
DFDP: A Declarative Form Description Pipeline for
Decentralizing Web Forms
Ieben Smessaert1, Patrick Hochstenbach1,2, Ben De Meester1, Ruben Taelman1 and
Ruben Verborgh1

1IDLab, Department of Electronics and Information Systems, Ghent University - imec, Ghent, Belgium
2Ghent University Library, Ghent, Belgium

Abstract
Forms are key to bidirectional communication on the Web: without them, end-users would be unable to
place online orders or file support tickets. Organizations often need multiple, highly similar forms, which
currently require multiple implementations. Moreover, the data is tightly coupled to the application,
restricting the end-user from reusing it with other applications, or storing the data somewhere else.
Organizations and end-users have a need for a technique to create forms that are more controllable,
reusable, and decentralized. To address this problem, we introduce the Declarative Form Description
Pipeline (DFDP) that meets these requirements. DFDP achieves controllability through end-users’
editable declarative form descriptions. Reusability for organizations is ensured through descriptions
of the form fields and associated actions. Finally, by leveraging a decentralized environment like Solid,
the application is decoupled from the storage, preserving end-user control over their data. In this paper,
we introduce and explain how such a declarative form description can be created and used without
assumptions about the viewing environment or data storage. We show how separate applications can
interoperate and be interchanged by using a description that contains details for form rendering and
data submission decisions using a form, policy, and rule ontology. Furthermore, we prove how this
approach solves the shortcomings of traditional Web forms. Our proposed pipeline enables organizations
to save time by building similar forms without starting from scratch. Similarly, end-users can save time
by letting machines prefill the form with existing data. Additionally, DFDP empowers end-users to be
in control of the application they use to manage their data in a data store. User study results provide
insights to further improve usability by providing automatic suggestions based on field labels entered.

Canonical version: https://smessie.github.io/Article-ESWC2024-DFDP/
DOI: 10.5281/zenodo.10285192, 10.5281/zenodo.10285210, 10.5281/zenodo.10285224
URL: https://w3id.org/DFDP

1. Introduction

Web forms are a part of our daily lives: taking a survey, filling out shipping information for
an online order, or filling out an administrative request. End-users regularly have to re-enter

The Second International Workshop on Semantics in Dataspaces, co-located with the Extended Semantic Web Conference,
May 26 – 27, 2024, Hersonissos, Greece
Envelope-Open ieben.smessaert@ugent.be (I. Smessaert); patrick.hochstenbach@ugent.be (P. Hochstenbach);
ben.demeester@ugent.be (B. D. Meester); ruben.taelman@ugent.be (R. Taelman); ruben.verborgh@ugent.be
(R. Verborgh)
Orcid 0009-0004-5281-0723 (I. Smessaert); 0000-0001-8390-6171 (P. Hochstenbach); 0000-0003-0248-0987
(B. D. Meester); 0000-0001-5118-256X (R. Taelman); 0000-0002-8596-222X (R. Verborgh)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://smessie.github.io/Article-ESWC2024-DFDP/
https://w3id.org/DFDP
mailto:ieben.smessaert@ugent.be
mailto:patrick.hochstenbach@ugent.be
mailto:ben.demeester@ugent.be
mailto:ruben.taelman@ugent.be
mailto:ruben.verborgh@ugent.be
https://orcid.org/0009-0004-5281-0723
https://orcid.org/0000-0001-8390-6171
https://orcid.org/0000-0003-0248-0987
https://orcid.org/0000-0001-5118-256X
https://orcid.org/0000-0002-8596-222X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


the same data, without the ability to prefill a similar form with pre-existing data. In addition,
the data will almost always be stored on the service provider’s server, and the end-user cannot
access it again or choose to store it somewhere else. If an end-user requires a form similar to an
existing one, created by someone else or with another application, they will often have to build
a new one from the ground up without the ability to copy and modify an existing form.

Current Web forms are meant to be used (1) with one endpoint, (2) for one (Web) display,
(3) with one workflow in mind, and (4) without a means to send and receive the data in another
way. First, when a form is submitted, the data is sent to the same location, and the user has no
control over where the data is stored. Typically, the application developer decides where and
how to store the data – resulting in poor data control for users [1] – and each application has a
custom non-standardized API – hindering operability between applications [2]. Second, during
form filling, it is not possible to use an alternative environment, with disparate display contexts,
or to opt for a different website due to a preferred interface. Such an alternative environment
may be subtle (e.g. a dedicated mobile version, or a version that integrates seamlessly into a
company’s ecosystem). For the sake of clarity, we will use an extreme example of a command
line and a Web view to illustrate this problem in the remainder of the paper. Third, form
applications designed for one specific use case cannot typically be repurposed for another, e.g.
a shipping information form for customers during a purchase cannot usually be repurposed to
submit a support request. Fourth, it is not possible to reuse data across multiple applications as
data from one application cannot be written or read by another.

A requirement for solving these problems is decoupling the data from the application. Solid
is a specification for decentralized data storage that is decoupled from the application. This
allows the form description to be stored separately from the form renderer application, which
in turn improves end-user control over their data. Several solutions have been proposed using
Solid [3, 2] and Linked Data, but none of them fully semantically describe a declarative form
from elements to actions. A couple of notable exceptions exist [4, 5], but these works are mainly
theoretical approaches to the problem.

We introduce the Declarative Form Description Pipeline (DFDP), looking at forms as 3 parts:
display, shape, and reasoning. In the DFDP, a form generator outputs the form description that
serves as input to a form renderer. Display defines how the form elements should look, shape
defines the expected data structure, and reasoning does footprint and schema alignment. We
use a footprint to describe what to do with the filled-in data at certain events (e.g. submission).
These 3 parts provide a fully declarative description of the form. To fully decouple description
from application, the application needs to understand any form expression vocabulary. This ne-
cessitates schema alignment to map the description to a vocabulary the application understands,
and removes the assumption that all applications will use the same language.

In the context of dataspaces, declarative form descriptions demonstrate their relevance by
complementing the existing well-defined dataspaces data model with a declarative definition of
the form as an interface that prompts the user for data input. For instance, within the health
dataspace, each hospital can use its own form for medical data entry. By embedding semantics
into the inserted data, alignment across all hospitals’ data can be achieved.

The paper is structured as follows. We first discuss related work (Section 2) and present
a motivating example and requirements (Section 3). We then introduce the architecture and
discuss its implementation (Section 4 and 5). We evaluate in Section 6 and present conclusions



and future work (Section 7).

2. Related Work

2.1. Standalone Technologies

XForms [6] was introduced in 2003 as a standalone technology for collecting inputs from Web
forms. The specification became a W3C Recommendation in 2009. In 2010, work started
on XForms 2.0 [7]. The XForms architecture separates presentation, content, and purpose,
in a way that closely resembles the display, shape, and reasoning architecture introduced
in this paper. Web forms are structured using XML, with elements and attributes specifying
constraints. XForms lacks reasoning capabilities and SemanticWeb functionalities for producing
and understanding RDF data, limiting its potential in our research focus.

An alternative technology for form-based RDF data editing and presentation is RDForms [8],
comprising two main components: the RDForms library parse, serialize, and manipulate RDF
graphs, and RDForms templates ensure correct RDF expression production and manipulation.
However, the system lacks reasoning capabilities. In this paper, we propose adding schema
alignment and event-driven actions to achieve a fully decoupled declarative form solution.

2.2. Ontologies

The Shapes Constraint Language (SHACL) [9] is a W3C Recommendation to define and validate
RDF graphs based on conditions declared in shapes. These shapes serve as descriptions of
the data graphs they validate and can also define display fields for forms. Property shapes
include non-validating properties (e.g. for supplementary form construction information), and
validating properties (e.g. for specifying datatype and minimum count constraints).

Solid-UI introduces foundational components for user interface widgets and utilities tailored
for Solid applications, and a UI ontology [10]. Solid-UI Forms primarily addresses form display
aspects and associates semantic meaning with form fields via the ui:property predicate.
Additional properties can be employed to specify field behavior.

Other efforts (e.g. RDF-Form [11]) also describe forms in RDF, enabling semantic representa-
tion of form fields, addressing display and shape aspects in the three-part view. Additionally, we
aim to describe footprints that outline actions for events (e.g. submission), such as data storage
location or required updates to other documents [5]. Describing this as footprints enables ma-
chine interpretation, ensuring actions aren’t bound to specific applications. Consequently, data
handling becomes standardized across applications, fostering real interoperability. However,
existing ontologies lack a mechanism for describing footprints, leaving a gap in achieving a
fully declarative form description solution.

3. Motivation And Requirements

In this section, we discuss the main requirements for decentralized and declarative Web forms
using a use case involving two personas, ”Alice” and ”Bob”, each with their own objectives



about the forms they like to publish, but both requiring full control over where and how the
resulting RDF is stored.

Alice, a Web-savvy user, owns a personal data store for storing RDF data. She is a researcher
seeking to include a list of her publications within her personal data store as an integral part of
her CV. Companies typically request CVs without providing a tailored form for their creation.
Rather than relying on a pre-existing CV application with a fixed data structure, Alice prefers
to use her own rendering. This allows her to employ an existing CV data model while also
incorporating her own metadata. Consequently, companies will retrieve richer data.

To create a form to populate her data store, Alice uses AliceForms, which shares similarities
with Google Forms. AliceForms enables form creation in a user-friendly manner with a simplified
data model. Importantly, Alice retains control over where the form description and resulting
RDF data are stored, ensuring control over the data she enters — an option not available in
centralized platforms like Google Forms.

When Alice wants to create RDF data, she opens the form description in the renderer ap-
plication HtmlForms, providing her with an HTML rendered version of the form description.
When Alice fills out the form, the RDF data will be stored in her data store. HtmlForms can be
automatically prefilled with RDF data to save Alice from repeatedly entering the same data.

Bob, a friend of Alice, wants to invite her for lunch and is searching for a suitable date. He
uses his Web application BobForms to generate a form description, configuring it to save the
resulting RDF data to his data store. Alice, who prefers command-line tools, receives a link to
Bob’s form description. Using her command-line application TextForms, Alice accesses the form
description, which is then rendered in a text-based format. After completing the form, the data
is sent as RDF data to Bob’s data store.

Alice loves Bob’s form and decides to adapt it to her own needs, effortlessly transitioning from
an end-user to a form developer. She opens the form description in AliceForms and modifies the
RDF data model to suit her requirements. She incorporates logic to ensure that any submission
sends RDF data to her data store and notifies Bob’s data store Inbox. Furthermore, she configures
a redirect to a custom page she has designed. As a result, the form description now includes
additional fields and logic tailored to Alice’s specifications. A sequence diagram of this example
is included in Figure 1.

In a perfect world, Alice and Bob use a single form definition ontology. However, many
RDF data models describe the same type of data. To be truly interoperable, applications such
as HtmlForms and TextForms should contain some schema alignment capabilities to provide a
translation between different form definition expressions.

In this paper, we examine the following three research questions (RQs) to address the issues
raised by the above scenario. We then further explain each RQ, comparing it to the current
state of the art. Each RQ’s requirements are discussed, and summarized in Table 1.

• RQ1: How can form developers create forms to declaratively control machines for produc-
ing RDF in multiple viewing environments (e.g. Web pages vs text-based command
line)?

• RQ2: How can machines translate form descriptions decoupled from the application
into a vocabulary that the application understands?



Figure 1: The motivating example of Bob and Alice involves interactions between Alice, her data store,
AliceForms, TextForms, BobForms, Bob, and his data store.

• RQ3: How can machines perform controllable and reusable actions on the filled out
data?

3.1. Multiple Viewing Environments

To enable simple reusability, forms need declarative descriptions (R1). This streamlines making
adjustments by parsing, adjusting, and updating the description accordingly. XForms 2.0 does
this by declaratively specifying the form in XML. In Solid-UI, forms are expressed using Linked
Data in the Turtle format.

To allow machines interpreting the form and automatically prefill data, the declarative form
description must be machine-interpretable (R2). Solid-UI’s ontology semantically describes the
elements’ meanings, attaining machine interpretability. XForms 2.0 allows containing semantics
in the form description using vocabularies, making it possible for machines to interpret the
form. Additionally, the form description should be human-interpretable (R3) to manually fill
out the form, a requirement that all state-of-the-art applications fulfil.

To allow Alice to choose the application in which she fills out the form, regardless of the
environment, the form description must be renderable in multiple viewing environments (R4).
No current application offers this capability.

3.2. Schema Alignment Tasks

To enable different applications to render the same form description, schema alignment is
needed (R5) to decouple the application’s vocabulary and the form description’s vocabulary.
Currently, no state-of-the-art application supports this: XForms 2.0 only works with its own
XForms vocabulary, formatted in XML and Solid-UI Forms only works with its UI ontology.



Table 1
Summarized requirements based on the research questions.

N° Category Requirement

R1 Multiple View Environments Declarative description of the form
R2 Multiple View Environments Machine-interpretable description
R3 Multiple View Environments Human-interpretable description
R4 Multiple View Environments Render one form description in multiple view environments
R5 Schema Alignment Tasks Schema alignment execution
R6 Footprint Tasks Declarative description of the policies
R7 Footprint Tasks Footprint execution

3.3. Footprint Tasks

A fully declarative form necessitates not only declarative descriptions for its elements, but also
for the actions triggered by specific events. Thus, it is crucial to have declarative policies (R6)
that describe the actions to be taken, along with the execution of these footprint tasks (R7).
XForms 2.0 only allows specifying the submission endpoint using the Submission XML element,
but no other policies can be specified. Solid-UI Forms has only limited support to execute or
specify any footprint tasks by the use of the extra layer solid-ui-components [12], currently
under development.

3.4. Requirements Summary

The scenario shows the need to FAIRly [13] describe the form description independent of
the application context.1 The requirements of the previous scenario are grouped into three
categories and summarized in Table 1.

4. Architecture

As outlined in the Introduction, many Web applications tightly integrate data with the ap-
plication itself, limiting end-user control over data and hindering interoperability between
applications. This issue persists even in Solid applications, where data is often assumed to reside
in fixed locations within the pod and to adhere to specific vocabularies. Therefore, this paper
proposes dividing data into three parts: a form for display, a shape for validation, and a footprint
for reasoning. Reasoning is used to determine the policy that needs to be executed based on the
event specified in the footprint along with its associated policy. This three-part approach moves
away from the current scenario where data is stored as an integral, tightly coupled part of the
application. While end-users can continue to create web forms using familiar methods, such as
drag-and-drop interfaces, storing the data decentralized in three parts allows organizations and
end-users to reuse forms and data, saving time. As considerable research has been conducted

1The review of the adherence to the FAIR principles [13] can be found at the Wiki of the GitHub repository at
https://github.com/SolidLabResearch/FormGenerator/wiki/Adherence-to-the-FAIR-Principles.

https://github.com/SolidLabResearch/FormGenerator/wiki/Adherence-to-the-FAIR-Principles


Figure 2: A generic form renderer application can dynamically build an application for multiple viewing
environments without assuming the interface and application design using the 3 inputs on the right
and a reasoner to apply schema alignment and footprint tasks, to eventually store the enduser’s filled in
data in any data store, e.g. a Solid pod, as displayed on the left.

on RDF data validation [14, 15, 16, 17] and several implementations exist [18, 19, 20], this part
is not covered in this paper.

In traditional centralized Web applications, different users interact with the same central-
ized Web server using different interfaces, all written for and working only with that server.
Additionally, the data is stored on the application’s server, outside the user’s control. The
Solid protocol [21] provides a standardized interface by providing a set of standard, open, and
interoperable data formats and protocols [3]. As a result, different applications can use this set
of protocols to work with the same data, overcoming the problem of each application using its
own interface only working with that server. Because with Solid, the data is stored in a personal
data store called a pod, it solves the issue of data storage outside the user’s control. However,
many applications are still being built with assumptions about the data stored in the pod, like
the storage location and used vocabulary. Additionally, they are designed for one specific use
case. In this work, we push this decentralized architecture a step further with the introduction
of a declarative application that makes no assumptions about the interface and application itself.
A schematic overview of the architecture is shown in Figure 2. First, a user who wants to create
a form builds a declarative form description using a form generator. Then, the user sends a
form description link to another user who can fill it out using a form renderer. A conversion
rules resource maps the form description onto the renderer’s ontology, while a data resource
prefills the form automatically.

4.1. Description Of The Display

The previous problem of needing a separate application for each use case is solved by describing
the user interface declaratively in the form description resource. This RDF resource contains both
the display part and the footprint for the reasoning part. The display is the part responsible
for rendering the form to the user. Web forms are typically rendered using HTML, while RDF
represents the semantics of the form, not how you represent it in HTML. By declaratively
describing the form in RDF, we achieve the ability to render the same form description in
any environment. There already exist ontologies that can be used for this purpose, such as
SHACL [9], UI ontology [10], and RDF-Form [11]. Reusing these ontologies for the display
part ensures maximum compatibility with existing form descriptions. Semantic and declarative



descriptions also enable machines to interpret the form’s meaning, facilitating machine-driven
prefilling of forms. This is achieved with the binding property on each form field, linking to
the meaning of that field and serving as the predicate of the triple with the filled-in values for
these fields as objects. The subject’s type describing the form’s meaning is equal to the form’s
binding. The data resource structure mirrors the filled-out form’s output, enabling automatic
prefilling of the form.

4.2. Description Of The Schema Alignment Tasks

Unfortunately, the move to decentralization and decoupling comes with its own challenges.
Two main challenges need to be tackled before this can be achieved. To allow the application to
interpret multiple ontologies and hence achieve a decoupled solution, schema alignment tasks
are introduced translating the form description into an ontology the application understands.
This enables the application to treat two definitions that semantically describe the same thing
as identical. The conversion rules resource from Figure [? ] is used by the renderer application
to perform this mapping. By providing this resource to the application, it doesn’t need to
comprehend the form description’s ontology. Any ontology with a mapping can be used. The
renderer applies these rules using a reasoner to interpret the form description in its language.
As these conversion rules can be passed as a separate resource to the application, the end-user
does not necessarily have to create them himself. Ontology creators can provide mappings to
similar ontologies, or application developers can provide mappings from equivalent ontologies
to the one their application understands.

4.3. Description Of The Footprint Tasks

In addition to describing how the form should look, the form description should also declar-
atively describe what should happen in certain events such as submission. Therefore, the
form description is extended with policies. The process of executing these policies is called the
footprint tasks and is the second application of reasoning next to schema alignment. To describe
policies, two languages are needed: a rule language and a policy language. The policy language
describes what should actually happen when a policy is executed. The rule premise contains
the event and the rule conclusion contains the policy. Policies should describe the client-side
operations that need to be performed when a certain event occurs. This can be much more than
just performing an HTTP request to the server, such as redirecting the end-user who filled out
the form, performing an N3 Patch request, or sending a notification to someone’s inbox.

5. Implementation

We implemented three applications in TypeScript. The FormGenerator application generates a
form description based on the form the user builds using drag-and-drop. The FormRenderer
application and FormCli application are two applications that render a given form description
in respectively a Web browser using HTML or a text-based command-line interface.



5.1. FormGenerator

The first application in the pipeline generates the declarative form description.2 In Figure 3
a screenshot of the implemented application can be seen, showing how form developers can
define policies and form fields using a drag-and-drop interface.

Figure 3: Implemented FormGenerator application.

Describing footprints requires a rule and a
policy language. As rule language, Notation3
(N3) [22] is used. The rule premise defines the
event, while the rule conclusion defines the
policy. We chose N3 as it proved to be a work-
ing solution for our use case and the reasoning
engine EYE implementing N3 is being devel-
oped at our lab. We therefore alsomade the de-
cision to use the EYE-JS library [23], a browser
and node-distributed EYE reasoner via We-
bAssembly. By the use of reasoning, we obtain
the rule conclusion which is then parsed us-
ing a SPARQL query. Querying is done using
Comunica [24], a knowledge graph querying
framework.

The policy we obtain is defined using a pol-
icy language. There are already existing on-
tologies that can be reused to describe policies,
even though they were not designed for this purpose. Hydra [25] is a vocabulary to describe
Web APIs in Linked Data and its intended use is to describe the server side of the API in a
machine-readable way. A major limitation of our research is that it can only describe HTTP
requests, while policies go beyond that. Therefore, we chose to not use Hydra.

The Function Ontology (FnO) [26] is used to semantically define and describe implementation-
independent functions, including their relations to related concepts such as parameters, and
mappings to specific implementations and executions. As FnO allows the description of any
kind of operation unlike e.g. Hydra which only allows the description of HTTP requests, a
basic version of this existing ontology together with the HTTP Vocabulary [27] is reused to
describe the policy. A Policy ontology has been developed using the LOT Methodology [28]
defining the missing classes and properties required for policy definition.3 The ontology
enables the description of events and the corresponding actions to be taken. The ontology
was implemented using Protégé as the ontology development environment, using the OWL
language. The ontology’s source is available on GitHub, and the ontology itself is published
using GitHub pages. A w3id is used to provide a permanent identifier for the ontology, which
includes both human-readable documentation and a machine-readable file accessible via the
URI using content negotiation. Hosting the source on GitHub facilitates easy maintenance, and
contributions can be made through pull requests and the issue tracker. Listing 1 contains an

2The FormGenerator source code can be found at https://w3id.org/DFDP/FormGenerator/source and the live
version at https://w3id.org/DFDP/FormGenerator/app.

3The Policy ontology can be found at https://w3id.org/DFDP/policy.

https://w3id.org/DFDP/FormGenerator/source
https://w3id.org/DFDP/FormGenerator/app
https://w3id.org/DFDP/policy


example of a footprint task sending an HTTP request.

Listing 1: Example of N3 rule describing HTTP re-
quest policy to be executed on the form submission
event.
@pref ix ex : < h t t p : / / example . org / > .
@pref ix po l : < h t t p s : / / w3id . org /DFDP/ p o l i c y #> .
@pref ix fno : < h t t p s : / / w3id . org / f u n c t i o n / on to logy # > .
@pref ix h t t p : < h t t p : / /www. w3 . org / 2 0 1 1 / h t t p # > .
{

? i d po l : even t po l : Submit .
} => {

ex : H t t pPo l i c y po l : p o l i c y [
a fno : Execu t i on ;
fno : e x e cu t e s h t t p : Reques t ;
h t t p : methodName ”POST ” ;
h t t p : r eque s tUR I < h t t p s : / / h t t p b i n . org / post > ;
h t t p : heade r s (

[
h t t p : f i e ldName ” Content −Type ” ;
h t t p : f i e l d V a l u e ” a p p l i c a t i o n / l d + j s on ”

]
)

] .
} .

When constructing the form, users must
specify bindings for each field, which are URIs
semantically describing the fields. Users must
manually enter these bindings. To simplify
this process, they can utilize prefixes, which
are automatically expanded to full URIs via
the prefix.cc API. As an example, ex:MyField
will become http://example.org/MyField.

5.2. FormRenderer And FormCli

The next application in the pipeline renders
the declarative form description and lets the
user fill out that form. We implemented two
versions in two different viewing environ-
ments to prove that the display part of the
form description is independent of the view-
ing environment.45 The FormRenderer appli-
cation, as shown in the screenshot in Figure 4,
functions in the Web browser. The FormCli application operates as a command-line application,
allowing usage without a GUI. The form questions are prompted to the user one after the other.
While the FormRenderer application supports authenticating with a Solid identity provider,
authentication is not implemented in the FormCli application as the Solid protocol lacks proper
authentication for command-line applications. We therefore consider this outside the scope of
this research.

The UI ontology is chosen as the application’s display ontology as it is designed specifically
for defining user interfaces. Schema alignment is achieved by applying conversion rules to
the form description.6 The implementation uses N3 rules together with the EYE-JS reasoner
to apply them. The resulting form description in the UI ontology is parsed by the Comunica
engine via SPARQL queries.

5.2.1. Determining The Subject For The Produced RDF

When dealing with a resource containing pre-existing data for form filling, it’s straightforward
to determine the subject URI for writing new data — it can be reused from the existing data.
Furthermore, when no resource is provided or when multiple subjects within the resource
conform to the form’s structure and target class, determining the subject URI becomes ambiguous.
Various solutions were explored to address this problem.

4The FormRenderer source code can be found at https://w3id.org/DFDP/FormRenderer/source and the live
version at https://w3id.org/DFDP/FormRenderer/app.

5The FormCli source code can be found at https://w3id.org/DFDP/FormCli/source.
6An example of SHACL to UI ontology conversion rules can be found at ??.

https://prefix.cc
https://w3id.org/DFDP/FormRenderer/source
https://w3id.org/DFDP/FormRenderer/app
https://w3id.org/DFDP/FormCli/source


1. Generating a new random UUID and using it as the subject URI with the urn:uuid:
namespace [29].

2. Prompting the user to enter a subject URI.
3. Utilizing the URI from the HTTP Request policy as the subject URI.
4. Selecting one of the existing subjects as the subject URI.
5. Employing a blank node in place of a subject URI.
6. Specifying the subject URI in the form description.

Figure 4: Implemented FormRenderer application.

Blank nodes are often an unsuitable solu-
tion since they lack a URI, making it impossi-
ble to reference the data using a valid URI or
to link to/from other resources. Using the URI
to which the data is posted is also not a good
solution, as this URI is not necessarily mean-
ingful or even a unique URI. Not all ontologies
for describing forms have a property to define
the subject URI, eliminating option 6. This
leaves us with options 1, 2, and 4 as the viable
choices. Using a random UUID is a feasible
solution, ensuring uniqueness, and serving as
an ideal default subject URI. Prompting the
user enables them to enter a relevant subject
URI themselves, which is also feasible. Fo-
cusing solely on this option requires users to
understand subject URIs, potentially compli-
cating application use for those new to the
Semantic Web. Our goal is to ensure ease of use for all. Using an existing subject is a good
option, especially when there’s a single subject, aligning with user expectations for data editing.
With multiple subjects, selection becomes a challenge for users unfamiliar with the concept.
We propose and implement a combination of the three feasible options. Use a random UUID as
the default subject URI, while enabling user selection from existing subjects or manual subject
URI entry. Parsing the policies is done in the same way as in the FormGenerator application,
described earlier in Subsection 5.1.

6. Evaluation

In this section, we evaluate the proposed architecture and implementation. First, we analyze
conformance to the requirements in Subsection 6.1. Second, we describe the results of the user
study in Subsection 6.2. We created a sustainability plan to guarantee the maintenance of the
DFDP’s tools, both short-term and long-term.7

7The sustainability plan can be found at https://github.com/SolidLabResearch/FormGenerator/wiki/
Sustainability-Plan.

https://github.com/SolidLabResearch/FormGenerator/wiki/Sustainability-Plan
https://github.com/SolidLabResearch/FormGenerator/wiki/Sustainability-Plan


6.1. Conformance To The Requirements

In this section, we analyze the conformance of the implemented applications to the requirements
defined in Table 1 under Section 3.

The first research question is: ”RQ1: How can form developers create forms to declaratively
control machines for producing RDF in multiple viewing environments (e.g. Web pages vs
text-based command line)?”. The FormRenderer and FormCli applications showcase creating
a form renderer application in multiple viewing environments (R4). The form was described
declaratively (R1) as the display part is fully described using the already existing UI ontology.
Data can be passed along to automatically prefill a form by machines using the form fields’
bindings (R2), and users can interpret the field title to manually enter a value (R3).

The second research question is: ”How canmachines translate formdescriptions decoupled
from the application into a vocabulary that the application understands?”. N3 conversion rules
can be passed along allowing reasoning to automatically translate the form description into the
ontology the application understands (R5).

The third research question is: ”How can machines perform controllable and reusable
actions on the filled out data?”. The form description also declaratively describes what should
happen in case of a certain trigger (R6). Because this is described in a machine-readable way
using RDF, a machine can interpret this and execute the right actions (R7).

Considering the information above, we can confidently assert that we cover all the functional
requirements outlined in Table 1.

6.2. User Study

To show that the user experience is not impacted due to the Semantic Web technologies used
in the DFDP, we perform a user study. The goal of this user study is to see if next to the
functional requirements, the implementations are also comprehensible for end-users. We define
”comprehensible for users” as the ability for users to understand the application in such a way
that they can use it correctly (i.e. accurately) without getting frustrated or giving up (i.e. in
a reasonable time). In what follows, we discuss the user experience by doing a qualitative
analysis [30] by the use of the think aloud method [31] and open-ended interviews split up
into two parts: form editing (evaluating the FormGenerator) and form usage (evaluating the
FormRenderer). The FormCli application is not considered as this is a more complex version of
the FormRenderer application.

6.2.1. Method

Potential participants were directly contacted by the author out of which 19 took part in the
study. 8 individuals with a technical background evaluated the FormGenerator application,
aligning with its target audience, much like creating a Google Forms is intended for users with
technical proficiency. To meet this requirement, computer science students were primarily
sought as participants. The 11 participants for the form usage part were people both with and
without technical backgrounds with ages spanning from 18 to 52 years. This aligns with the
target group of this and similar traditional applications [32], assuming users are familiar with a
computer and the Web. Both groups were provided with simple scenarios instructing them to



either generate a form for a restaurant review or fill out an earlier generated form, modeled to
mimic normal day tasks.8 The FormGenerator participants were given a list of bindings to be
used to create the form, fulfilling the assumption that they have knowledge of Linked Data. All
necessary data elements were put in place for the FormRenderer application by giving the users
a specific link autopopulating the input fields.

6.2.2. Threats To Validity

As with any study, our evaluation carries threats to validity. We identified the following external
and internal threats [30] because all participants were recruited from the same country and
most of them are students at the same university. We identified the external threat Interaction
of selection and treatment. However, we do assume that users of the form editing have more
technical knowledge, so this lies in line with our intentions. Additionally, basic computer and
web proficiency are assumed for form usage.

The internal threat Selection was also identified. While most participants possess technical
knowledge, this is deliberate as it is a prerequisite for the form editing part. To ensure equal
knowledge of Linked Data, we provided possible bindings. To mitigate a selection bias, we also
recruited some non-students and participants from different ages.

6.2.3. Results

We categorized feedback from all users for both applications and received generally positive
results. Especially in the case of the FormRenderer, no participant noted any significant dif-
ferences in terms of ease of use. Regarding the FormGenerator, 5 out of 8 participants rightly
noted that as restaurant owners, they shouldn’t need to be concerned with bindings. As a result,
future research should consider the automatic suggestion of bindings based on the field label
entered by the user.

7. Conclusion

In this article, we introduced a Declarative Form Description Pipeline (DFDP) offering significant
enhancements in data management for both end-users and organizations. End-users benefit
from increased control over their data input, facilitated by footprints that specify data handling
actions. Additionally, they can reuse existing data to prefill forms and choose their preferred
application to manage their data, regardless of the underlying ontology, thanks to schema
alignment. This decoupling of applications and data ensures greater flexibility and autonomy
for end-users. For organizations, DFDP enables better data management in terms of reusability,
allowing for easy adoption and customization of existing forms without requiring additional
assumptions from developers. This, in turn, improves cost-efficiency and promotes streamlined
workflows. The DFDP enables the embedding of semantics into the input data, improving
the alignment of data across different related forms in a dataspace. Overall, DFDP marks a

8The user study scenarios can be found at https://github.com/SolidLabResearch/FormGenerator/wiki/
User-Experience-Scenarios.

https://github.com/SolidLabResearch/FormGenerator/wiki/User-Experience-Scenarios
https://github.com/SolidLabResearch/FormGenerator/wiki/User-Experience-Scenarios


significant step forward in enhancing data management practices with its declarative and
decoupled Web forms for both end-users and organizations.

Future research could focus on automatically suggesting bindings based on field names
entered by the users, which can build on Entity Extraction [33]. Other directions for future work
may involve streamlining the schema alignment and footprint tasks to make them more abstract
for developers. Embedding schema alignment as a layer between the application and the data
would enable developers to automatically consider semantically equivalent ontologies as the
same, resulting in real interoperability without requiring extra work from the developers. A
first step could be to package the DFDP modules as libraries to ease the integration into existing
Web applications.

Acknowledgments

This work is supported by SolidLab Vlaanderen (Flemish Government, EWI and RRF project
(VV023/10)). Ruben Taelman is a postdoctoral fellow of the Research Foundation – Flanders
(FWO) (1202124N).

References

[1] T. Berners-Lee, Three challenges for the web, according to its inventor - World Wide Web
Foundation, 2017. URL: https://webfoundation.org/2017/03/web-turns-28-letter/.

[2] A. V. Sambra, E. Mansour, S. Hawke, M. Zereba, N. Greco, A. Ghanem, D. Zagidulin,
A. Aboulnaga, T. Berners-Lee, Solid: a platform for decentralized social applications based
on linked data, MIT CSAIL & Qatar Computing Research Institute, Tech. Rep. (2016).

[3] T. Berners-Lee, et al., Solid, 2022. URL: https://solidproject.org.
[4] T. Berners-Lee, Linked Data Shapes, Forms and Footprints - Design Issues, 2019. URL:

https://www.w3.org/DesignIssues/Footprints.html.
[5] R. Verborgh, Shaping linked data apps, 2022. URL: https://ruben.verborgh.org/blog/2019/

06/17/shaping-linked-data-apps/.
[6] J. M. Boyer, XForms 1.1, 2009. URL: https://www.w3.org/TR/xforms/.
[7] E. Bruchez, A. Couthures, P. Steven, Xforms 2.0 - xforms users community group, 2022.

URL: https://www.w3.org/community/xformsusers/wiki/XForms_2.0.
[8] MetaSolutions, RDForms - RDF in HTML-forms, 2009. URL: https://rdforms.org.
[9] H. Knublauch, D. Kontokostas, Shapes constraint language (shacl), 2022. URL: https:

//www.w3.org/TR/shacl/.
[10] SolidOS, An ontology for user interface description, hints and forms, 2022. URL: https:

//www.w3.org/ns/ui#.
[11] D. Beeke, Rdf form, 2022. URL: https://rdf-form.danielbeeke.nl.
[12] J. Zucker, Solid UI Components, 2023. URL: https://github.com/jeff-zucker/

solid-ui-components, original-date: 2021-04-01T16:33:22Z.
[13] M. D.Wilkinson, et al., The fair guiding principles for scientific data management and stew-

ardship, Scientific data 3 (2016) 1–9. URL: https://www.nature.com/articles/sdata201618.
[14] D. Tomaszuk, Rdf validation: A brief survey, in: BDAS, Springer, 2017, pp. 344–355.

https://webfoundation.org/2017/03/web-turns-28-letter/
https://solidproject.org
https://www.w3.org/DesignIssues/Footprints.html
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://www.w3.org/TR/xforms/
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://rdforms.org
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://rdf-form.danielbeeke.nl
https://github.com/jeff-zucker/solid-ui-components
https://github.com/jeff-zucker/solid-ui-components
https://www.nature.com/articles/sdata201618


[15] E. Prud’hommeaux, J. E. Labra Gayo, H. Solbrig, Shape expressions: an rdf validation and
transformation language, in: SEMANTiCS, 2014, pp. 32–40.

[16] D. Arndt, B. D. Meester, A. Dimou, R. Verborgh, E. Mannens, Using rule-based reasoning
for rdf validation, in: RuleML+RR, Springer, 2017, pp. 22–36.

[17] I. Boneva, J. E. Labra Gayo, E. G. Prud’Hommeaux, Semantics and validation of shapes
schemas for rdf, in: ISWC, Springer, 2017, pp. 104–120.

[18] W. Slabbinck, CommunitySolidServer/shape-validator-component, ???? URL: https://
github.com/CommunitySolidServer/shape-validator-component.

[19] Zazuko, rdf-validate-shacl, 2020. URL: https://github.com/zazuko/rdf-validate-shacl,
original-date: 2020-02-25T16:45:45Z.

[20] T. Bergwinkl, shacl-engine, 2023. URL: https://github.com/rdf-ext/shacl-engine, original-
date: 2023-01-27T00:22:30Z.

[21] S. Capadisli, T. Berners-Lee, R. Verborgh, K. Kjernsmo, Solid protocol, 2022. URL: https:
//solidproject.org/TR/protocol.

[22] D. Arndt, W. Van Woensel, D. Tomaszuk, G. Kellogg, Notation3, 2022. URL: https://w3c.
github.io/N3/spec/.

[23] W. Jesse, J. De Roo, Eye js, 2022. URL: https://github.com/eyereasoner/eye-js.
[24] R. Taelman, J. Van Herwegen, M. Vander Sande, R. Verborgh, Comunica: a modular

sparql query engine for the web, in: ISWC, 2018. URL: https://comunica.github.io/
Article-ISWC2018-Resource/.

[25] M. Lanthaler, C. Gütl, Hydra: A vocabulary for hypermedia-driven web apis., LDOW 996
(2013) 35–38.

[26] B. De Meester, T. Seymoens, A. Dimou, R. Verborgh, Implementation-independent function
reuse, Future Generation Computer Systems 110 (2020) 946–959.

[27] J. Koch, C. A Velasco, P. Ackermann, HTTP Vocabulary in RDF 1.0, 2017. URL: https:
//www.w3.org/TR/HTTP-in-RDF10/.

[28] M. Poveda-Villalón, A. Fernández-Izquierdo, M. Fernández-López, R. García-Castro, LOT:
An industrial oriented ontology engineering framework, Engineering Applications of
Artificial Intelligence 111 (2022) 104755. URL: https://www.sciencedirect.com/science/
article/pii/S0952197622000525. doi:10.1016/j.engappai.2022.104755.

[29] P. Leach, M. Mealling, A Universally Unique IDentifier (UUID) URN Namespace, 2015.
URL: https://www.ietf.org/rfc/rfc4122.txt.

[30] J. W. Creswell, J. D. Creswell, Research design: Qualitative, quantitative, and mixed
methods approaches, Sage Publications, Inc., 2018.

[31] M. Van Someren, Y. F. Barnard, J. Sandberg, The think aloud method: a practical approach
to modelling cognitive, London: AcademicPress 11 (1994) 29–41.

[32] A. Petrosyan, Distribution of internet users worldwide as of 2021, by age group, 2023. URL:
https://www.statista.com/statistics/272365/age-distribution-of-internet-users-worldwide/.

[33] P. Exner, P. Nugues, Entity extraction: From unstructured text to dbpedia rdf triples., in:
WoLE@ ISWC, 2012, pp. 58–69.

https://github.com/CommunitySolidServer/shape-validator-component
https://github.com/CommunitySolidServer/shape-validator-component
https://github.com/zazuko/rdf-validate-shacl
https://github.com/rdf-ext/shacl-engine
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/
https://github.com/eyereasoner/eye-js
https://comunica.github.io/Article-ISWC2018-Resource/
https://comunica.github.io/Article-ISWC2018-Resource/
https://www.w3.org/TR/HTTP-in-RDF10/
https://www.w3.org/TR/HTTP-in-RDF10/
https://www.sciencedirect.com/science/article/pii/S0952197622000525
https://www.sciencedirect.com/science/article/pii/S0952197622000525
http://dx.doi.org/10.1016/j.engappai.2022.104755
https://www.ietf.org/rfc/rfc4122.txt
https://www.statista.com/statistics/272365/age-distribution-of-internet-users-worldwide/

	1 Introduction
	2 Related Work
	2.1 Standalone Technologies
	2.2 Ontologies

	3 Motivation And Requirements
	3.1 Multiple Viewing Environments
	3.2 Schema Alignment Tasks
	3.3 Footprint Tasks
	3.4 Requirements Summary

	4 Architecture
	4.1 Description Of The Display
	4.2 Description Of The Schema Alignment Tasks
	4.3 Description Of The Footprint Tasks

	5 Implementation
	5.1 FormGenerator
	5.2 FormRenderer And FormCli
	5.2.1 Determining The Subject For The Produced RDF


	6 Evaluation
	6.1 Conformance To The Requirements
	6.2 User Study
	6.2.1 Method
	6.2.2 Threats To Validity
	6.2.3 Results


	7 Conclusion

