
Counterfactual Explanation of a Classification Model for
Detecting SQL Injection Attacks
Brian A. Cumi-Guzman1,2, Alejandro D. Espinosa-Chim1,2, Mauricio G. Orozco-del-Castillo1,*

and Juan A. Recio-García3

1Tecnológico Nacional de México / IT de Mérida, Mérida, México
2AAAIMX Student Chapter at Yucatan, Mexico (AAAIMX), Association for the Advancement of Artificial Intelligence, Mexico
3Department of Software Engineering and Artificial Intelligence, Instituto de Tecnologías del Conocimiento, Universidad
Complutense de Madrid, Spain

Abstract
In the realm of cybersecurity, accurately distinguishing between malicious and benign SQL queries is a critical
challenge that impacts database security. Addressing this challenge requires advanced detection techniques
capable of discerning complex patterns indicative of such attacks. This study explores the impact of syntactical
modifications on SQL query classification to generate counterfactual explanation cases. By investigating how
specific feature activations and deactivations influence the perceived intent of queries, the research uncovers
the sensitivity of a Random Forest classifier to subtle syntactical changes. Using a counterfactuals approach, we
were able to generate explanation cases that clearly identify specific features in SQL statements that are critical
for detecting injection attacks. These cases evidence the importance of employing sophisticated parsing and
validation techniques to accurately differentiate between potential security threats and safe database queries.

Keywords
SQL Injection Detection, Random Forest Classifier, Counterfactual Explanations, Cybersecurity

1. Introduction

In the digital era, cybersecurity stands as a primary concern, safeguarding the integrity, confidentiality,
and availability of information in an increasingly interconnected world [1]. Among the variety of
cyber threats, SQL injection attacks emerge as a particular challenge due to their capacity to exploit
vulnerabilities in web applications to manipulate database queries [2]. These attacks not only com-
promise sensitive data but also undermine the foundation of trust in digital infrastructure [3]. The
pervasive nature of these attacks, coupled with their potential for significant harm, remark the urgent
need for robust detection mechanisms [4]. As organizations worldwide strive to fortify their defenses,
developing advanced methodologies to detect and mitigate SQL injection attacks remains a critical area
of research in cybersecurity [5].

Detecting SQL injection attacks presents a formidable challenge due to their diverse and sophisticated
nature. These attacks exploit the dynamic execution of SQL queries, allowing attackers to manipulate
database operations by injecting malicious SQL code into user inputs. The complexity of modern web
applications and the subtlety of such attacks exacerbate the difficulty of detection, often requiring
advanced analytical techniques beyond traditional validation and filtering methods [6]. Recent research
has explored various detection strategies, including machine learning and deep neural networks, to
identify patterns and anomalies indicative of SQL injection attempts [7, 8]. However, the evolving
tactics employed by attackers necessitate continuous refinement of detection algorithms to maintain
effectiveness [9]. The challenge is further compounded by the need to minimize false positives, which

ICCBR XCBR’24: Workshop on Case-Based Reasoning for the Explanation of Intelligent Systems at ICCBR2024, July 1, 2024,
Mérida, Mexico
*Corresponding author.
$ le22080698@merida.tecnm.mx (B. A. Cumi-Guzman); le22080725@merida.tecnm.mx (A. D. Espinosa-Chim);
mauricio.orozco@itmerida.edu.mx (M. G. Orozco-del-Castillo); jareciog@fdi.ucm.es (J. A. Recio-García)
� 0009-0001-9742-527X (B. A. Cumi-Guzman); 0009-0001-9754-3778 (A. D. Espinosa-Chim); 0000-0001-5793-6449
(M. G. Orozco-del-Castillo); 0000-0001-8731-6195 (J. A. Recio-García)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

49

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:le22080698@merida.tecnm.mx
mailto:le22080725@merida.tecnm.mx
mailto:mauricio.orozco@itmerida.edu.mx
mailto:jareciog@fdi.ucm.es
https://orcid.org/0009-0001-9742-527X
https://orcid.org/0009-0001-9754-3778
https://orcid.org/0000-0001-5793-6449
https://orcid.org/0000-0001-8731-6195
https://creativecommons.org/licenses/by/4.0

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

can disrupt legitimate database interactions, highlighting the delicate balance required in developing
robust SQL injection detection mechanisms.

In our previous work [7], we investigated the explainability of several ML models for the detection
of SQL injection attacks, particularly DTs, multi-layer perceptron (MLP), Random Forests (RFs), support
vector machines (SVMs), ADA Boost, naive Bayes (NB), and quadratic discriminant analysis (QDA).
After analyzing the most relevant features of the dataset to classify SQL attacks by these ML models,
we presented a case-based explanation-by-example system. SQL sentences similar to a query were
presented to the user as factual explanation cases. These explanation cases corroborated the ML model’s
prediction regarding the query’s malicious nature.

In this paper, we move forward to investigate further explanation approaches. In the realm of
machine learning, the quest for transparency and interpretability has led to the exploration of various
explanatory methodologies, among which counterfactual explanations stand out for their intuitiveness
and actionability [10]. Counterfactual explanations illuminate model decisions by illustrating minimal
alterations to the input that would result in a different prediction, thereby offering a clear “if-then”
rationale behind model outputs [11]. This approach not only demystifies the black-box nature of
complex models but also aligns with legal and ethical standards, making it particularly relevant in
sensitive domains like healthcare and finance [12, 13]. However, the generation of meaningful and
diverse counterfactuals that account for feasibility and user context remains a challenge, necessitating
further research to refine these explanations for practical applicability [14, 10]. The development
of counterfactual explanations that are both understandable and actionable for end-users is crucial
for bridging the gap between machine learning capabilities and human decision-making processes.
In the concrete domain of case-based reasoning, there is a huge body of work regarding case-based
counterfactuals and how nearest unlike neighbors can explain how a prediction might be changed
[15, 16], pointing out the relevance of this explanation strategy and its relationship to CBR.

The primary objective of our research is to enhance the interpretability of machine learning models
used in the detection of SQL injection attacks by leveraging counterfactual case-based explanations.
Our contributions are threefold: First, we curate a comprehensive dataset of SQL injection statements
[7] to encompass a broad spectrum of attack vectors, thus providing a robust foundation for model
training and evaluation. Second, we employ a Random Forest classifier to distinguish between normal
(non-malicious) and malicious SQL queries. Finally, we analyze the Random Forest classifier in a way
that allows us to generate counterfactual explanation cases, specifically addressing the unique challenges
posed by SQL injection attack detection. Our approach sheds light on the model’s decision-making
process while also identifying critical features that significantly influence the classification of SQL
queries, thereby offering valuable insights for enhancing web application security.

"This paper is organized as follows: Section 2 explores the background of SQL injection attacks, their
impact on web security, and introduces machine learning explainability and counterfactual reasoning.
Section 3 describes the creation of our SQL injection dataset and the feature extraction process. Section
4 outlines the methodology of our Random forest classifier, its selection rationale, and our method for
generating counterfactual explanations applicable to cybersecurity. Section 5 evaluates the model’s
effectiveness and the insights from counterfactual explanations. Section 6 discusses the implications of
our findings and the challenges faced, considering their impact on future cybersecurity methodologies.
Finally, Section 7 concludes with a summary of our results and recommendations for future research to
improve SQL injection detection through machine learning explainability."

2. Background

2.1. Overview and Types of SQL Injection Attacks

SQL injection attacks represent one of the most common threats within the cybersecurity landscape,
exploiting vulnerabilities in web applications to execute unauthorized SQL commands and manipu-
late database operations [7, 17]. These attacks leverage inadequacies in input validation, allowing
attackers to inject malicious code that can lead to data breaches, unauthorized data manipulation,

50

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

and even complete database destruction [18, 19]. The gravity of SQL injection attacks is remarked
by their widespread prevalence and the significant potential for harm, compromising the integrity
and confidentiality of sensitive information stored in databases [20, 21]. As such, understanding the
mechanics and implications of SQL injection attacks is crucial for developing effective countermeasures
and safeguarding digital assets against this cybersecurity threat.

SQL injection attacks are classified into several types, each exploiting unique vulnerabilities within
web applications. Classic SQL injection typically occurs when a SQL query is inserted into the application
using input data from the client. Error-based SQL injection takes advantage of error messages from
the database server to extract details about the database structure. On the other hand, union-based
SQL injection involves utilizing the UNION SQL operator to merge the outcomes of multiple SELECT
statements into one result set. Blind SQL injection, one of the more insidious forms, relies on sending
a series of true or false queries to the database, determining the value of a parameter by observing
the behavior of the response [22, 19]. Tautology-based attacks, where attackers insert a tautology (a
statement that is always true) into a query to bypass security measures, and inference-based attacks,
where attackers deduce data structure and content without direct data exfiltration, further exemplify
the sophisticated methods employed by attackers [23, 24].

2.2. Impacts and Countermeasures

The impact of SQL injection attacks extends far beyond mere technical glitches, posing significant threats
to organizational security, financial stability, and reputational integrity. By exploiting vulnerabilities in
web applications, attackers gain unauthorized access to databases, leading to the potential exposure,
alteration, or destruction of sensitive data [19, 20]. The ramifications of such breaches are multifaceted,
encompassing data confidentiality breaches, integrity compromises, and undermining system availability.
Notably, the repercussions of SQL injection attacks can result in dire financial losses, legal liabilities,
and erosion of customer trust, particularly when personal or financial information is compromised
[22, 25]. Moreover, these attacks can serve as a gateway for further exploitation, enabling attackers to
escalate their privileges within the system, execute arbitrary code, or even take complete control over
the affected servers, thereby magnifying the scope and scale of the damage inflicted.

In response to the escalating threats posed by SQL injection attacks, a diverse array of detection
and prevention techniques has been developed, ranging from traditional input validation and parame-
terization to advanced anomaly detection and machine learning-based approaches. Input validation
mechanisms, which scrutinize user-provided data for malicious patterns, serve as the first line of defense,
albeit with limitations in detecting sophisticated injection strategies [26]. Parameterized queries, by
segregating SQL query structure from user input, significantly reduce the attack surface by preventing
the execution of dynamically constructed malicious SQL code [27]. Moreover, recent advancements
have introduced machine learning algorithms capable of discerning normal database queries from
anomalous [7], potentially malicious ones, offering a dynamic and adaptable solution to SQL injection
threats [8]. Additionally, assertion-based methods, which enforce strict constraints on SQL query
structure and logic, have shown promise in preemptively mitigating injection risks [28]. Despite these
technological strides, the heterogeneity and evolution of SQL injection tactics require further research
and development to fortify web applications against these cybersecurity threats.

2.3. Role of Machine Learning and Explainability

The advent of machine learning has significantly enhanced the detection of SQL injection attacks,
providing a dynamic and adaptable approach to identifying and mitigating these threats. Machine
learning models, trained on datasets comprising both non-malicious and malicious SQL queries, have
demonstrated remarkable efficacy in distinguishing between legitimate user inputs and injection
attempts [7, 17, 29, 30, 8]. Techniques ranging from logistic regression and decision trees to advanced
neural networks have been employed, each contributing unique strengths to the detection process
[29]. Notably, models utilizing artificial neural networks, such as Multilayer Perceptrons (MLP) and

51

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

Convolutional Neural Networks (CNN), have been shown to achieve high accuracy rates, effectively
learning complex patterns indicative of SQL injection attacks [30, 8]. These models excel in generalizing
from training data to unseen inputs, enabling them to identify novel injection strategies beyond the
scope of traditional rule-based detection systems.

However, a commonly mentioned drawback in machine learning is its opaque nature, i.e., the lack of
transparency when trying to explain the models’ reasons for given outputs. Therefore, in the last years,
the concept of explainability in machine learning has garnered significant attention, emphasizing the
importance of understanding and interpreting model decisions, particularly in high-stakes domains
such as healthcare, finance, and legal systems. Explainable AI (XAI) aims to bridge the gap between
the predictive capabilities of complex models and the human need for comprehensible explanations
of these predictions. Various methodologies have been proposed to achieve explainability, including
feature importance scores, model-agnostic methods, and counterfactual explanations, each offering
different insights into model behavior [31, 32]. Despite these advances, challenges remain in aligning
machine-generated explanations with human intuition and ensuring these explanations genuinely
reflect the underlying model rationale. Moreover, the operationalization of explainability requirements
often involves a trade-off between model performance and interpretability, necessitating a careful
balance to maintain the efficacy of machine learning applications [33, 34].

Counterfactual explanations have emerged as a compelling approach within the realm of XAI, offering
a specific class of explanation that provides a link between what could have happened had input to a
model been changed in a particular way [11]. This form of explanation is particularly appealing because
it aligns with human cognitive processes, where understanding often comes from considering alternative
scenarios and their outcomes; people frequently engage in imagining different outcomes from those
that occurred [35] and counterfactuals help in behavior regulation and performance improvement [36].
Counterfactual explanations not only aid in making machine learning models more transparent but also
empower users by providing actionable insights on how to achieve desired outcomes. For instance, in a
loan approval model, a counterfactual explanation might suggest minimal changes to the applicant’s
profile that could lead to approval, thereby demystifying the model’s decision process and highlighting
pathways for recourse [37]. Such explanations have shown promise across various domains, including
finance and healthcare, where they enhance trust and enable users to interact more effectively with
machine learning systems [11, 14].

3. Dataset and Model

Our study began with a comprehensive dataset containing 30,876 SQL statements of both natural
language and SQL queries [38]. Our initial task was to refine this dataset to focus solely on SQL
injection detection, which led us to remove unrelated SQL statements. This refinement process resulted
in a more focused dataset of 22,931 samples, categorized into malicious and non-malicious SQL sentences.

To further prepare our dataset for analysis, we calculated feature vectors for each SQL sentence based
on 82 predefined attributes relevant to SQL injection patterns [7, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]
(Table 1). However, this transformation revealed a significant number of duplicate feature vectors
within our dataset. Recognizing the importance of maintaining a diverse set of sentences for subsequent
counterfactual explanations, we opted against removing all duplicates indiscriminately. Instead, we
implemented a strategy to retain a controlled number of duplicates for each unique feature vector,
ensuring a balance between diversity and redundancy. Specifically, we limited the occurrence of any
duplicate feature vector to no more than 100 SQL statements in the non-malicious class and no more
than 38 in the malicious class. This approach was carefully designed to balance the dataset, resulting
in 3,246 feature vectors for each class. The elimination of sentences which yielded duplicate feature
vectors was performed randomly. Additionally, feature normalization was applied to the dataset to
standardize the range of the feature values. This step was particularly important given the diverse
nature of the attributes, which ranged from binary indicators of specific keywords to counts of certain
syntactical elements. Normalization ensured that no single feature dominated the model’s learning due

52

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

Table 1
The 82 features collected from the literature which were used to classify SQL queries [7]

Feature Description / Keyword

F1 select
F2 union
F3 update
F4 set
F5 alter
F6 where
F7 like
F8 from
F9 table
F10 database
F11 drop
F12 delete
F13 insert
F14 And | Or
F15 null
F16 =
F17 information_schema
F18 user
F19 version
F20 load_file
F21 save
F22 ! | # | % | $ | NUL | SOH | STX | ETX | EOT | @
F23 &
F24 |
F25 ,
F26 ;
F27 \
F28 + | - | * | /
F29 commit | rollback | grant |

revoke | declare | remove
F30 count(;)
F31 /* | */
F32 \x
F33 \u
F34 connection
F35 xor
F36 inner join
F37 file | load_file | load_data_infile | into_outfile

| into_dumpfile
F38 OS | Operative System | exec
F39 count(STRING)
F40 count(SUBSTR)

Feature Description / Keyword

F41 count(SUBSTRING)
F42 count(MID)
F43 count(ASC)
F44 count(<)
F45 count(>)
F46 count(")
F47 count("")
F48 exists
F49 floor
F50 rand
F51 group
F52 order
F53 lenght
F54 ascii
F55 if
F56 count
F57 sleep
F58 between
F59 values
F60 delay
F61 wait
F62 benchmark
F63 indentity_insert
F64 truncate table
F65 username | password
F66 user | pass
F67 ")"
F68 limit
F69 concat
F70 ne
F71 find
F72 eq | gt | gte | lt | it | lte | ite | in | nin
F73 mod | regex | text
F74 return
F75 return true | return 1
F76 exists
F77 create
F78 show
F79 collection
F80 while(loop)
F81 hidden equality expression
F82 large expression

to its scale.
The choice of the Random Forest model for detecting SQL injection attacks was driven by several

considerations. First, its proficiency in handling high-dimensional, given our dataset’s complexity,
featuring 82 attributes per SQL statement. Random Forests, known for their robustness, effectively
manage the intricacies of our feature-rich dataset without being particularly sensible to overfitting
[49], thanks to their ensemble approach that aggregates predictions from numerous decision trees [50].
Moreover, the model’s ability to discern both linear and nonlinear patterns ensures comprehensive
analysis, capturing the diverse manifestations of SQL injection attacks [7]. This versatility, coupled with
the model’s relative interpretability—allowing insight into feature importance—makes Random Forest
a valuable tool in cybersecurity contexts. It not only aids in accurate classification but also enhances
understanding of underlying attack vectors.

The Random Forest classifier was trained on 80% of our dataset; the remaining 20% of the data served
as a test set to evaluate the model’s performance. Configured with 100 decision trees, our Random
Forest model underwent an evaluation process that yielded highly accurate results. The model achieved
an accuracy of 97.3%, with a precision of 97.9% and a recall of 96.6%, culminating in an F1 score of 97.2%.
These metrics indicate not only the model’s high success rate in correctly classifying SQL statements
but also its balanced performance in terms of both positive predictive value and sensitivity. Further

53

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

Table 2
Performance Evaluation Metrics for the Random Forest Model in SQL Injection Detection

Metric Score

Overall Accuracy 0.973
Precision (Positive Predictive Value) 0.979
Recall (True Positive Rate) 0.966
F1 Score (Harmonic Mean of Precision and Recall) 0.972
Area Under the Receiver Operating Characteristic Curve 0.993
Area Under the Precision-Recall Curve 0.989
Logarithmic Loss 0.161

bolstering our confidence in the model’s discriminative power, the Receiver Operating Characteristic -
Area Under the Curve (ROC-AUC) score reached 99.3%, and the Precision-Recall AUC stood at 98.9%,
both metrics showcasing the model’s ability to distinguish between classes under varying thresholds.
The log loss, a measure of uncertainty in the predictions, was notably low at 0.16, suggesting high
confidence in the predicted probabilities. In terms of specific outcomes, the model accurately predicted
648 non-malicious items, with a misclassification of 13 items as malicious. Similarly, it successfully
identified 616 malicious items, with only 22 instances mislabeled as non-malicious.

Figure 1: Confusion Matrix of the Random Forest Model. This matrix illustrates the accuracy of the
model in identifying SQL queries as either malicious or non-malicious. The top-left and bottom-right
cells show the number of correct predictions for non-malicious and malicious queries, respectively, while
the top-right and bottom-left cells indicate the instances of incorrect classifications.

4. Methodology for the generation of Counterfactual Explanation
Cases

We assume a twin-system context [51], where the opaque Random Forest model classifying SQL
statements as either malicious or non-malicious is explained by finding counterfactual case-based
explanations from a twinned CBR. To present these counterfactuals explanations, we are first able to
present factual examples supporting the model’s decisions.

There are different strategies for the generation of the counterfactual explanation cases, for example
in [16] a new case-based approach for generating counterfactuals is proposed. This approach used
novel ideas about the counterfactual potential and explanatory coverage of a case-base. In our case,
we will follow a systematic approach following the insights of well-established algorithms such as
SHAP or Feature Importance [52]. This involved systematically changing each feature’s state within
the input vectors, from ‘1’ indicating presence to ‘0’ indicating absence, and vice versa. Starting from

54

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

the model’s initial predictions, we meticulously altered each feature’s state in the vector and observed
the model’s response to each change. By adopting this iterative strategy, we were able to quantify
the extent to which single-feature modifications could sway the model’s judgment. Remarkably, our
findings revealed that altering just one characteristic could lead a substantial percentage of cases to shift
classifications—illuminating the critical role certain features play in the delineation between malicious
and non-malicious SQL statements.

We refined the process of iterative feature modification to not only gauge the individual influence of
each feature on the Random Forest model’s predictions but also to unveil the synergistic effects that
pairs of features may have on classifications. This involved an exploration of how the interplay between
feature pairs within the input vectors affects classification outcomes. For each instance, we methodically
altered one feature and then proceeded to iterate through the remaining features, adjusting them one by
one. This comprehensive combinatorial approach enabled us to evaluate the collective impact of dual
feature modifications on the model’s predictions across all 82 attributes, offering a perspective on the
interactions that shape classification decisions. Altering combinations of just two features resulted in a
classification change for every case examined, underscoring the complex and interconnected nature of
feature influences within the model and the associated case base.

In light of the influence observed when modifying combinations of feature pairs, we decided to
narrow our focus to the impact of single feature alterations. This decision allowed us to concentrate on
identifying the most influential individual features that sway the model’s decision between classifying
SQL statements as malicious or non-malicious. This focused analysis revealed significant insights into
the model’s sensitivity to specific features, highlighting those with the most substantial impact on
classification outcomes. These results are presented in the following section.

The culmination of our counterfactual explanation methodology is illustrated through targeted
case studies and the utilization of the Explainer Dashboard, both of which highlight the practical
applications and real-world relevance of our findings. By presenting specific explanation cases where
feature alterations led to changes in the model’s classifications, we provide concrete examples that not
only validate our analytical approach but also demonstrate its applicability in identifying and mitigating
SQL injection threats.

These case studies delve into cases from our case base, showcasing how the activation or deactivation
of key features influenced the classification outcomes. For example, the presence of certain SQL
keywords or structures, previously identified as influential through our top feature analysis, can
significantly alter a sentence’s perceived intent, shifting it from non-malicious to malicious or vice versa.
These illustrative cases serve as a bridge between the theoretical underpinnings of our methodology
and its practical implications.

Complementing these case studies, the Explainer Dashboard plays a crucial role in enhancing the
interpretability and transparency of our Random Forest model. By visualizing the relationship between
features and classification outcomes, the dashboard facilitates a deeper understanding of the model’s
decision-making process. Tools such as the ROC-AUC curve and precision-recall curve within the
dashboard not only validate the model’s performance but also provide an intuitive platform for exploring
the impact of feature modifications on classification accuracy.

5. Evaluation of the counterfactual explanation cases

In our evaluation, the initial phase of the feature impact analysis provided insights into how modifications
of individual characteristics significantly affect the model’s classification outcomes. Remarkably, altering
just one feature shifted 87.62% of initially non-malicious cases to a malicious classification, illustrating
the profound sensitivity of the model to specific feature changes. Conversely, a similar modification
led to 42.85% of malicious cases being reclassified as non-malicious. As mentioned in the previous
section, further investigation into the effects of simultaneously modifying two features revealed that
such changes invariably resulted in classification alterations for all cases examined. This finding led us
to steer our focus toward the impacts of single-feature modifications.

55

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

In our analysis, we delineated four distinct groups based on the activation and deactivation of certain
features, each influencing the model’s ability to classify SQL statements as malicious or non-malicious.
The first group emerged from the activation of features that led to the reclassification of non-malicious
cases as malicious, highlighting the sensitivity of the model to certain patterns within benign queries.
The second group was defined by the activation of features that transformed malicious cases into
non-malicious ones, indicating a strong association with legitimate SQL activities. In contrast, the third
group involved the deactivation of features, resulting in the misclassification of non-malicious cases as
malicious, emphasizing the importance of these features in affirming the non-threatening nature of
SQL statements. The fourth and final group was characterized by the removal of features that led to the
reclassification of malicious cases as non-malicious, highlighting their role in identifying potentially
harmful queries. These classes describe the relationship between feature states and classification
outcomes, providing valuable insights into the model’s dynamics in detecting SQL injection attacks.

Within the first group, where feature activation leads non-malicious cases to be classified as malicious,
Feature 22 (F22) plays a pivotal role, affecting 16.50% of such cases. This feature corresponds to the
presence of special characters within SQL queries (1), a common hallmark of SQL injection attacks.
Its activation shows the model’s sensitivity to these characters, often exploited in attack vectors to
manipulate or bypass database security mechanisms. The significant percentage of cases impacted by
the activation of F22 highlights the critical nature of these special characters in the model’s assessment of
potential threats. This finding further confirms the importance of vigilance in monitoring and sanitizing
user inputs that contain such characters, as they are indicative of potentially malicious intentions within
the realm of SQL queries, thereby helping to bolster web application defenses against SQL injection
attacks.

In the second group, where the activation of features transitions malicious cases to non-malicious,
F52 stands out prominently. It influences 11.25% of cases, with its activation denoting the presence of the
keyword ORDER in SQL statements. This keyword’s inclusion is often indicative of legitimate database
queries, particularly those involving sorting operations. The substantial impact of F52’s activation on
reclassifying malicious cases as non-malicious highlights its association with benign SQL queries and
its role as a strong indicator of non-malicious intent. This insight is particularly valuable in refining
SQL injection detection models to reduce false positives, ensuring that legitimate database interactions
involving sorting are not mistakenly flagged as potential threats, thereby enhancing the accuracy and
reliability of cybersecurity measures against SQL injection attacks.

For the third class, characterized by the deactivation of features leading non-malicious cases to be
mistakenly identified as malicious, F8 is crucial. This feature, associated with the absence of the keyword
FROM, affects 7.88% of such cases. The FROM keyword is fundamental to SQL syntax, typically used to
specify the database table from which to retrieve data. Its absence, indicated by the deactivation of F8, can
significantly alter the perceived intent of an SQL query, leading the model to classify queries as potential
threats. This highlights the essential role of basic SQL syntax in distinguishing between malicious
and non-malicious queries and the importance of considering syntactical elements in developing and
refining models for SQL injection detection.

In the fourth group, where the deactivation of features shifts malicious cases to being classified as
non-malicious, F16 emerges as critical, impacting 9.54% of such cases. This feature is tied to the absence
of the ‘=’ symbol, a fundamental operator in SQL often used in conditions to compare values. The
removal of this symbol, suggested by the deactivation of F16, can significantly diminish the perceived
maliciousness of an SQL query, as it might remove key conditions used in SQL injection attacks to
exploit vulnerabilities. The substantial influence of F16’s deactivation on the model’s reclassification of
cases shows the ‘=’ symbol’s significance in the identification of SQL injection patterns. This finding
emphasizes the need for machine learning models to understand the context and usage of common SQL
operators, ensuring that their absence, particularly in potentially malicious queries, does not lead to a
decrease in detection accuracy, thereby enhancing the model’s capability to effectively identify and
mitigate SQL injection threats.

Through this analysis, it became evident that even minor modifications to specific features could lead
to substantial shifts in the model’s classifications, highlighting the intricate balance between malicious

56

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

and non-malicious determinations. Notably, while various features contribute to transitions across
the four different groups, the impact of the primary feature in each category is considerably more
pronounced than that of others. This significant disparity in influence is clearly illustrated in Figure 2,
which presents the bar graphs of feature activations, and Figure 3, showcasing the effects of feature
deactivations. Furthermore, Table 3 compiles a quantitative summary, incorporating the five most
influential features from each of the four identified groups to illustrate the percentage impact of both
activation and deactivation on classification transitions.

(a) Features activation leading to malicious
classification

(b) Features activation leading to non-
malicious classification

Figure 2: Impact of Feature Activation on SQL Statement Classification: (a) illustrates the top 5 features that,
when activated, most frequently lead to an SQL statement being classified as malicious. (b) depicts the top 5
features that, upon activation, are most likely to result in a classification shift to non-malicious.

(a) Features deactivation leading to malicious
classification

(b) Features deactivation leading to non-
malicious classification

Figure 3: Impact of Feature Deactivation on SQL Statement Classification: (a) demonstrates the top 5 features
that, when deactivated, most commonly result in an SQL statement being classified as malicious. (b) shows the
top 5 features that, upon deactivation, most frequently lead to a reclassification as non-malicious.

Building on this analysis, we proceeded to a counterfactual exploration designed to delve into the
dynamics of feature activation and deactivation within real SQL queries belonging to our dataset. We
present four different cases, each one corresponding to one of the different groups identified before
1) activation of F22 switching from a non-malicious query to a malicious one; 2) activation of F52
switching from malicious to non-malicious; 3) deactivation of F8 switching from non-malicious to
malicious; and 4) deactivation of F16 switching from malicious to non-malicious.

In the evaluation of the first group, the one where the activation of a feature leads to a malicious
classification, our focus centers on the activation of feature F22, which pertains to the inclusion of specific
symbols within SQL queries, such as the ‘#’ character. For instance, consider a benign query intended
for routine user authentication: SELECT * FROM users WHERE username = ’admin’AND
password = ’password123’;. Upon the activation of F22, the insertion of a ‘#’ symbol transforms
this query into SELECT * FROM users WHERE username = ’admin’# AND password = ’
password123’;, effectively neutralizing the password check by treating the remainder of the query
as a comment. This alteration not only undermines the security mechanism intended to authenticate
user access but also illustrates the ease with which a benign query can be manipulated into a tool

57

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

Table 3
Analysis of the Five Most Influential Features from Each of the Four Classes Due to Activation and Deactivation
on Classification Transitions from both Malicious to Non-malicious (M2NM) and Non-malicious to Malicious
(NM2M)

Feature Feature Description Activation Impact (%) Deactivation Impact (%)

F22 Special Characters NM2M (16.50%) -
F56 COUNT NM2M (7.18%) M2NM (3.80%)
F14 And | Or NM2M (6.50%) M2NM (2.87%)
F62 BENCHMARK NM2M (4.92%) -
F2 UNION NM2M (4.53%) M2NM (3.31%)
F52 ORDER - M2NM (11.25%)
F8 FROM - NM2M (7.88%), M2NM (2.83%)
F72 Comparison Operators - M2NM (2.47%)
F1 SELECT - NM2M (3.72%)
F6 WHERE - NM2M (3.02%)
F28 Arithmetic Operators - NM2M (1.66%), M2NM (2.27%)
F3 UPDATE - NM2M (1.59%)
F16 “=” - M2NM (9.54%)

for unauthorized data access. This emphasizes the critical need for robust parsing and validation
mechanisms in SQL query handling to preempt such subtle yet significant security vulnerabilities.

In the examination of the second group, where the activation of a feature transitions a query
from malicious to non-malicious classification, our attention is drawn to Feature 52 (F52), as-
sociated with the inclusion of the ORDER clause. Consider a query that might raise suspi-
cions due to its straightforward extraction of data: SELECT id, name, bank_balance FROM
bank_accounts WHERE account_type = ’private’;. Without specifying an order, this query
could be perceived as an attempt by an attacker to rapidly harvest data, prioritizing speed over
the structure of the retrieved information, which could be indicative of malicious intent. However,
with the activation of F52, the introduction of ORDER BY bank_balance transforms the query
into SELECT id, name, bank_balance FROM bank_accounts WHERE account_type =
’private’ORDER BY bank_balance;, suggesting a more deliberate and legitimate use of the data,
such as for financial analysis or account management by authorized personnel. Including an ordering
directive implies a specific analytical or operational need, reflecting the detailed, purposeful query
structure typical of legitimate database interactions. This change not only mitigates concerns about
the query’s intent but also shows the importance of contextual cues in SQL syntax for distinguishing
between benign and potentially harmful activities. It highlights the essential role of parsing and vali-
dation in SQL query evaluation to accurately discern user intent and prevent the misclassification of
legitimate database operations as security threats.

In our exploration of the third group, where the deactivation of a feature switches a query into a
malicious classification, we delve into the effects of deactivating feature F8. This feature corresponds to
the presence of the FROM keyword within SQL queries. The deactivation of F8 is illustrated through a
transition from a benign query, SELECT breathing (s) FROM blood UNION, to one that omits
the FROM clause, becoming SELECT breathing (s) AS breathing UNION. This modification,
characterized by the absence of FROM, signals a deviation towards a syntactically irregular and poten-
tially malicious structure. The incomplete statement, terminating abruptly with the UNION keyword,
is particularly indicative of an attempt to exploit the query for malicious ends, such as SQL injection.
This exposes a critical vulnerability, where the lack of syntactical completeness not only disrupts the
logical integrity of the query but also opens a vector for security breaches.

With respect to the fourth group, where the deactivation of a feature results in a non-malicious classifi-
cation, we focus on the implications of deactivating feature F16. This feature is associated with the equal-
ity operator ‘=’ within SQL queries. The impact of F16’s deactivation is illustrated by altering a query that
initially might raise suspicions of malicious intent (and which is classified as so by the Random Forest clas-

58

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

sifier) due to its peculiar structure: (SELECT CASE WHEN (3348 = 1710) THEN 3348 ELSE
CAST (1 AS INT) / (SELECT 0 FROM dual) END FROM dual). By deactivating F16 and

thereby replacing the ‘=’ operator with a ‘<’ operator, the query is transformed into (SELECT CASE
WHEN (3348 < 1710) THEN 3348 ELSE CAST (1 AS INT) / (SELECT 0 FROM dual

) END FROM dual), mitigating the risk of division by zero and removing the potentially harmful
operation as long as the “dual” table is present in the database and accessible. This alteration highlights
specific operators’ significance and roles in SQL query classification. The removal of the equality check
in favor of a comparative operation changes the query’s context and interpretation, distancing it from
patterns commonly associated with SQL injections or other forms of database attacks.

The four different cases are described in Table 4.

Table 4
Counterfactual Analysis of SQL Query Modifications: This table presents a comparative analysis of SQL query
modifications, showcasing how specific feature activations (F22, F52) or deactivations (F8, F16) can alter a query’s
classification from malicious to benign and vice versa. Each entry illustrates the impact of syntactical changes
on the perceived intent of the query, highlighting the sensitivity of SQL query classifiers to such modifications.

Feature Malicious Non-malicious Explanation
F22 (Special
Characters
including #)

SELECT * FROM users
WHERE username =
’admin’ # AND
password =
’password123’;

SELECT * FROM users
WHERE username =
’admin’ AND
password =
’password123’;

The use of # in the malicious exam-
ple effectively comments out the pass-
word condition, enabling unautho-
rized access by bypassing authenti-
cation checks. In contrast, the be-
nign example represents a standard
authentication query without alter-
ations.

F52
(ORDER)

SELECT id, name,
bank_balance FROM
bank_accounts WHERE
account_type =
’private’;

SELECT id, name,
bank_balance FROM
bank_accounts WHERE
account_type =
’private’ ORDER BY
bank_balance;

The absence of the ORDER BY clause
in the malicious query suggests an in-
discriminate data retrieval attempt,
typical of unauthorized extraction.
The inclusion of ORDER BY in the be-
nign query signifies a structured and
legitimate data review or analysis.

F8 (FROM) SELECT breathing (
s) AS breathing
UNION

SELECT breathing (
s) FROM blood
UNION

In the malicious example, the absence
of the FROM keyword indicate a syn-
tactical manipulation aimed at SQL
injection. Conversely, the legitimate
use of FROM in the benign example
signifies a proper UNION operation
within a valid SQL query structure.

F16 (=) (select (case when
(3348 = 1710) then
3348 else cast (1
as int) / (select 0
from dual) end)
from dual)

(select (case when
(3348 < 1710) then
3348 else cast (1
as int) / (select 0
from dual) end)
from dual)

The malicious query employs a false
comparison and division by zero, in-
dicative of an exploit attempt through
error induction. The non-malicious
counterpart uses a comparison that
avoids such risky operations, main-
taining the query’s integrity.

6. Discussion

In terms of the machine learning classifier, the role of the Random Forest classifier emerges as pivotal
in our analytical framework. Configured with 100 decision trees and rigorously trained on a substantial
subset of our dataset, this model served to show the dynamics of SQL syntax and semantics with
remarkable clarity. The classifier’s performance metrics—–accuracy of 97.3%, precision of 97.9%, recall
of 96.6%, and an F1 score of 97.2%—–clearly reflect its efficacy in distinguishing between malicious and

59

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

non-malicious queries. The high ROC-AUC score of 99.3% and Precision-Recall AUC of 98.9%, along
with a notably low log loss of 0.16, reflect not only the model’s accuracy but also its balanced approach
in sensitivity and specificity, a critical aspect in the domain of cybersecurity where the cost of false
positives and negatives carries significant weight.

Before discussing the implications of feature modifications within specific groups, it is important
to appreciate the broader impact these alterations can have on the classification of SQL queries. The
sensitivity of the Random Forest classifier is critical, as even the most minute changes in a query’s
structure can precipitate a significant shift in its classification from non-malicious to malicious or
vice versa. This sensitivity to syntactical differences is indicative of the classifier’s potential utility in
real-world applications, where the ability to accurately identify malicious intent amidst a vast array of
legitimate queries is fundamental. This supports the importance of developing and refining machine
learning models that are not only adept at handling the complexity and variability of SQL syntax but also
capable of adapting to evolving patterns of cyber threats. This is further confirmed by the compounded
impact of modifying two features simultaneously, resulting in classification alterations for all examined
cases.

The insights derived from evaluating feature modifications across different groups shed light on
potential pathways for refining SQL injection detection models and improving SQL code structuring
practices. The activation of feature F22, where the inclusion of a single symbol like ‘#’ can transform a
benign query into one classified as malicious, highlights the critical importance of developing sophisti-
cated parsing and validation mechanisms. Such mechanisms must be adept at distinguishing between
legitimate syntactical constructs and those potentially manipulated for unauthorized access, thereby
enhancing the precision of SQL injection detection models. Conversely, the activation of feature F52,
which leads to the classification of a query as non-malicious due to the inclusion of an ORDER clause,
shows the importance of contextual understanding in SQL syntax. This scenario illustrates how certain
keywords, often used in legitimate database operations, can serve as strong indicators of benign intent.
Detection models can be refined to recognize and weigh such contextual cues more heavily, reducing
the likelihood of false positives and ensuring that overly stringent security measures do not hinder
legitimate operations.

Furthermore, the deactivation scenarios within groups three and four reveal the delicate balance
between syntactical completeness and the potential for misclassification. The absence of fundamental
SQL elements like the FROM keyword or the equality operator ‘=’ can lead to significant shifts in query
classification, emphasizing the need for SQL injection detection models to consider both the presence
and absence of key syntactical features. This understanding can inform the development of carefully
crafted detection algorithms that account for the complex interplay of various SQL components.

These findings also advocate for better-structured SQL code, where adherence to best practices in
syntax and the mindful inclusion of key features can both facilitate legitimate database operations and
mitigate the risk of unintentional security vulnerabilities. By fostering a deeper understanding of how
specific syntactical choices impact query classification, database administrators and developers can
write SQL code that is not only efficient but also inherently more secure against potential injection
attacks. Continuous research and adaptation in these areas are essential to keep pace with evolving
threats and sophisticated attack techniques, ensuring the integrity and security of database systems in
an increasingly digital world.

This counterfactual scenario highlights the subtleties involved in the automated detection of SQL
injections, where the absence or manipulation of fundamental SQL operators can drastically alter
the classification outcome. It highlights the necessity for detection models to not only recognize the
presence of potentially harmful patterns but also understand the implications of their absence. This
insight is crucial for refining security mechanisms, ensuring they can effectively discern between
actual threats and benign queries that may inadvertently resemble malicious patterns due to syntactical
omissions or errors.

While our counterfactual analysis has provided valuable insights into the classification of SQL queries,
it is imperative to acknowledge certain limitations that accompany our study. The scope of features
analyzed, though comprehensive, may not encapsulate the entire spectrum of syntactical elements

60

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

relevant to SQL query intent, potentially overlooking some that could further refine classification
accuracy. Additionally, the dataset employed, although robust, represents a snapshot that may not fully
capture the evolving nature of SQL injection tactics or the diversity of legitimate query constructions,
possibly affecting the generalizability of our findings. While effective, the use of the Random Forest
model invites consideration of other machine learning models that could offer different perspectives on
feature importance and classification dynamics. Future research could benefit from exploring a variety
of models, such as deep learning approaches, which might uncover additional layers of complexity
within SQL query analysis. Expanding the feature set to include more granular syntactical and semantic
elements could further enhance the model’s ability to discern between malicious and non-malicious
intents. Investigating the interplay between features in greater depth may reveal more intricate patterns
that contribute to the classification process. Applying the insights gained from this study to develop
more sophisticated SQL injection detection and prevention tools represents a promising avenue for
future work.

7. Conclusions

Our comprehensive investigation into SQL query classification consisted of both a counterfactual
analysis and an evaluation of a Random Forest classifier to delve into the dynamics of detecting SQL
injection attacks. Central to our discoveries is the model’s sensitivity to syntactical modifications, such
as the inclusion of special characters or clauses such as ORDER or FROM, which can dramatically alter
query classification. These seemingly minor alterations, backed up by the model’s robust performance
metrics, highlight the critical role of specific SQL keywords and structures in the delineation between
malicious and benign intents. The fusion of these insights with feature impact analysis and counter-
factual explanations enriches our understanding of the subtleties involved in SQL injection detection.
This multifaceted approach not only reveals the delicate balance required in maintaining database
functionality while safeguarding against security threats but also demonstrates the profound potential
of machine learning models to enhance cybersecurity defenses.

The practical implications of our findings are directly related to database security, advocating for
the deployment of advanced parsing and validation mechanisms attuned to the intricacies of SQL
syntax. This enhanced understanding encourages the development of security systems proficient
in warding off malicious intrusions and accurately identifying legitimate database queries, thereby
minimizing false positives that could interrupt essential operations. Such an approach is vital for
upholding the integrity and functionality of database systems, ensuring that protective measures support
rather than hinder operational efficiency. Moreover, the identification of key features influencing the
model’s decision-making equips cybersecurity professionals with a refined toolkit for monitoring
potential threats and adjusting detection algorithms accordingly. This targeted strategy, enriched by
the actionable insights from counterfactual explanations, enables a more precise calibration of web
application defenses, improving the detection of SQL injection vulnerabilities while mitigating the risk
of erroneous classifications. Collectively, these insights not only highlight the importance of contextual
and structural awareness in SQL query evaluation but also illustrate the potential of our findings to
fortify cybersecurity defenses against the sophisticated and evolving threats posed by SQL injection
attacks.

Exploring a broader array of machine learning models could provide deeper insights into the clas-
sification of SQL queries, while expanding the feature set considered in analyses might uncover new
dimensions of query intent. Moreover, applying the findings of this study to the development and
refinement of SQL injection detection tools holds promise for significantly bolstering database defenses.
Such advancements are essential not only for enhancing the precision of security measures but also for
ensuring their adaptability to the sophisticated and ever-changing tactics employed by cyber adversaries.
Collaboration between academia and industry practitioners will be pivotal in translating these insights
into practical, robust solutions that safeguard critical data assets against emerging threats.

61

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

Acknowledgments

This work is supported by the PERXAI project PID2020-114596RB-C21 funded by
MCIN/AEI/10.13039/501100011033.

References

[1] F. Özsungur, Business Management and Strategy in Cybersecurity for Digital Transformation,
Handbook of Research on Advancing Cybersecurity for Digital Transformation (2021). doi:10.
4018/978-1-7998-6975-7.ch008.

[2] B. Gogoi, T. Ahmed, A. Dutta, Defending against SQL Injection Attacks in Web Applications using
Machine Learning and Natural Language Processing, in: 2021 IEEE 18th India Council International
Conference (INDICON), IEEE, 2021, pp. 1–6. doi:10.1109/INDICON52576.2021.9691740.

[3] W. Trappe, J. Straub, Cybersecurity: A New Open Access Journal, Cybersecurity (2018). doi:10.
3390/CYBERSECURITY1010001.

[4] T. Untawale, Importance of Cyber Security in Digital Era, International Journal for Research in
Applied Science and Engineering Technology (2021). doi:10.22214/ijraset.2021.37519.

[5] N. Sklavos, In the Era of Cybersecurity: Cryptographic Hardware and Embedded Systems (2019).
doi:10.1109/MECO.2019.8760015.

[6] L. Yu, S. Luo, L. Pan, Detecting SQL Injection Attacks based on Text Analysis, in: Proceedings of
the 3rd International Conference on Computer Engineering, Information Science & Application
Technology (ICCIA 2019), 2019. doi:10.2991/ICCIA-19.2019.14.

[7] J. A. Recio-García, M. G. Orozco-del-Castillo, J. A. Soladrero, Case-based explanation of classifica-
tion models for the detection of SQL injection attacks, in: L. Malburg, D. Verma (Eds.), Proceedings
of the Workshops at the 31st International Conference on Case-Based Reasoning (ICCBR-WS
2023) co-located with the 31st International Conference on Case-Based Reasoning (ICCBR 2023),
Aberdeen, Scotland, UK, July 17, 2023, volume 3438 of CEUR Workshop Proceedings, CEUR-WS.org,
2023, pp. 200–215. URL: https://ceur-ws.org/Vol-3438/paper_15.pdf.

[8] P. Tang, W. Qiu, Z. Huang, H. Lian, G. Liu, Detection of SQL injection based on artificial neural
network, Knowl. Based Syst. 190 (2020) 105528. doi:10.1016/j.knosys.2020.105528.

[9] W. Zhang, Y. Li, X. Li, M. Shao, Y. Mi, H. Zhang, G. Zhi, Deep Neural Network-Based SQL Injection
Detection Method, Security and Communication Networks (2022). doi:10.1155/2022/4836289.

[10] F. Cheng, Y. Ming, H. Qu, DECE: Decision Explorer with Counterfactual Explanations for Machine
Learning Models, IEEE Transactions on Visualization and Computer Graphics 27 (2020) 1438–1447.
doi:10.1109/TVCG.2020.3030342.

[11] S. Verma, J. P. Dickerson, K. E. Hines, Counterfactual Explanations for Machine Learning: A
Review, ArXiv abs/2010.10596 (2020).

[12] R. K. Mothilal, A. Sharma, C. Tan, Explaining machine learning classifiers through diverse
counterfactual explanations, in: Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, 2020. doi:10.1145/3351095.3372850.

[13] R. R. Fernández, I. M. de Diego, V. Aceña, A. Fernández-Isabel, J. M. Moguerza, Random forest
explainability using counterfactual sets, Inf. Fusion 63 (2020) 196–207. doi:10.1016/j.inffus.
2020.07.001.

[14] R. K. Mothilal, A. Sharma, C. Tan, Explaining machine learning classifiers through diverse
counterfactual explanations, in: Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, 2020. doi:10.1145/3351095.3372850.

[15] B. Smyth, M. T. Keane, A few good counterfactuals: Generating interpretable, plausible and diverse
counterfactual explanations, in: M. T. Keane, N. Wiratunga (Eds.), Case-Based Reasoning Research
and Development - 30th International Conference, ICCBR 2022, Nancy, France, September 12-15,
2022, Proceedings, volume 13405 of Lecture Notes in Computer Science, Springer, 2022, pp. 18–32.
URL: https://doi.org/10.1007/978-3-031-14923-8_2. doi:10.1007/978-3-031-14923-8_2.

62

http://dx.doi.org/10.4018/978-1-7998-6975-7.ch008
http://dx.doi.org/10.4018/978-1-7998-6975-7.ch008
http://dx.doi.org/10.1109/INDICON52576.2021.9691740
http://dx.doi.org/10.3390/CYBERSECURITY1010001
http://dx.doi.org/10.3390/CYBERSECURITY1010001
http://dx.doi.org/10.22214/ijraset.2021.37519
http://dx.doi.org/10.1109/MECO.2019.8760015
http://dx.doi.org/10.2991/ICCIA-19.2019.14
https://ceur-ws.org/Vol-3438/paper_15.pdf
http://dx.doi.org/10.1016/j.knosys.2020.105528
http://dx.doi.org/10.1155/2022/4836289
http://dx.doi.org/10.1109/TVCG.2020.3030342
http://dx.doi.org/10.1145/3351095.3372850
http://dx.doi.org/10.1016/j.inffus.2020.07.001
http://dx.doi.org/10.1016/j.inffus.2020.07.001
http://dx.doi.org/10.1145/3351095.3372850
https://doi.org/10.1007/978-3-031-14923-8_2
http://dx.doi.org/10.1007/978-3-031-14923-8_2

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

[16] M. T. Keane, B. Smyth, Good counterfactuals and where to find them: A case-based tech-
nique for generating counterfactuals for explainable AI (XAI), in: I. Watson, R. O. Weber
(Eds.), Case-Based Reasoning Research and Development - 28th International Conference, ICCBR
2020, Salamanca, Spain, June 8-12, 2020, Proceedings, volume 12311 of Lecture Notes in Com-
puter Science, Springer, 2020, pp. 163–178. URL: https://doi.org/10.1007/978-3-030-58342-2_11.
doi:10.1007/978-3-030-58342-2_11.

[17] M. Alghawazi, D. Alghazzawi, S. Alarifi, Detection of SQL Injection Attack Using Machine
Learning Techniques: A Systematic Literature Review, Journal of Cybersecurity and Privacy 2
(2022) 764–777. URL: https://www.mdpi.com/2624-800X/2/4/39. doi:10.3390/jcp2040039.

[18] P. Vats, A. Saha, An overview of sql injection attacks, MatSciRN: Other Materials Performance
(Topic) (2019). doi:10.2139/ssrn.3479001.

[19] J. Majumder, G. Saha, Analysis of sql injection attack (2012). doi:10.47893/ijcsi.2013.1102.
[20] H. Shahriar, S. North, W.-C. Chen, Early detection of sql injection attacks, International Journal of

Network Security & Its Applications 5 (2013) 53–65. doi:10.5121/IJNSA.2013.5404.
[21] S. Roy, A. Singh, A. Sairam, Detecting and defeating sql injection attacks, International Journal of

Information Engineering and Electronic Business (2011). doi:10.7763/IJIEE.2011.V1.6.
[22] A. Kiezun, P. J. Guo, K. Jayaraman, M. D. Ernst, Automatic creation of sql injection and cross-site

scripting attacks, in: 2009 IEEE 31st International Conference on Software Engineering, 2009, pp.
199–209. doi:10.1109/ICSE.2009.5070521.

[23] N. Singh, M. Dayal, R. Raw, S. Kumar, Sql injection: Types, methodology, attack queries and
prevention (2016) 2872–2876.

[24] C. Byzdra, G. Kozieł, Analysis of the defending possibilities against sql injection attacks 13 (2019)
339–344. doi:10.35784/jcsi.1329.

[25] Z. Guo-xiang, Sql injection attacks in web application, Information Security and Communications
Privacy (2010).

[26] Z. Ping, Detecting and preventing sql injection attacks in oracle, Information Security and
Communications Privacy (2007).

[27] B. K. Ahuja, A. Jana, A. Swarnkar, R. Halder, On preventing sql injection attacks, in: ..., 2015.
doi:10.1007/978-81-322-2650-5_4.

[28] M. Qbea’h, M. Alshraideh, K. Sabri, Detecting and preventing sql injection attacks: A formal
approach, 2016 Cybersecurity and Cyberforensics Conference (CCC) (2016) 123–129. doi:10.
1109/CCC.2016.26.

[29] M. Alghawazi, D. Alghazzawi, S. S. Alarifi, Deep learning architecture for detecting sql injection at-
tacks based on rnn autoencoder model, Mathematics 11 (2023) 3286. doi:10.3390/math11153286.

[30] E. Hosam, H. Hosny, W. Ashraf, A. S. Kaseb, Sql injection detection using machine learning
techniques, in: 2021 8th International Conference on Soft Computing & Machine Intelligence
(ISCMI), 2021, pp. 15–20. doi:10.1109/ISCMI53840.2021.9654820.

[31] U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh, R. Puri, J. M. F. Moura, P. Eckersley,
Explainable machine learning in deployment, in: Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, 2019. doi:10.1145/3351095.3375624.

[32] T. Ha, S. Lee, S. Kim, Designing explainability of an artificial intelligence system, in: Proceedings
of the Technology, Mind, and Society, 2018. doi:10.1145/3183654.3183683.

[33] T. Li, L. Han, Dealing with explainability requirements for machine learning systems, in: 2023
IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC), 2023. doi:10.
1109/COMPSAC57700.2023.00182.

[34] A. Bueff, I. Papantonis, A. Simkute, V. Belle, Explainability in machine learning: a pedagogical
perspective, ArXiv abs/2202.10335 (2022).

[35] R. Byrne, Counterfactual thought, Annual review of psychology 67 (2016) 135–157. doi:10.1146/
annurev-psych-122414-033249.

[36] K. Epstude, N. J. Roese, The functional theory of counterfactual thinking, Personality and Social
Psychology Review 12 (2008) 168–192. doi:10.1177/1088868308316091.

[37] X. Dastile, T. Çelik, H. Vandierendonck, Model-agnostic counterfactual explanations in credit

63

https://doi.org/10.1007/978-3-030-58342-2_11
http://dx.doi.org/10.1007/978-3-030-58342-2_11
https://www.mdpi.com/2624-800X/2/4/39
http://dx.doi.org/10.3390/jcp2040039
http://dx.doi.org/10.2139/ssrn.3479001
http://dx.doi.org/10.47893/ijcsi.2013.1102
http://dx.doi.org/10.5121/IJNSA.2013.5404
http://dx.doi.org/10.7763/IJIEE.2011.V1.6
http://dx.doi.org/10.1109/ICSE.2009.5070521
http://dx.doi.org/10.35784/jcsi.1329
http://dx.doi.org/10.1007/978-81-322-2650-5_4
http://dx.doi.org/10.1109/CCC.2016.26
http://dx.doi.org/10.1109/CCC.2016.26
http://dx.doi.org/10.3390/math11153286
http://dx.doi.org/10.1109/ISCMI53840.2021.9654820
http://dx.doi.org/10.1145/3351095.3375624
http://dx.doi.org/10.1145/3183654.3183683
http://dx.doi.org/10.1109/COMPSAC57700.2023.00182
http://dx.doi.org/10.1109/COMPSAC57700.2023.00182
http://dx.doi.org/10.1146/annurev-psych-122414-033249
http://dx.doi.org/10.1146/annurev-psych-122414-033249
http://dx.doi.org/10.1177/1088868308316091

Brian A. Cumi-Guzman et al. ICCBR’24 Workshop Proceedings

scoring, IEEE Access PP (2022) 1–1. doi:10.1109/ACCESS.2022.3177783.
[38] S. S. H. Shah, SQL injection dataset | Kaggle, 2021. URL: https://www.kaggle.com/datasets/

syedsaqlainhussain/sql-injection-dataset.
[39] M. Hasan, Z. Balbahaith, M. Tarique, Detection of SQL Injection Attacks: A Machine Learn-

ing Approach, 2019 International Conference on Electrical and Computing Technologies
and Applications (ICECTA) (2019) 1–6. URL: https://ieeexplore.ieee.org/document/8959617/.
doi:10.1109/ICECTA48151.2019.8959617.

[40] H. Gao, J. Zhu, L. Liu, J. Xu, Y. Wu, A. Liu, Detecting SQL Injection Attacks Using Grammar
Pattern Recognition and Access Behavior Mining, 2019 IEEE International Conference on Energy
Internet (ICEI) (2019) 493–498. URL: https://ieeexplore.ieee.org/document/8791338/. doi:10.1109/
ICEI.2019.00093.

[41] Q. Li, W. Li, J. Wang, M. Cheng, A SQL Injection Detection Method Based on Adaptive Deep
Forest, IEEE Access 7 (2019) 145385–145394. URL: https://ieeexplore.ieee.org/document/8854182/.
doi:10.1109/ACCESS.2019.2944951.

[42] D. Tripathy, R. Gohil, T. Halabi, Detecting SQL Injection Attacks in Cloud SaaS using Machine
Learning, 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE
Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on
Intelligent Data and Security (IDS) (2020) 145–150. URL: https://ieeexplore.ieee.org/document/
9123029/. doi:10.1109/BigDataSecurity-HPSC-IDS49724.2020.00035.

[43] Q. Li, F. Wang, J. Wang, W. Li, LSTM-based SQL Injection Detection Method for Intelligent
Transportation System, IEEE Transactions on Vehicular Technology 68 (2019) 1–1. URL: https:
//ieeexplore.ieee.org/document/8616823/. doi:10.1109/TVT.2019.2893675.

[44] K. Kamtuo, C. Soomlek, Machine Learning for SQL injection prevention on server-side scripting,
in: 2016 International Computer Science and Engineering Conference (ICSEC), IEEE, 2016, pp. 1–6.
URL: http://ieeexplore.ieee.org/document/7859950/. doi:10.1109/ICSEC.2016.7859950.

[45] D. Das, U. Sharma, D. K. Bhattacharyya, Defeating SQL injection attack in authentication security:
an experimental study, International Journal of Information Security 18 (2019) 1–22. URL: http:
//link.springer.com/10.1007/s10207-017-0393-x. doi:10.1007/s10207-017-0393-x.

[46] Ö. Kasim, An ensemble classification-based approach to detect attack level of SQL injections,
Journal of Information Security and Applications 59 (2021) 102852. URL: https://linkinghub.elsevier.
com/retrieve/pii/S2214212621000867. doi:10.1016/j.jisa.2021.102852.

[47] M. R. Ul Islam, M. S. Islam, Z. Ahmed, A. Iqbal, R. Shahriyar, Automatic Detection of NoSQL
Injection Using Supervised Learning, 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC) 1 (2019) 760–769. URL: https://ieeexplore.ieee.org/document/8754304/.
doi:10.1109/COMPSAC.2019.00113.

[48] N. M. Sheykhkanloo, Employing Neural Networks for the Detection of SQL Injection Attack, Pro-
ceedings of the 7th International Conference on Security of Information and Networks 2014-Septe
(2014) 318–323. URL: https://dl.acm.org/doi/10.1145/2659651.2659675. doi:10.1145/2659651.
2659675.

[49] M. Robnik-Sikonja, Improving random forests, in: Proceedings of the European Conference on
Machine Learning, 2004, pp. 359–370. doi:10.1007/978-3-540-30115-8_34.

[50] G. Biau, Analysis of a random forests model, Journal of Machine Learning Research 13 (2010)
1063–1095. doi:10.5555/2503308.2343682.

[51] M. T. Keane, E. M. Kenny, How case-based reasoning explains neural networks: A theoreti-
cal analysis of XAI using post-hoc explanation-by-example from a survey of ANN-CBR twin-
systems, in: K. Bach, C. Marling (Eds.), Case-Based Reasoning Research and Development -
27th International Conference, ICCBR 2019, Otzenhausen, Germany, September 8-12, 2019, Pro-
ceedings, volume 11680 of Lecture Notes in Computer Science, Springer, 2019, pp. 155–171. URL:
https://doi.org/10.1007/978-3-030-29249-2_11. doi:10.1007/978-3-030-29249-2_11.

[52] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17, Curran
Associates Inc., Red Hook, NY, USA, 2017, p. 4768–4777.

64

http://dx.doi.org/10.1109/ACCESS.2022.3177783
https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset
https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset
https://ieeexplore.ieee.org/document/8959617/
http://dx.doi.org/10.1109/ICECTA48151.2019.8959617
https://ieeexplore.ieee.org/document/8791338/
http://dx.doi.org/10.1109/ICEI.2019.00093
http://dx.doi.org/10.1109/ICEI.2019.00093
https://ieeexplore.ieee.org/document/8854182/
http://dx.doi.org/10.1109/ACCESS.2019.2944951
https://ieeexplore.ieee.org/document/9123029/
https://ieeexplore.ieee.org/document/9123029/
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00035
https://ieeexplore.ieee.org/document/8616823/
https://ieeexplore.ieee.org/document/8616823/
http://dx.doi.org/10.1109/TVT.2019.2893675
http://ieeexplore.ieee.org/document/7859950/
http://dx.doi.org/10.1109/ICSEC.2016.7859950
http://link.springer.com/10.1007/s10207-017-0393-x
http://link.springer.com/10.1007/s10207-017-0393-x
http://dx.doi.org/10.1007/s10207-017-0393-x
https://linkinghub.elsevier.com/retrieve/pii/S2214212621000867
https://linkinghub.elsevier.com/retrieve/pii/S2214212621000867
http://dx.doi.org/10.1016/j.jisa.2021.102852
https://ieeexplore.ieee.org/document/8754304/
http://dx.doi.org/10.1109/COMPSAC.2019.00113
https://dl.acm.org/doi/10.1145/2659651.2659675
http://dx.doi.org/10.1145/2659651.2659675
http://dx.doi.org/10.1145/2659651.2659675
http://dx.doi.org/10.1007/978-3-540-30115-8_34
http://dx.doi.org/10.5555/2503308.2343682
https://doi.org/10.1007/978-3-030-29249-2_11
http://dx.doi.org/10.1007/978-3-030-29249-2_11

	1 Introduction
	2 Background
	2.1 Overview and Types of SQL Injection Attacks
	2.2 Impacts and Countermeasures
	2.3 Role of Machine Learning and Explainability

	3 Dataset and Model
	4 Methodology for the generation of Counterfactual Explanation Cases
	5 Evaluation of the counterfactual explanation cases
	6 Discussion
	7 Conclusions

