
The Rights Delegation Proxy: An Approach for
Delegations in the Solid Dataspace
Sebastian Schmid1, Daniel Schraudner1 and Andreas Harth1,2

1Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
2Fraunhofer Institute for Integrated Circuits IIS, Nuremberg, Germany

Abstract
We propose the Rights Delegation Proxy to check and execute delegations in dataspaces building on the
Social Linked Data project (Solid). The Rights Delegation Proxy ensures privacy by keeping delegation
details hidden and validates delegated actions against policies for legitimacy. We show our implemented
architecture in a loan contract scenario, where a person signs a contract on behalf of a company with
a bank. Additionally, we analyze the flow of our architecture for privacy and legitimacy using formal
models.

1. Introduction

Agents act in their environments to reach defined goals, often their own [1]. Agents, however,
may also have to act on behalf of others, e.g. natural persons on behalf of organizations (e.g.
as representative or procurator), employees on behalf of the superiors (e.g. task to fulfill), and
colleagues on behalf of their fellows (e.g. as a substitute). We call the transfer of rights and
responsibilities from one party to another a delegation or power of attorney [2, 3].

As Solid [4] started to bring identifiable agents to the Web, the concept of data sharing and the
creation of organizations and communications are starting to be well defined. But while the idea
of Solid dataspaces (SDS) [5] gains momentum, the integral aspect of delegation among agents
is still open. For organizations with hierarchies and sub-organizations to thrive in dataspaces,
organizations need actions and rights to be delegated along complex structures. Addressing
the gap of delegation, we ask: How can delegation among agents find its way into the Solid
dataspace? Delegations refer to agents, e.g. natural persons or legal entities like companies, and
have complex specifications for defined cases, e.g. in business relations for signing on behalf of a
company up to a defined sum of money. We define the following roles and parts of a delegation:

• Affiliate: an agent that receives transactions
• Policy: defined rights that may be exercised in transactions towards an affiliate
• Delegate: an agent that acts based on a policy towards an affiliate

The Second International Workshop on Semantics in Dataspaces, co-located with the Extended Semantic Web Conference,
May 26 – 27, 2024, Hersonissos, Greece
$ sebastian.schmid@fau.de (S. Schmid); daniel.schraudner@fau.de (D. Schraudner);
andreas.harth@iis.fraunhofer.de (A. Harth)
� 0000-0002-5836-3029 (S. Schmid); 0000-0002-2660-676X (D. Schraudner); 0000-0002-0702-510X (A. Harth)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sebastian.schmid@fau.de
mailto:daniel.schraudner@fau.de
mailto:andreas.harth@iis.fraunhofer.de
https://orcid.org/0000-0002-5836-3029
https://orcid.org/0000-0002-2660-676X
https://orcid.org/0000-0002-0702-510X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


• Delegator: an agent that defines a policy for a delegate to act in the delegator’s name

An example of a delegation is a company SME (delegator) that grants its employee Alice
(delegate) the right to sign contracts on its behalf (policy) with BigBank (affiliate). Considering
the requirements delegators have for a delegation, we obtain three basic points:

R1 Privacy: An affiliate shall not necessarily be informed, whether a delegation has happened
and who is the delegate.

R2 Legitimacy: Every taken action by the delegate shall be validated against the policies as
defined by the delegator and only approved actions may happen.

R3 Completeness: Every initiated action by a potential delegate shall receive a response.

A conventional delegation process in SDS may use access and manipulation rights for re-
sources based on Web Access Control (WAC)1, e.g. read, write, append rights based on Access
Control Lists (ACL). While ACLs ensure that at least authenticated or specified agents may use
the granted rights, only small extensions for more complex agent structures are possible by
using vCard groups2 in Solid. With groups, the hierarchy has to stay flat as no nesting of groups
and rights is possible, while the members of a group need to be shared with external affiliates
who need to check if acting agents are part of a group defined in the ACL.

The conventional delegation process is even less attractive when considering privacy issues
(cf. General Data Protection Regulation [6]) - there is neither a per se necessity for a delegator
to share that an action was delegated nor the need to share the delegate’s identity. A delegate’s
identity and the delegation act are revealed to an affiliate who has to set the corresponding
ACLs, despite, the delegate’s potential interest to stay secret towards an affiliate. The affiliate
shall only know that the action was taken and to that extent that the party that was originally
granted that right, the delegator, has taken the action.

Dataspace proposals like the International Data Space (IDS) [7] or GAIA-X [8] try to solve
delegations via connectors, however, introduce complexities by building on specific architectures
and custom protocols instead of using established Web technologies, but promise to offer
trustworthy and sovereign data sharing instead [5]. An extension of IDS and GAIA-X with
verifiable credentials can address delegations of data processing [9], but the question is left
unanswered how much privacy remains for delegators and delegates in an IDS delegation. Solid
in its current state implements a solution based on ACLs on a resource- and WebID-bound level,
which is insufficient for delegations. The possibility to declare rights for groups of WebIDs
lacks the sophistication to mirror more complex hierarchies. Besides, the SDS offers a Web-
based solution for dataspaces instead of custom protocols. All in all, current solutions lack an
elaborated mechanism to ensure a GDPR-conformant solution that separates the identities of
delegator and delegate, as well as the possibility of keeping the delegation itself hidden.

As we see the SDS approach as the most promising to realize dataspaces, because of the SDS
foundation on Web standards, easy adoption, interoperability, and inherently decentralized
architecture, we propose to extend Solid’s architecture on the dataspace application layer, where
currently aspects of certification and policy enforcement are lacking [5]: we present the Rights
Delegation Proxy (RDP) as an approach for private and legitimate data sharing and delegations.

1https://solidproject.org/TR/wac
2https://www.w3.org/2006/vcard/ns#Group

https://solidproject.org/TR/wac
https://www.w3.org/2006/vcard/ns#Group


Alice
(delegate)

SME
(delegator)

BigBank
(affiliate)

Existing business relation

Inform of delegate

Send signed document

Sign
document

Define
policy

1

2

3

Figure 1: Conventional delegation process for a loan scenario (cf. Ex. 2): Alice (the delegate) signs the
loan offer on behalf of SME (the delegator) with BigBank (the affiliate).

Furthermore, the overall architecture shall be compatible with the inherently decentralized
style of the Web and allow automated validation and execution of actions in a delegation. Our
contributions are:

• We present the architecture of the Rights Delegation Proxy and its implementation to
extend Solid dataspaces that enable privacy and legitimacy for delegations among agents

• We give formal proof to show that our architecture fulfills the requirements of privacy
and legitimacy for delegations among agents and compare our architecture formally to a
conventional delegation process based on the example of a loan signature delegation

2. Running example

We explain our running example, where two legal entities, the banking institution BigBank and
the enterprise SME, and the natural person Alice interact. We show a simplified, conventional
delegation process for a loan contract that contains a delegation (see also Fig. 1):

Example 1 Because of a previous business relation, SME received a loan offer from BigBank.
Today, the offer has to be signed such that SME gets the loan. SME defines a policy that its
employee Alice has the right to sign loan offers from BigBank and informs BigBank about the
policy (1). Alice concludes that the offer is beneficial for SME and gives her signature as "on
behalf of SME, Alice" (2). The contract is sent back to BigBank (3) and some days later, SME
receives the details to access their money.

SME and BigBank are legal entities that cannot act on their own - a natural person has to
act "on behalf of" them via a delegation. Here, the natural person Alice acts on behalf of SME
where Alice is accepting the offer by giving her signature (that is acting) for SME. Similarly, but
not shown here, BigBank has to delegate its actions, e.g. offering the loan contract. Consider
the implications that the example loan process hides in terms of delegation:

• SME (the delegator) defines a right to sign loan offers (a policy) for Alice (the delegate)
via her role in the organization and thus creates a delegation.



• The delegation to Alice is an SME internal step that is shared externally, here with BigBank
(an affiliate). The loss of privacy is necessary to declare that Alice may sign on behalf
of SME, otherwise BigBank would receive a signature from an unknown natural person
called Alice who only claims to act on behalf of SME.

• Alice could have signed even if she did not receive a delegation. Although the misconduct
could be detected later on, loss of reputation and money can be the consequence.

3. Background and related work

3.1. The Solid project

Solid is a collection of technological specifications for read/write Linked Data supported by
authentication and authorization [4]. Solid builds on the RESTful HTTP specification of Linked
Data Platform (LDP)3 for manipulating and controlling data resources, and on (Semantic) Web
standards [10]. Solid aims to be easy to integrate by using lightweight specifications without
restrictions to the used database backend. Access control to resources is realized via WAC or
ACP. We briefly define two crucial concepts of Solid:

• Solid storage:4 a place for storing resources managed by access control. The physical
location and identity provider can be freely chosen or self-hosted.

• Solid agent:5 a person, social entity, or software identified by an HTTP URI called
WebID6, including a profile to uniquely describe the denoted agent.

3.2. Dataspaces and Solid dataspaces

The idea of dataspaces shall help to manage multiple data sources with multiple schemas [11],
mostly for single stakeholders that lack control or ownership across multiple required data
sources. Initiatives like the International Data Space (IDS) [7] or GAIA-X [8] picked up datas-
paces for datasharing that uses standards, governance models, and a secure and standardized
data exchange, with a focus on multiple participants across organizations and data sovereignty
[12]. Meckler et al. [5] identified Solid as a viable framework for decentralized dataspaces,
called Solid dataspaces: Solid builds on established technologies for interoperability like the
Web for communication and Linked Data for data, while Solid itself specifies the interaction,
and dataspaces on top of Solid can be extended for additional processes and protocols.

3.3. Delegation and power of attorney

Concerning the power of attorney, an agent (called delegate or attorney-in-fact) may be granted
the authority to act on behalf of someone else (called delegator or principal) [2], e.g. usually
an organization or entity, and make decisions or enter into agreements on their behalf. While
national laws of delegation and the range may vary, the authority for business affairs includes

3https://www.w3.org/TR/ldp/
4formerly known as Solid Personal Online Data (Pod) (https://solidproject.org/TR/protocol#storage)
5https://solidproject.org/TR/protocol#agent
6https://www.w3.org/2005/Incubator/webid/spec/tls/

https://www.w3.org/TR/ldp/
https://solidproject.org/TR/protocol#storage
https://solidproject.org/TR/protocol#agent
https://www.w3.org/2005/Incubator/webid/spec/tls/


e.g. contract negotiation and signature rights [3]. The limits of a power of attorney have to be
considered and stated carefully, as abuse of power or lost income may be the consequence [2].

4. Approach

4.1. Solid agents

We assume that all involved roles are represented as authenticated Solid agents (see Sec. 3.1). We
do not make assumptions on how delegator and delegate share their delegation, or how affiliate
and delegator agree on granted rights for the prepared location and regard this communication
as domain dependent and thus out of scope.

Affiliate The affiliate stores web resources on a Solid storage that the delegator may access
or manipulate. Thus, the affiliate needs to know the delegator’s WebID to define ACLs for the
Web resource with respective rights for the delegator.

Delegator The delegator defines policies that connect the delegate’s WebID and the affiliate’s
web resource, so the delegator knows the delegate’s WebID as well as which applicable rights
shall be granted to the delegate. The granted rights may include all or a subset of the delegator’s
rights towards the affiliate. Additionally, the delegator uses and authorizes an RDP, e.g. as an
own service or hosted by a provider, and shares where policies and logs are stored.

Delegate The delegate ideally (but not necessarily) knows the delegator’s granted rights, the
URI of the affiliate’s web resource that shall be accessed or manipulated, and the RDP’s URI
such that the delegation may be enacted.

4.2. Running example revisited

Compared to the conventional delegation process of Sec. 2, our architecture uses the Solid
dataspace where an Rights Delegation Proxy acts as a mediator between the legal entities and
natural persons. Again, Alice shall sign a loan contract with BigBank for SME (see also Fig. 2):

Example 2 SME has to sign a loan offer from BigBank to get the loan. To receive the
signature, BigBank prepared a resource https://bankpod.net/signHere that shall hold
the digital signature. As BigBank expects SME to sign the contract, BigBank created an
ACL signHere.acl with acl:Read and acl:Write rights exclusively for SME’s WebID
https://smepod.net/profile/card#me.

SME defines a policy at https://smepod.net/policies that Alice, is authenticated
by her WebID https://alice.solidcommunity.net, has the right to sign loan of-
fers from BigBank (1). Alice sends an HTTP PUT request to the RDP pointing to
https://bankpod.net/signHere to give the signature (2). The RDP receives Alice’s au-
thenticated request and her WebID. RDP gets (3) and checks (4) the SME’s defined policies if
Alice’s WebID has a granted delegation for https://bankpod.net/signHere, and logs the
received request (5).



alice.solidcommunity.net
(delegate)

rdp.org
(RDP)

smepod.net
(delegator)

Define
policy

bankpod.net
(affiliate)

PUT /signHere?uri=bankpod.net

204 No Content

GET /policies

200 OK

PUT /logs/2024-01-01
201 Created

PUT /signHere

204 No Content

Existing business relationAuthorize proxy

1

2
3

GET /signHere

200 OK

evaluate
policy

4

4

5

6

78

Figure 2: The Rights Delegation Proxy receives a request and checks the policies (steps 1-4). After
checking the conditions, the RDP logs and forwards Alice’s request, and returns the response (steps 5-8)

As Alice fulfills the policy, RDP forwards Alice’s request to the specified
https://bankpod.net/signHere (6), but changes the authentication to SME. At
BigBank, an authenticated request arrives from SME’s WebID. As the ACL is set for SME’s
WebID the signature is created to accept the loan (7), and the response forwarded to Alice (8).

From BigBank’s perspective, only SME was involved as the request came from SME’s WebID.
But while the legal body of SME could still not act on its own, Alice initiated the action which
resulted in an accepted offer. Again, we consider the implications:

• SME delegates to sign the contract with BigBank to Alice via a defined policy. The
delegation is not shared with BigBank.

• BigBank knows and anticipates only SME, so the ACL lets only SME interact with the
protected resource, but not Alice.

• The signature comes from SME directly after being checked against the policies. SME has
thus been informed and approved of the interaction.

• Alice may only sign after SME defines and approves the delegation via a policy. Without
a valid policy, the RDP does not forward Alice’s request. A request from Alice directly to
BigBank would be blocked as unauthorized from the ACL.



4.3. Implementation of the Rights Delegation Proxy architecture

4.3.1. Rights Delegation Proxy

Below, we present an overview of the interactions between the Solid agents and the RDP during
the delegation process. We use Fig. 2 to illustrate how the delegation works for our running
example from Sec. 4.2.

1. The delegator defines a policy that states the delegate’s rights of transactions towards the
affiliate. We discern two types of policies that are evaluated: pre-conditions and post-conditions.

• Pre-conditions define how a to-be-accessed resource has to look like before the delegate
may access it.

• Post-conditions define how a resource has to look like after the delegate accessed it.

Fig. 2, step 1: The delegator SME creates a policy at https://smepod.net/policies
for https://alice.solidcommunity.net/profile/card#me. The policy contains a pre-
and post-condition as Shape Expressions (ShEx)7 that allow the structural description and
validation of data, where an example policy could look like as follows:

@prefix ex: <https://example.org/vocab#> .
<> a ex:Policy ;

ex:delegator <https://smepod.net/profile/card#me> ;
ex:delegate <https://alice.solidcommunity.net/profile/card#me> ;
ex:preCondition <LoanContractShape> ;
ex:postCondition <LoanContractSignedShape> .

The ShEx shapes LoanContractShape and LoanContractSignedShape are given as:

LoanContractShape LoanContractSignedShape

<LoanContractShape> CLOSED{
ex:forCustomer [sme:me];
a [ex:LoanContract] }

<LoanContractSignedShape> CLOSED{
ex:forCustomer [sme:me];
a [ex:LoanContract];
ex:signed [true] }

The affiliate created a resource at https://bankpod.net/signHere together with an
ACL with read and write rights for SME:

https://bankpod.net/signHere https://bankpod.net/signHere.acl

<> a ex:LoanContract ;
ex:forCustomer
<https://smepod.net/profile/card#me> .

@prefix acl: <https://www.w3.org/ns/auth/acl#> .
<> a acl:Authorization ;
acl:accessTo <./signHere> ;
acl:agent <https://smepod.net/profile/card#me> ;
acl:mode acl:Read, acl:Write .

7https://shex.io/

https://shex.io/


2. The delegate makes an authenticated HTTP request to the Rights Delegation Proxy, where
the accessed path is equal to the web resource at the affiliate and the query contains the host of
the affiliate’s URI.

Fig. 2, step 2: Alice is authenticated as https://alice.solidcommunity.net/profile/card#me
and sends a PUT request to the RDP at https://rdp.org/signHere?uri=https://bankpod.net
as Alice wants to access https://bankpod.net/signHere as a delegate. To sign the
contract, the message body contains:

<> a ex:LoanContract ;
ex:forCustomer <https://smepod.net/profile/card#me> ;
ex:signed true .

3. The RDP receives the request, verifies the delegate’s identity using the Solid-OIDC WebID
claim, and extracts the affiliate’s URI as well as the path to the web resource. The RDP looks up
suiting policies at the delegator depending on the WebID or web resource.

Fig. 2, step 3: The RDP receives the HTTP PUT request from
https://alice.solidcommunity.net/profile/card#me, verifies the identity, and
retrieves defined policies from https://smepod.net/policies for Alice’s WebID.

4. The RDP evaluates if the delegate’s request is valid concerning the policy’s conditions.

• To check a pre-condition, the RDP does a "preflight GET request" to the requested resource
and evaluates if the response matches the pre-condition. If not, the RDP responds to the
delegate with a 403 Forbidden.

• To check a post-condition, the RDP evaluates if the message body, which contains the
to-be-expected resource state, adheres to the post-condition. If the post-condition does
not hold, the RDP responds with 403 Forbidden.

Fig. 2, step 4: In the retrieved policy, RDP finds two ShEx shapes as pre- and post-condition. For
the pre-condition, RDP does a "preflight" GET request to https://bankpod.net/signHere,
validates the retrieved state with LoanContractShape, and finds it valid. For the post-condition,
RDP extracts the content of the PUT request, validates it with LoanContractSignedShape, and
finds it valid, too.

5. After checking the request, the RDP logs the applied policy, its result as well as time, content,
accessed resource, and requesting WebID at a location defined by the delegator.

Fig. 2, step 5: The RDP logs Alice’s request to https://bankpod.net/signHere at
https://smepod.net/logs/2024-01-01 with:

<> a ex:Log ;
ex:checkedPolicy (<LoanContractShape> <LoanContractSignedShape>);
ex:forAgent <https://alice.solidcommunity.net/profile/card#me> ;
ex:forRessource <https://bankpod.net/signHere> .



6. The RDP authenticates as delegator to forward the checked request to the resource as
specified by the delegate in the query string.

Fig. 2, step 6: The RDP authenticates as https://smepod.net/profile/card#me via
Solid OIDC and forwards Alice’s HTTP PUT request to https://bankpod.net/signHere
such that the state is now:

<> a ex:LoanContract ;
ex:forCustomer <https://smepod.net/profile/card#me> ;
ex:signed true .

7. The affiliate responds to the RDP as the sender of the forwarded request. The RDP logs the
response.

Fig. 2, step 7 : The affiliate https://bankpod.net responds to the RDP https://rdp.org
with 204 No Content as the HTTP PUT was enacted as requested.

8. The RDP sends the affiliate’s response to the delegate and concludes the flow of messages
for the initiated request.

Fig. 2, step 8: The RDP https://rdp.org sends the affiliate’s response 204 No Content back
to Alice.

As a remark, if the affiliate responds with error codes, e.g. 500 Internal Server Error, the RDP
forwards the messages to the client and logs the error.

4.3.2. Implementation

Our implementation for the RDP is available online 8. We use node.js9 and express.js10 as a
web framework for the RDP server side and use the OIDC library Jose 11 to handle the Solid
authentication. We use ShEx12 to express pre- and post-conditions of policies.

5. Proof

We used ProVerif [13], an established software for protocol verification with formal models, to
analyze the RDP approach and present a formal proof for the correctness of our approach. Note
that our proof focuses on the correctness of the delegation process via events and makes no
claims about cryptographic security. We make the explicit assumption that Transport Layer
Security and Solid OpenID Connect13 are correct and functionable during the RDP process.
Our ProVerif models, written in applied 𝜋-calculus, are available online 14. ProVerif defines
concurrent processes that use channels to communicate with each other. Channels may transport
names that act as constants.

8https://github.com/wintechis/delegation-proxy
9https://nodejs.org/en

10https://expressjs.com/
11https://github.com/cisco/node-jose
12https://shex.io/
13https://solidproject.org/TR/oidc
14https://github.com/wintechis/delegation-proxy

https://github.com/wintechis/delegation-proxy
https://nodejs.org/en
https://expressjs.com/
https://github.com/cisco/node-jose
https://shex.io/
https://solidproject.org/TR/oidc
https://github.com/wintechis/delegation-proxy


5.1. Components

We assume the following processes that represent the roles and agents in a delegation: clients
𝐶 , the RDP 𝑅, the delegator 𝐷, and the affiliate 𝐴.

We define a client as a process that wants to send an operation to the affiliate. In case a client
received a delegation before, it is also considered a delegate: we instantiate two clients with
a to-be-performed operation 𝑜𝑝, the client 𝐶𝑉 (that is also a delegate) and the client 𝐶𝐼 (that
is not a delegate), where 𝐶𝑉 is initialized with a name 𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒 and 𝐶𝐼 is initialized with
𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒. 𝐷 regards 𝐶𝑉 as delegate and knows the client’s 𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒 together with an
allowed operation 𝑜𝑝 which defines the policy. 𝐴 knows the delegator’s 𝑜𝑟𝑔𝑁𝑎𝑚𝑒, also with
an allowed operation 𝑜𝑝. 𝑅 only knows the delegator’s name.

We give the system with the RDP in the style of ProVerif15, where for two processes 𝑃 and 𝑄
we call 𝑃 |𝑄 a parallel composition of 𝑃 and 𝑄 (processes run in parallel), and !𝑃 an infinite
composition 𝑃 |𝑃 | . . . , which denotes an unbounded number of processes:

!(𝐶𝑉 (𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒, 𝑜𝑝)|𝐶𝐼(𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒, 𝑜𝑝)|𝑅(𝑜𝑟𝑔𝑁𝑎𝑚𝑒)|𝐷(𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒, 𝑜𝑝)|𝐴(𝑜𝑟𝑔𝑁𝑎𝑚𝑒, 𝑜𝑝))

5.2. Checked properties

In Sec. 1 we identified three requirements for delegations from which we derive goals to prove
in ProVerif:

R1 Privacy: affiliates shall not know whether a delegation has happened
R2 Legitimacy: all delegate actions are validated against delegator’s policies
R3 Completeness: clients shall receive a response to all of their requests

The following goals shall ensure that the delegation process is correct. Each goal G1-3 maps
directly to the corresponding requirement R1-3:

G1 The affiliate 𝐴 will never get to know a client 𝐶’s name, regardless of whether 𝐶’s name
was a delegate or not according to the delegator 𝐷.

G2 For all messages a client 𝐶𝑉 or 𝐶𝐼 sends to the affiliate 𝐴 (possibly using the RDP 𝑅),
the delegator 𝐷’s policies have been validated.

G3 For all messages a client 𝐶𝑉 or 𝐶𝐼 sends to the affiliate 𝐴 (possibly using the RDP 𝑅),
the client will receive a response afterwards.

Thus, we define events that may occur during the exchange:

• 𝑐𝑙𝑖𝑒𝑛𝑡𝑆𝑒𝑛𝑑𝑁𝑎𝑚𝑒 - event emitted by a client 𝐶 after sending a message
• 𝑐𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 - event emitted by a client 𝐶 after receiving a response
• 𝑜𝑟𝑔𝑂𝐾 - event emitted by the delegator 𝐷 after providing policies for validation
• affReceivesMsg - event emitted by affiliate 𝐴 after accepting a message

We represent our goals as injective correspondences in ProVerif where 𝛼 −→ 𝛽 is true for two
events 𝛼 and 𝛽 if and only if when there is an occurrence of 𝛼, then there is a distinct earlier
occurrence of 𝛽 before that is 𝛼 and 𝛽 have a one-to-one-relationship. For a fact 𝛾, e.g. a name,
we check with attacker(𝛾) if 𝛾 is accessible on a public channel. Here, we check for facts
arriving at the affiliate (see Sec. 5.3). We want the following goals to hold as true.

15https://bblanche.gitlabpages.inria.fr/proverif/manual.pdf

https://bblanche.gitlabpages.inria.fr/proverif/manual.pdf


G1 ¬attacker(𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒) and ¬attacker(𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒)

G2 affReceivesMsg −→ 𝑜𝑟𝑔𝑂𝐾

G3 𝑐𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 −→ 𝑐𝑙𝑖𝑒𝑛𝑡𝑆𝑒𝑛𝑑𝑁𝑎𝑚𝑒

5.3. Modeled processes for RDP architecture

We give the processes of Sec. 5.1 in detail, as used in ProVerif. With Solid OIDC, we assume the
channels between client←→RDP, RDP←→ delegator, and RDP←→affiliate as private. Sending a
name via a channel is equal to being authenticated via the name’s respective identity provider.

Note that we create a 𝑛𝑜𝑛𝑐𝑒 at the client at the beginning of the process, similar to a session
ID. While there is no explicit nonce in the RDP, we use it in our model to check for the injective
correspondence of events. It serves no further purpose.

5.3.1. Client 𝐶

The client sends its name and used operator via channel 𝑐𝑜𝑢𝑡 to the RDP and expects an answer
at channel 𝑐𝑖𝑛.

let client(clientname:Name, op:bitstring) =
new nonce:bitstring;
let m0 = (clientname, op, nonce) in event clientSendName(nonce) ;
out(cout, m0);
in(cin, m4:bitstring) ;
let (resp:bitstring,nonce2:bitstring) = m4 in if nonce = nonce2 then
event clientReceiveResponse(nonce) .

5.3.2. Rights Delegation Proxy 𝑅

The RDP receives a name and desired operator of the clients on channel 𝑐𝑜𝑢𝑡. The RDP sends
the client’s name to the delegator via channel 𝑜𝑟𝑔𝑖𝑛 to receive a policy as the answer on channel
𝑜𝑟𝑔𝑜𝑢𝑡. If the policy matches the client name and operator, the delegator’s name and operator
are sent to the affiliate on channel affin and the response received on channel affout . The client
receives the response to its request on channel 𝑐𝑖𝑛.

let rdp(orgName:Name) =
in(cout, m0:bitstring) ;
let (xname:Name , xop:bitstring, nonce:bitstring) = m0 in
let m1 = (xname, nonce) in out(orgin, m1) ; (* send Name to delegator *)
in(orgout, m2:bitstring) ;
let (polName:Name, polOp:bitstring, nonce2:bitstring) = m2 in
if (xname, xop, nonce) = (polName, polOp, nonce2) then
let m3 = (orgName, xop, nonce) in out(affin, m3 );
in(affout, m4:bitstring); (* proxy response*)
let (resp:bitstring,nonce3:bitstring) = m4 in
if nonce = nonce3 then event rdpWasSuccessful(nonce);
out(cin, m4) .



5.3.3. Delegator 𝐷

The delegator receives requests from the RDP via channel 𝑜𝑟𝑔𝑖𝑛. The RDP receives a response
via channel 𝑜𝑟𝑔𝑜𝑢𝑡, depending on the relayed name being equal to the initialized value of the
delegator that is if it matches a policy.

let delegator(okName:Name, okOp:bitstring) =
in(orgin, m1:bitstring ) ;
let (yname:Name, nonce:bitstring) = m1 in
if yname = okName then event orgOK(nonce) ;
let m2 = (okName, okOp, nonce) in out(orgout, m2) .

5.3.4. Affiliate 𝐴

The affiliate receives a name and operation from the RDP via the channel affin and checks if
the name is equal to the known delegator name as well as the operation being allowed. The
affiliate responds via channel affout and sends the received name to a public channel 𝑝𝑢𝑏. We
use the public channel functionality of ProVerif to check which name reaches the affiliate and
which does not (see Sec. 5.2). Note that a client 𝐶 sending a request directly to 𝐴 will always
result in a negative response, as 𝐴 only accepts requests carrying the delegator’s name.

let affiliate(orgName:Name, op:bitstring) =
in(affin, m3:bitstring) ;
let (zname:Name, zop:bitstring, nonce:bitstring) = m3 in
if (zname, zop) = (orgName, op) then event affReceivesMsg(nonce) ;
let m4 = (OK,nonce) in out(affout,m4) ;
out(pub,zname) . (* check if affiliate received client Name*)

5.4. Proof results

5.4.1. Results for RDP

ProVerif proved that for the presented architecture of Sec. 5.3 that indeed

G1 ¬attacker(𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒) = true and ¬attacker(𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒) = true
G2 affReceivesMsg −→ 𝑜𝑟𝑔𝑂𝐾 = true
G3 𝑐𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 −→ 𝑐𝑙𝑖𝑒𝑛𝑡𝑆𝑒𝑛𝑑𝑁𝑎𝑚𝑒 = true

meaning that the affiliate will not get to know a client’s or delegate’s name, that a delegate’s
message using the RDP will always reviewed by the delegator, and that any client will receive a
response to a request. These proofs are independent of a client being a delegate.

5.4.2. Comparison to conventional delegation

For comparison, we analyzed a conventional delegation without an RDP, based on Fig. 1, with

!(𝐶𝑉 (𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒, 𝑜𝑝)|𝐶𝐼(𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒, 𝑜𝑝)|𝐷(𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒, 𝑜𝑝)|𝐴(𝑜𝑟𝑔𝑁𝑎𝑚𝑒, 𝑜𝑝))



where 𝐷 sends its policy with the delegate’s 𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒 to 𝐴 (similar to setting ACLs to include
the delegate), and clients 𝐶 send their name and operation directly to 𝐴. We find that in the
conventional delegation

G1 ¬attacker(𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒) = false and ¬attacker(𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑎𝑚𝑒) = false
G2 affReceivesMsg −→ 𝑜𝑟𝑔𝑂𝐾 = true
G3 𝑐𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 −→ 𝑐𝑙𝑖𝑒𝑛𝑡𝑆𝑒𝑛𝑑𝑁𝑎𝑚𝑒 = true

meaning that a client’s or delegate’s name does not stay hidden from the affiliate after receiving
a message, that a delegate’s message is only accepted after the delegator informs the affiliate of
the applied policy, and that any client will receive a response to a request.

6. Discussion

We proposed the RDP to address the gap of more complex delegations in Solid dataspaces.
Up to now, only basic possibilities exist to define delegated actions, but with the RDP, we
extend the architecture by introducing an active component that checks the actions of delegates
while keeping their privacy and still makes sure that every tracked, forwarded action on the
delegator’s behalf is legitimate.

The RDP acts in its presented state as a necessary medium between the explicitly separated
agents delegator, delegate, and affiliate. As all actions of the delegate have to go through the
RDP and the RDP can authenticate (like a Solid App) as the delegator, the RDP is a component
with high responsibility and no delegated action may happen without it. As a consequence,
we shift the power over actions to the delegator by having exclusive control over policies,
while shifting responsibility away from the affiliate, who has to know only the delegator and
nobody else. The delegate powers are (rightfully) limited to exist only in the defined policies.
The enhanced responsibility of RDP thus solves the privacy problem straightforwardly: with
authentication as delegator (comparable to the usage of a Solid App through the delegator),
there is no differentiation of the action’s origins towards a third party, while the delegate’s
identity is obfuscated. Solid OIDC establishes an authenticated and trusted connection between
agents in our architecture.

Admittedly, the RDP as presented in our example appears a centralized component that
manages all incoming delegated requests, which presents a bottleneck and a potential single
point of failure [14]. Handling a single request, however, is independent of other requests
such that multiple instances of an RDP may be run in parallel. Here, a load balancer may
distribute incoming requests to several RDP instances to scale for big organizations. The RDP
authenticates as the delegator to execute actions which currently needs the delegator to share
credentials with the proxy, which might pose a security issue if the RDP is implemented and
handled carelessly. For the authentication of the RDP, OIDC offers the possibility to use client
credentials, Solid IDPs, however, are not forced to offer client credentials by Solid OIDC.

For illustration, our example in Sec. 4.3.1 uses a simplistic, custom approach with ShEx
shapes for policies. The specific implementation is of course subject to the applied use case of
the RDP, but we see huge potential for other approaches that make complex, custom policies



for large organizations possible: the Open Rights Digital Language16 may be used to define
post-condition via obligations and pre-conditions via constraints. SPARQL17 ASK queries can
be used instead of shapes to evaluate the pre- and post-conditions. If the specified conditions
in the query are met (as with shapes), the delegate request is forwarded. As organizations
often use Business Process Model and Notation (BPMN) to describe more complex workflows
(e.g. a contract may only be signed after an accountant agrees), ontologies like WiLD [15]
can be used to represent and monitor workflows similarly and be validated by the RDP. We
connect delegates and policies explicitly via WebIDs. For organizations, the connection can
be broadened to include memberships in departments or specific roles e.g. modeled in the
organization ontology ORG18. In any case, the complexity and number of policies have to be
chosen carefully as the RDP needs time to validate all policies associated with a request, which
may lead to delays.

All in all, we argue that our presented approach to extend the Solid dataspace with an Rights
Delegation Proxy component leads to a more flexible, privacy-respecting, secure delegation
mechanism that builds directly on existing Web standards.

7. Conclusion and outlook

We present a solution for the gap of possible delegation between agents in the Solid dataspace
which we call the Rights Delegation Proxy (RDP). With the Rights Delegation Proxy, a delegating
party can define and check policies over actions while a delegate can exercise rights with their
privacy respected. An affiliate that receives these actions can still ensure that the actions are
taken by the delegating party, as opposed to conventional delegation processes. We base our
approach on Solid, Linked Data, and Web technologies to describe and implement an RDP that
checks, logs, and forwards HTTP requests of delegates to an affiliate for defined policies by the
delegator. We show the system in the context of our running example, a loan contract scenario
where a natural person signs a contract on behalf of a company.

In the future, we want to extend the RDP towards more sophisticated policies to define
delegations, which includes the possible use of SPARQL ASK queries and reasoning to distinguish
internal and external relationships in organizations.

Acknowledgments

This work is partially funded by the German Federal Ministry of Education and Research via the
MANDAT project (FKZ 16DTM107A). The authors thank Christoph H.-J. Braun for his advice
regarding ProVerif and the models.

16https://www.w3.org/TR/odrl-model/
17https://www.w3.org/TR/sparql11-overview/
18https://www.w3.org/TR/vocab-org/

https://www.w3.org/TR/odrl-model/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/vocab-org/


References

[1] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed., Prentice Hall
Press, USA, 2009.

[2] M. M. Hughes, Remedying financial abuse by agents under a power of attorney for finances,
Marquette Elder’s Advisor 2 (2012) 39.

[3] W. C. Schmidt, Supported decision-making proxy decision-making : A legal perspective,
2015. URL: https://api.semanticscholar.org/CorpusID:53399327.

[4] S. Capadisli, T. Berners-Lee, R. Verborgh, K. Kjernsmo, Solid Protocol, 2021. URL: https:
//solidproject.org/TR/protocol.

[5] S. Meckler, R. Dorsch, D. Henselmann, A. Harth, The Web and Linked Data as a Solid
Foundation for Dataspaces, in: Companion Proceedings of the ACM Web Conference 2023,
WWW ’23 Companion, Association for Computing Machinery, New York, NY, USA, 2023,
p. 1440–1446. URL: https://doi.org/10.1145/3543873.3587616.

[6] Parliament and Council of the European Union, Regulation (EU) 2016/679 on the protection
of natural persons with regard to the processing of personal data and on the free movement
of such data, and repealing directive 95/46/EC (General Data Protection Regulation), 2016.

[7] S. Steinbuss, et al., IDS Reference Architecture Model 4. Technical Report, 2024. URL: https://
github.com/International-Data-Spaces-Association/IDS-RAM_4_0?tab=readme-ov-file.

[8] Gaia-X , Gaia-X Architecture Document - 22.04 Release, 2022. URL: https://docs.gaia-x.eu/
technical-committee/architecture-document/22.04/.

[9] H. Meyer zum Felde, M. Kollenstart, T. Bellebaum, S. Dalmolen, G. Brost, Extending actor
models in data spaces, in: Companion Proceedings of the ACM Web Conference 2023,
WWW ’23 Companion, Association for Computing Machinery, New York, NY, USA, 2023,
p. 1447–1451. URL: https://doi.org/10.1145/3543873.3587645.

[10] E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem, A. Aboulnaga,
T. Berners-Lee, A Demonstration of the Solid Platform for Social Web Applications, in:
Proceedings of the 25th International Conference Companion on World Wide Web - WWW
’16 Companion, ACM Press, 2016, pp. 223–226. doi:10.1145/2872518.2890529.

[11] M. Franklin, A. Halevy, D. Maier, From databases to dataspaces: a new abstraction for
information management, SIGMOD Rec. 34 (2005) 27–33. URL: https://doi.org/10.1145/
1107499.1107502. doi:10.1145/1107499.1107502.

[12] A. Reiberg, C. Niebel, P. Kraemer, What is a Data Space? Definition of the concept
Data Space, 2022. URL: https://gaia-x-hub.de/wp-content/uploads/2022/10/White_Paper_
Definition_Dataspace_EN.pdf.

[13] B. Blanchet, Modeling and Verifying Security Protocols with the Applied Pi Calculus
and ProVerif, Foundations and Trends® in Privacy and Security 1 (2016) 1 – 135. URL:
https://inria.hal.science/hal-01423760. doi:10.1561/3300000004.

[14] R. de Lemos, et al., Software Engineering for Self-Adaptive Systems: A Second Research
Roadmap, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 1–32.

[15] T. Käfer, A. Harth, Specifying, monitoring, and executing workflows in linked data
environments, in: D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino,
M. Sabou, L.-A. Kaffee, E. Simperl (Eds.), The Semantic Web – ISWC 2018, Springer
International Publishing, Cham, 2018, pp. 424–440.

https://api.semanticscholar.org/CorpusID:53399327
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://doi.org/10.1145/3543873.3587616
https://github.com/International-Data-Spaces-Association/IDS-RAM_4_0?tab=readme-ov-file
https://github.com/International-Data-Spaces-Association/IDS-RAM_4_0?tab=readme-ov-file
https://docs.gaia-x.eu/technical-committee/architecture-document/22.04/
https://docs.gaia-x.eu/technical-committee/architecture-document/22.04/
https://doi.org/10.1145/3543873.3587645
http://dx.doi.org/10.1145/2872518.2890529
https://doi.org/10.1145/1107499.1107502
https://doi.org/10.1145/1107499.1107502
http://dx.doi.org/10.1145/1107499.1107502
https://gaia-x-hub.de/wp-content/uploads/2022/10/White_Paper_Definition_Dataspace_EN.pdf
https://gaia-x-hub.de/wp-content/uploads/2022/10/White_Paper_Definition_Dataspace_EN.pdf
https://inria.hal.science/hal-01423760
http://dx.doi.org/10.1561/3300000004

	1 Introduction
	2 Running example
	3 Background and related work
	3.1 The Solid project
	3.2 Dataspaces and Solid dataspaces
	3.3 Delegation and power of attorney

	4 Approach
	4.1 Solid agents
	4.2 Running example revisited
	4.3 Implementation of the Rights Delegation Proxy architecture
	4.3.1 Rights Delegation Proxy
	4.3.2 Implementation


	5 Proof
	5.1 Components
	5.2 Checked properties
	5.3 Modeled processes for RDP architecture
	5.3.1 Client C
	5.3.2 Rights Delegation Proxy R
	5.3.3 Delegator D
	5.3.4 Affiliate A

	5.4 Proof results
	5.4.1 Results for RDP
	5.4.2 Comparison to conventional delegation


	6 Discussion
	7 Conclusion and outlook

