + 436.512 ? 447.212 

Now the result of the operation in Python (398.7**12 + 436.5**12 == 447.2**12) will be 
True. Indeed, it is fashionable to write within the IEEE-754 standard 

Arithmetic expression:  398.712 + 436.512 
Correct value:   63976656349698612616236230953154.487896987106 
Float32 format:  63976654187609440353486161051648.00 
Binary format:   0|11101000|10010011101111111101110 
 

Arithmetic expression:  447.212 
Correct value:   63976656348486725806862358322168.575784124416 
Float32 format:  63976654187609440353486161051648.00 
Binary format:   0|11101000|10010011101111111101110 

That is, the reason lies in discarding the lower bits when converting a number to the float32 
format. 

  
Figure 3: Homer Simpson's example  

Let's consider the same problem, but staying within the framework of integer formats. 
For example, for n = 5 for the int32 format, more than 1400 triples of natural numbers (A, B, 

C) can be found, so that when calculating int32(A**5) + int32(B**5) == int32(C**5 ) would 
return a boolean value of True. 

The maximum value of the parameter C: C = 6208, and as can be seen from the Table 4, 
several pairs (A, B) can correspond to one value of C. The explanation for this is simple: 
different large integers (more than 4 bytes) due to the discarding of the high-order bits in the 
int32 format can have the same value. For triples from the Table 4 (32, B, 6208) we have 

int32(6208**5) = 1073741824, 
int32(992**5) = int32(5088**5) = 1040187392, int32(32**5) = 33554432. 

Similarly for the triples (64, B, 6208) we have 
int32(B**5) = 0, int32(64**5) = 1073741824. 



Table 4 
C2 = B2 + A2 (float32) 

C  B  A 

6208 

 992, 5088  32 
 128, 256, 384, 512, 640, 768,  

64 

 896, 1024, 1152, 1280, 1408, 1536,  
 1664, 1792, 1920, 2048, 2176, 2304,  
 2432, 2560, 2688, 2816, 2944, 3072,  
 3200, 3328, 3456, 3584, 3712, 3840,  
 3968, 4096, 4224, 4352, 4480, 4608,  
 4736, 4864, 5120, 4992, 5248, 5376,  
 5504, 5632, 5760, 5888, 6016, 6144  

Most of the examples for n = 5 look artificial and any user will immediately understand that 
the obtained result is incorrect from a mathematical point of view. But you can choose an 
example when an untrained user can mistakenly perceive the result as correct, for example, 
implementing C++ programs for the standard type int (4 bytes). From our point of view, this is 
the example of A = 1504, B = 2960, C = 4496, n = 5. At the same time, it is interesting that the 
values of the expressions A5 and B5 in the int32 format are generally negative numbers: 

int32(1504**5) = -570425344,  
int32(2960**5) = -1584398336, 
int32(4496**5) = 2140143616. 

In the additional code in int32 format, we can write 

(-570425344)10    = (11011110000000000000000000000000)2 
(-1584398336)10  = (10100001100100000000000000000000)2 

In the binary code, the sum of these numbers will have a length of 33 bits and is equal to 

(-570425344)10 + (-1584398336)10 = (101111111100100000000000000000000)2 

Discarding the most significant bit (33 bits), we get the result 

(01111111100100000000000000000000)2 = (2140143616)10. 

3.3. Another simple examples 

Let's move on to consider some typical examples of incorrect behavior of computational 
algorithms about working with floating point numbers. 

Consider the following problem: it is necessary to find such a minimum value of n that 

1

𝑚
+

1

𝑛
=

1

2020
,

𝑚 ∈ 𝑁
𝑛 ∈ 𝑁

,   𝑛 > 𝑚  

This problem is an example of Diophantine equation. In a general sense, the Diophantine 
equation is an equation in which only integer solutions are allowed.  

The program for solving this equation is presented in listing #2. 

Listing #2 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

import numpy as np 
def mathExpr (num_format): 
    value = num_format(1/2020) 
    n = 1 
    while True: 
        n1 = num_format(1/n)  
        for m in range(1, n): 
            if n1 + num_format(1/m) == value: 
                return n, m 
        n += 1 
float_formats = (np.float16, np.float32, np.float64, np.float128) 



12 
13 

for form in float_formats:    
    print(f"{form}:", mathExpr (form)) 

  
Result: <class 'numpy.float16'>:  n = 4039, m = 4035 

<class 'numpy.float32'>:  n = 4041, m = 4039 
<class 'numpy.float64'>:  n = 4545, m = 3636 
<class 'numpy.longdouble'>:  n = 6060, m = 3030 

As a result, we got four different answers depending on the format of the floating point 
numbers. At the same time, the pairs (4545, 3636) and (6060, 3030) are the correct solution to 
the equation. 

It is easy to show that n = 4545, if we look for the minimum value of n. That is, when using 
the float16 and float32 formats, we will get incorrect answers, and in the case of the float128 
format, we will get a correct answer from a mathematical point of view, but we will skip over 
the minimum possible value of n (n = 4545), which satisfies the problem. We can engage the 
specialized apparatus of computer computation to improve the accuracy of computation. Let's 
try to increase the accuracy of calculations in Python using a special decimal module [30] by 
adding a decimal.Decimal element to the float_formats tuple. However, when trying to execute 
the program, we will get into an infinite loop, and the task of finding an exact match of values 
can be considered as failed. 

We can correct this situation, for example, using the isclose method from the math module. 
To do this, in listing #2, line 8 must be replaced with the command if 
math.isclose(n1+num_format(1/m), value, rel_tol=1e-9), and in this case, the float128 and 
decimal.Decimal format will already have n = 4545, m = 3636. Let's change line 3 in listing #1 to 
the command value = num_format(1/10), and after starting the program, we will get the result: 

<class 'numpy.float16'>: n = 30, m = 15 
<class 'numpy.float32'>: n = 35, m = 14 
<class 'numpy.float64'>: n = 30, m = 15 
<class 'numpy.longdouble'>: Infinite loop 
<class decimal.Decimal'>: Infinite loop 

Obviously, the answer to the problem is the pair n = 30, m = 15 (the pair n = 35, m = 14 is 
also a correct result, but the minimum value of the parameter n is still equal to 30). With the 
double-precision format, the program falls into an infinite loop, that is, the result cannot be 
calculated. 

If we calculate the specified example using the isclose function, then for the case of 
rel_tol=1e-7 for all formats of floating point numbers the result will be n = 30, m = 15, and for 
the value of the rel_tol parameter of greater precision (for example , already rel_tol=1e-8) – for 
float16, float64, float128, decimal.Decimal formats the result will be n = 30, m = 15, and for 
float32 format the result will still be n = 35, m = 14. 

We can make an interesting intermediate conclusion: in some examples of computer 
calculations with floating point numbers, a given lower precision of calculations can give a more 
correct result than the procedure of increasing the precision This effect is precisely what we 
observe in the described example: the correct answer is provided by the calculation with the 
float16 data type (as opposed to float32), the correct result is achieved with the value of the 
parameter rel_tol=1e-7, and not with the value 0< rel_tol 1e-8. 

Finally, we will consider the comparison of calculating the values of the square root of 
integers using two operations from the math module: sqrt and pow. Despite the simplicity of the 
problem statement, calculating the square root of a number, the whole root of a number, and 
especially the inverse square root of a natural number [29] is a relevant task both to correctness 
of calculations and the time efficiency of algorithms. For example, consider the range of 
numbers from 1 to 10000, the data type of floating point numbers is standard float 
(numpy.float64). We will iterate through the values until we find the number value such that 
math.sqrt(number) != math.pow(number). Table 5 shows the following numbers (for example, 
less than 10000) depending on the version of Python and the compiler. The table shows only 
typical examples of the results of computer calculations of the proposed problem. For some 



versions (for example, for Python 3.6.5 [GCC 7.3.1], there are no such values under the specified 
restrictions). 

Table 5 
Comparison of sqrt and pow functions 

Python version Compiler  Numbers 

3.7.4 GCC 9.2.0     
3.8.10 GCC 9.4.0     
3.9.9 GCC 11.1.0  2921, 3541, 5579, 

3.10.6 GCC 11.3.0  7827, 8414, 8415 
3.10.12 GCC 11.4.0     
3.11.5 GCC 13.2.1     

      
3.8.2 GCC 9.3.0  550, 971, 2921, 
3.8.5 GCC 9.3.0  3541, 3543, 3884, 

3.10.2 Clang 15.0.0  5579, 7827, 8414, 
3.11.3 Clang 18.0.0  8415, 8451, 8800 

Without going into the technical nuances of the implementation of these algorithms, I will 
explain the reason for the mismatch of values for the corresponding numbers from Table 5. 

math.sqrt(2921)         = 54.04627646748664204778833664022386074066162109375 

binary(float64)  01000000 01001011 00000101 11101100  
01100011 00100101 00110110 11111011 

math.pow(2921, 0.5) = 54.04627646748663494236097903922200202941894531250 

binary(float64)  01000000 01001011 00000101 11101100 
01100011 00100101 00110110 11111010 

We see from analysis of the binary representation of calculation results in float64 format that 
the difference is in the least significant bit of the mantissa. The reason is that the first discarded 
bit in the representation of the number is 1, and with the calculating math.sqrt(2921) this fact is 
taken into account. And 1 is added to the least significant bit of the mantissa, but not for 
calculating math.pow(2921, 0.5). For example, both values are calculated with the increment of 
the least significant bit taken into account in Python 3.6.5 [GCC 7.3.1]. 

Conclusions 

The work presents the results of the authors' research in the field of methodological 
foundations of teaching academic disciplines for students of the Computer Science specialty. 
The authors focused their attention on the topic of accuracy of computer calculations of various 
problems. This problem is relevant not only when performing engineering and scientific 
calculations, but also, as shown in the article, when solving the simple training problems. The 
authors focused on the study of the specified problem using the example of the numpy module, 
as one of the main software tools for modern scientific calculations. 

The authors of the presented study focused on considering fairly simple examples of 
computer calculations that are completely correct from the point of view of the standards of 
computer work with numbers and arithmetic operations, the results are incorrect to a human 
performer. It has been demonstrated that mathematically correct calculations are often 
impossible to reproduce correctly within the IEEE-754 standard due to the fundamental 
limitations of the memory allocated to represent a specific number. 

Using specific examples, it has been shown how the use of special Python computation 
features, such as the decimal module, can nevertheless lead to incorrect results. The use of 
external modules such as mpmath requires further research. 

The work also gives paradoxical examples, when less accurate calculations allow you to get a 
more correct result. Such a statement contradicts the classical practices of calculation methods, 
and requires a more thorough study of the specifics of computer calculations. 



It’s important, for the training future specialists in the field of Computer Science during the 
teaching of subjects related to the accuracy of computer calculations and the fundamental 
limitations of computer calculations, to present all facts and principles from a single point of 
view so that students do not there was a false opinion about the arbitrariness of the results of 
computer calculations and the randomness of the corresponding errors of computer 
calculations. For a Computer Science professional, it is important not only to understand the 
basic principles of working with the floating-point number format from the standpoint of the 
generally accepted IEEE standard, but also to know, even at a basic level, possible modern 
alternatives, such as, for example, the concept of Posit. 
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