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Abstract
Solid is a set of specifications to describe a decentral Web protocol that enables Personal Data Spaces,
empowering individuals to keep control of their personal data, stored in decentralized personal online
data stores called Pods. Here, Verifiable Credentials (VC) are a type of data of particular interest, as they
allow for cryptographically secure and verifiable digital credentials, which can be used for access and
identity management, and also tie into different European Data strategy use cases. However, although
the use of VCs within Solid is increasingly receiving attention, there exists no VC exchange protocol
within Solid. More specifically, current applications need to rely on implicit agreements for both the
transfer destination (i.e. the Web location where the VC should be sent to), and the data format of
the messages exchanged. This forces stakeholders to invent their own credential transfer mechanisms,
thereby hampering interoperability and adoption. In this paper, we present a VC exchange protocol
between Solid Pods with explicit target destination and message format. We propose a working and
interoperable protocol using DIDComm for structured messaging primitives in the form of JSON-headers
and LDN inboxes as target destinations. LDN inboxes are interoperable with Solid and can be advertised
via WebIDs, however, their setup and management of LDN inboxes is difficult, and reliance on WebIDs
for inbox discovery might prevent interoperability between systems with different identifiers.
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1. Introduction

Opportunities for Personal Data Spaces (PDS) emergedue to ongoing effort on Data Spaces [1]:
(European) legislative and governmental efforts for more privacy and control of personal data,
e.g. through the European Data strategy [2], and laws such as the GDPR [3], and the DGA [4].
One type of PDS is Solid [5]: a set of specifications to describe a decentral Web protocol that
builds on top of Linked Data1. Solid allows the flow and exchange of different kinds of personal
and non-personal data in decentralized personal online data stores, called (Solid) Pods [6].
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Of particular interest to PDS and Solid are Verifiable Credentials (VC) [7]: cryptographically
secure and verifiable digital credentials that can contain both personal and non-personal (Linked)
data. Such verifiable claims can be used for access and identity management (e.g. within
Solid [8]), and tie into different use-cases of the European Data strategy (e.g. citizen governance
and verifiable diplomas [2, 9, 10]).

However, there exists no transfer protocol that specifies how to transfer VCs in the Solid
ecosystem – from, to, and between Solid Pods – without relying on implicit application-
dependent agreements. VCs are thus transferred on case-by-case basis. This challenges interop-
erability and adoption, as new developers and users are prevented from adopting and re-using
existing working solutions, and have to resort to out-of-band-communication or reading each
others’ source code.

All the steps within a VC lifecyle –issuing, holding, and verifying– have been demonstrated
to work with Solid [8], but what if there are different systems and implementations, from
different vendors and organizations, as is commonplace in decentralized architectures? How
do we transfer VCs between Pods? Which data format should be used? Which credential
representation? Where should VCs be sent? Where will they be held?

In this paper, we present a VC exchange protocol between Pods. We especially focus on (i)
where and how should VCs be transferred between Solid Pods, and (ii) in which format. After
introducing background and related work (Section 2), we specify our approach (Section 3) and
implementation (Section 4), finally discussing (Section 5) and concluding on it (Section 6).

2. Background and Related Work

Solid – currently developed by the Solid W3C Community Group2 being formed into a W3C
Working Group – adopts the Linked Data Platform (LDP) specification3, with each Solid Pod
containing its own collection of linked resources (e.g. images, CSV files, and RDF data). However,
as neither Solid nor LDP specify rules on where to write data, interoperability issues arise [11].
Identity in Solid is handled using a WebID: a public accessible URI that dereferences to a
WebID Profile Document containing profile (RDF) data4.

Verifiable Credentials (VCs) have been used and explored in combination with Solid in
multiple ways. VCs have been used in Solid for issuance, verification, authentication, and
authorization [8, 12]. But to the best of our knowledge, there exists no transfer protocol
that specifies how to transfer VCs within the Solid ecosystem, without relying on implicit
application-dependent agreements.

Communication in Solid is done via standard HTTP methods, with more detailed notifica-
tion and exchange protocols built on top. The Solid protocol itself specifies two notification
protocols: Linked Data Notifications (LDN) [13] and Solid Notifications5.

LDN is a W3C recommended permissive and decentralized push-based communication
protocol6, intended for interoperability, and without restraints on possible usage domains. It

2https://www.w3.org/community/solid/
3https://www.w3.org/TR/ldp/
4https://solid.github.io/webid-profile/
5https://solidproject.org/TR/notifications-protocol
6https://www.w3.org/TR/ldn/
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applies the Solid principles – deduplication of data storage and data usage – by treating and
persisting notifications as resources. That means any received notification gets saved on the
receiving server as a document, which allows notifications to be treated as unique entities,
including assignment of a URI. Center to LDN is the LDN inbox, which acts as destination and
receiving endpoint for all Linked Data notifications, in turn allowing further consumption. LDN
does not specify any rules on message type or format. It also does not do any authentication,
validation, or verification of messages. In Solid, the LDN inbox gets set via the public-facing
WebID profile document7, allowing its discovery.

The Solid Notification Protocol in comparison is a subscription based protocol, intended for
receiving update notification on resource changes. It allows clients to listen to resource updates.
Unlike LDN, which starts with the discovery of the inbox, a Solid Notification subscription
begins with discovering notification services available on a resource. Then, a Subscription
Request is sent, and a Notification Channel established. This notification channel can be of
varying types, including WebSockets, WebHooks, and LDN8.

Out of these protocols, LDN is the most generic and modular, evidenced by its ample exten-
sions and adaptions, e.g. for Web Push Notifications [14], or for communication in scholarly
use-cases [15] and multi-agent Web communication [16].

The Trust over IP stack describes how to facilitate trust and exchange VCs between
peers on the Internet [17]. The DIDComm methodology of messaging protocols is responsible
for the trusted peer connection and data exchange. DIDComm Messaging [18] provides a set
of privacy primitives to support the modular creation of decentral, trustworthy, and secure
exchange protocols. It can be used to build higher-order protocols intended for more specialized
purposes.

3. Design

When transferring VCs between Solid Pods, current implementations’ interaction between
multiple parties depends on implicit contracts and out-of-band communication for both the
transfer destination (i.e., the location where the VC gets sent too) and the data structure.

Our solution design therefore consists of two components. On the one hand, by using a noti-
fication protocol as a way to transfer data, we make the out-of-band agreements explicit. On the
other hand, by adhering to a standardized message structure, we make sure that interoperability
across applications is retained.

LDN solves the problem of out-of-band agreements on transfer destination via its inboxes.
In Solid, LDN inboxes can be explicitly advertised via the WebID profile document. As the
WebId profile document allows to make statements about the owner of a Solid Pod, we can
associate a Solid user identity with the transfer destination by advertising the user’s inbox. This
means that the minimum required information for a credential transfer is the WebID of the
other party: as long as they have set up and advertised their inbox (by setting the ldp:inbox
triple), notifications can be sent. The LDN inbox acts as receiver for all incoming notifications,
handling them as individual entities with their own respective URIs.

7https://solid.github.io/webid-profile/#inbox
8https://solid.github.io/notifications/ldn-channel-2023
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Figure 1: The LDN inbox, discoverable via a link in the WebID profile document, contains Notifications
that can be DIDComm envelopes over Verifiable Credentials.

Figure 1 shows an overview of our LDN inbox system. Neither the Sender nor the Consumer
need to be using Solid, although the consumption of the inbox (Read, Write, Delete) likely is
access controlled9.

As LDN depends on implicit data structures, interoperable consumption and reuse will be
difficult. We therefore build on top of the DIDComm Messaging methodology.

We adapt the DIDComm plaintext message format to form a reusable envelope that wraps
around the to-be-transported VC, with the intention of being easy to create, send, and consume
on a Solid Pod, in turn enabling common VC ecosystem use-cases, e.g. issuance, holding, and
verification. We do so by reusing and introducing a number of DIDComm notification JSON(-LD)
headers to structure the notification. Table 1 shows the protocol headers, which can be divided
into three categories: Improved inbox handling, data reuse, and data envelope.

By default, handling of the LDN inbox is difficult, as it contains an unstructured collection
of resources, and inherently lacks means to identify and find notifications (e.g. notifications
get saved with a random UUID as file name). To find a specific notification, inbox consumers
need to access and read each notification one-by-one. We reuse DIDComm’s id, from, to, and
created_time to help identify the notification in the inbox and provide inbox consumers with
common hooks to look and query for, even though these consumers still need to access and
scan each notification in the inbox. The optional expires_time can be used to enable automatic
cleanup and deletion.

To make the data usable and understandable, we reuse the type header to specify the
notification type of the credential enveloped in the body. The type should be descriptive,
machine-understandable, actionable, and promote reuse, e.g. by using a shared RDF data vo-

9https://solid.github.io/web-access-control-spec/
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Table 1
DIDComm protocol headers that are used in the envelope, and their meaning.

Name Description Necessity

id UUID identifying the message. Required
from IRI describing the sender. Required
to IRI describing the recipient. Required
type IRI specifying the notification type or affordance. Required
created_time Date when the message was created/sent. Required
expires_time Date when the message becomes unusable and should be deleted. Optional
body The contents of the message, usually a JSON-serialized VC. Required

cabulary allowing an inbox consumer to understand how to consume it. For example, the type
https://example.org/IPCEP/transfer could be used to indicate that this notification is
being transferred, and can be consumed as is10.

4. Implementation

The protocol has been implemented in a research prototype, available on GitHub at https://github.
com/SolidLabResearch/inter-pod-credential-exchange-protocol, DOI https://doi.org/10.5281/
zenodo.10992060, under the permissive MIT License. It is built on top of the Community Solid
Server, a Solid Pod reference implementation11. For the issuance, derivation, and verification of
the credentials, we use the mature Mattr Linked Data proof suite to create BBS+ Signatures for
the VC12.

Our demo mimics a common VC lifecycle in the Solid ecosystem. It is split into three phases:

1. The Issuer issues and transfers a new VC to the Holder.
2. The Holder consumes the VC, derives a new VC, and sends it to the Holder
3. The Verifier consumes and verifies the derived VC

For this, three Solid Pods (one for each actor) have been set up, each with a corresponding
WebID and LDN inbox. Our proposed exchange protocol is used in the first and second phase
to send credentials, and in the second and third phase to receive and consume credentials. The
Holder is located in the middle of the flow, with the Issuer and the Verifier not knowing about
each other. This is intended to showcase that the protocol is interoperable: sending a message
from party A to party B, and then forwarding the same message from party B to party C, with
C being able to read and understand it.

To cold-start the demo, we assume that the Issuer already knows the identity of the Holder
(WebID), as it is necessary to issue a credential. Similarly, we assume the Holder knows the
Verifier (WebID), as they present the claim to them.

Figure 2 shows the demo flow.

10Specification of actual type descriptions is out of scope of this paper.
11https://github.com/CommunitySolidServer/CommunitySolidServer
12https://github.com/mattrglobal/jsonld-signatures-bbs/
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(a) Issuer issues and sends new VC (b) Holder derives and sends secondary VC

Figure 2: The credential flow using our proposed protocol. Notifications are uniformly sent across
applications and Solid Pods, independent of the role (Issuer, Holder, Verifier) in the use case.

In Figure 2a, the Issuer issues and sends a new VC to the Holder. First, the Issuer issues a new
VC (A). Then, the Issuer resolves the WebID of the Holder (1-2) to discover the location of the
LDN inbox (3). The Issuer envelopes the VC, specifying the correct headers, and POSTs it to the
inbox of the Holder (4). The Holder monitors their inbox for changes, by ways not determined
in our protocol (B). To consume the inbox, the Holder GETs all notifications in the inbox (5),
and then discovers and consumes them one-by-one (6). As each notification specifies a message
type, the Holder can understand if a notification contains a VC, and knows how to unpack it
(C).

In Figure 2b, the Holder derives and sends a secondary VC to the Verifier. The flow is identical
to Figure 2a, except that the Holder derives a VC (D), which the Verifier verifies it in the end (F).

6
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5. Discussion

LDN proves successful as transport mechanism, allowing us to send notifications from, to, and
between Solid Pods. However, neither the setup of the inbox, nor the handling and consumption
of it are straightforward.

On the one hand, setup of the inbox needs to be done manually, which involves adding
the correct triple to the WebID profile document, as well as making sure that the inbox container
exists, and that access control (i.e. being readable and writeable) is set. This manual setup is
required as Solid Pod implementations, such as the Community Solid Server, do not set up an
inbox by default13. This is done as safety measure and to combat spam, as a public LDN can be
written to by everyone. Hence, our approach does not completely remove implicit agreements:
an inbox needs to be (manually) set up.

Also, notifications get placed in one inbox container without any order, using a
generated UUID as file name. There are no default means for filtering and finding resources. To
find a specific notification, we must loop through the whole (unpaginated) notification collection
and inspect every message individually.

On the other hand, as the inbox constitutes a central container that stores an unstructured
and unprotected collection of notifications, it will be accessed by different consumers
applications that all share the same set of rights to move, change, read or delete
notifications. This makes it possible for a negligent or malicious consumer to move or delete
notifications that are otherwise being relied on. This can be partially mitigated with access
controls, for example by restricting consumers to read-only, as well as preventing change and
deletion of notifications, but usability and privacy concerns remain.

We can summarize above findings into following recommendations for LDN support in Solid:
(i) provide an option to enable and disable an (LDN) inbox within pod management software,
(ii) provide methods for filtering and pagination of notifications, and (iii) allow for more granular
access and usage controls.

We now continue a more high-level discussion on functionality of our proposed approach.
As exchanges can take place across ecosystem boundaries, we do not allow addressing

multiple recipients in the to header. Sending to multiple recipients should be done separately,
as otherwise the WebID of every recipient will be disclosed.

To stay extensible and re-usable for a wide range of targeted purposes, we do not set any
rules on how to consume the notification and contained credential. Instead, our protocol
offers the type header to specify how to consume the enveloped data, for example through use
of semantic vocabularies.

Taking a step back, the LDN design depends on a properly set up inbox (which provides no
failsafe except for HTTP error codes), and relies on WebIDs for discovery. Although WebIDs
are the default identifier within Solid, they do not yet integrate well with other identifiers used
in the the VC ecosystem, such as Decentralized Identifiers14.

13https://github.com/CommunitySolidServer/CommunitySolidServer/issues/515
14https://www.w3.org/TR/did-core/
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6. Conclusion and Future Work

In this work, we designed an application-level inter-Pod credential exchange protocol and
implemented it in a research prototype on top of the Community Solid Server. We apply LDN
in combination with DIDComm Messaging primitives to solve the problem of implicit contracts
when transferring VCs in the Solid ecosystem.

The combination of LDN and DIDComm Messaging were demonstrated succesfully, but we
find that LDN has weaknesses that hamper ease of use, especially filtering and finding notifica-
tions in the inbox. An LDN inbox intermediary could help manage the different notifications.
Similarly, there is a need for more granular access control for messages, as well as usage policies
and logs, to show how notifications are consumed and processed in the LDN inbox.

Looking at our transfer protocol, we currently use a plain-text message body. This suffices for
our purposes, and also has the benefit of improved clarity and ease of debugging. Nevertheless,
a next step should be secure encapsulation, e.g. encrypted and signed DIDComm Messaging
envelopes, to help with verifiability, tamper-evidence, and provenance. Similarly, our protocol
could be extended to interoperate with other DIDComm protocols, for example by supporting
different identifiers to discover the LDN inbox.

Although being a first step in inter-Pod credential exchange, we believe our protocol has the
potential to solve a real need and can be extended to broader requirements, relevant for the
GDPR and the DGA [19].
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