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Abstract
There are various unknown association patterns are involved in the dynamic spatiotemporal dependencies of
multivariate time series forecasting, making it a challenging task. However, current mainstream time series
prediction models often neglect potential causal relationships. Due to the presence of hidden confounders, these
models inadvertently learn spurious relationships. Overlooking potential causal relationships and spurious
relationships may lead to limited generalization capabilities when handling out-of-distribution data. To address
this challenge, we draw inspiration from the field of causal inference and incorporate a random intervention
mechanism. We propose the Causal Intervention Spatiotemporal Graph Neural Network(CISTGNN), which offers
a causal perspective on time series forecasting. Our approach involves randomly sampling and recombining
variant patterns across different periods to create an intervention distribution, thereby eliminating the misleading
effects of hidden confounders. A series of experiments test on a real traffic flow dataset to validate the effectiveness
of the proposed method. Compared to the baseline model, our model improves by 1.37 percent on average.
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1. Introduction

Multivariate time series data, found in various domains like cloud computing, traffic, energy, finance,
and social networks [1], is essential for understanding historical trends and making predictions based on
past observations. However, effectively capturing the complex interdependencies between variables and
dynamic patterns in such data presents a significant challenge. Traditional analytical tools, including
Support Vector Regression (SVR) [2], Gradient Boosting Decision Trees (GBDT) [3], Vector Auto-
Regression (VAR) [4], and Auto-Regressive Integrated Moving Average (ARIMA) [5], often struggle
to handle the intricacies of these time series relationships and lead to less accurate predictions [6, 7].
With the advent of deep learning technologies, various neural networks such as Convolutional Neural
Networks (CNN) [8], Recurrent Neural Networks (RNN) [9, 10], and Transformers [11, 12] have shown
significant promise in modeling real-world time series data. However, a critical limitation of these
methods is their inability to explicitly account for spatial relationships among time series in a non-
Euclidean space [13], restricting their applicability [14]. Recently, there has been a growing interest
in Spatial-Temporal Graph Neural Networks (STGNN) [15, 16, 17, 18, 19] for modeling multivariate
time series data. These STGNNs demonstrate a robust capability to handle graph-structured data by
treating variables as nodes within multivariate time series. This development opens up exciting new
possibilities in the field [18].

However, most time series forecasting methods tend to prioritize spatiotemporal correlations within
sequences while neglecting the underlying physical principles and causal relationships between these
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Figure 1: Hidden confounders are unobserved factors that can affect traffic flow, such as weather. In different
weather conditions, traffic flow may vary significantly in certain locations. In the graph, darker nodes correspond
to higher traffic flow. In this example, weather factors serve as hidden confounders affecting the model’s
generalization.

models [19, 20, 21]. When external conditions come into play, spatiotemporal correlations can become
unstable, potentially leading to spurious correlations in observed outcomes. As we delve into the
mechanisms behind the generation of observational data, causality becomes critical. Table 1 compares
the researchers’ different solutions for hidden confounders. For instance, some researchers [22, 23] have
suggested that there exists a certain level of correlation between taxi and bicycle flows, which can be
mutually beneficial for multitask learning. Under normal weather conditions, a correlation is observed
between taxi and bicycle flows since during peak commuting hours, people’s travel patterns align,
resulting in similar trends for both modes of transportation. However, in adverse weather conditions,
bicycle demand decreases due to unfavorable weather conditions, while taxi demand increases, leading
to opposite trends for both during the same period. This demonstrates that weather conditions act as
hidden confounders influencing the observed correlation between taxi and bicycle flows. In this context,
weather factors serve as a prime example of how hidden confounding variables can significantly impact
the model’s predictive performance and robustness. Similarly, in various domains, there may exist
hidden confounders that exert an influence on the predictive performance and robustness of models.

Table 1
Comparision of various approach for handling hidden confounders.

Approach Assumption Domian Key Functionality
CAPE [24] Hidden confounders Event Forecasting Individual Treatment Effect (ITE) Estimation
CCHMM [23] Hidden confounders Multimodal Traffic Prediction Causal Conditional Hidden Markov Model
CaST [25] Hidden confounders Traffic Flow Prediction Back-door adjustment & Front-door adjustment
STNSCM [26] Hidden confounders Bike Flow Prediction Frontdoor Criterion & Counterfactual
CausalGNN [27] Hidden confounders Epidemic Forecasting Causal module & Attention-based dynamic GNN
DCCF [28] Hidden confounders Recommender Systems Front-door adjustment

To address this challenge, we conduct a comprehensive causal analysis of the prediction process of the
spatiotemporal graph neural network. This analysis gives us a deep understanding of the relationships
among various elements, including inputs X, hidden confounders HC, causal features C, shortcut
features S, hidden layers H, and predictions Y, as shown in Fig 2. Firstly, hidden confounders are
unobserved factors that can affect traffic flow, such as weather, holidays, and unexpected events, as
shown in Fig 1. Secondly, shortcut features are features that are correlated with the prediction target
but not causally related. These could include weather, holidays, and unforeseen events, which may
form hidden confounders and give rise to shortcut features. Lastly, causal features are features that
reflect causal relationships in traffic flow, such as traffic signals, traffic rules, traffic events, and traffic
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demand. These features help machine learning models to understand and predict changes in traffic flow
more accurately, thereby enhancing the interpretability and reliability of predictions. However, these
shortcut features can unintentionally create a backdoor path, leading to spurious correlations between
causal features and predictions. Therefore, our strategy to address this issue focuses on mitigating the
effects of hidden confounders. We aim to enhance the model’s generalization capability by effectively
leveraging the potential of causal features while filtering out shortcut features.

HC

H1S

C

YX

H2

Hidden confounders

Input

Hidden layers

Causal feature

Shortcut feature

Output

Figure 2: Structural causal graph for spatiotemporal graph neural networks. Causal features are features that
reflect causal relationships in traffic flow, while shortcut features are features that are correlated with the
prediction target but not causally related.

In response to these challenges, we propose a novel CISTGNN known as the Dynamic Graph Attention
Network Based on Causal Intervention. Our approach effectively addresses out-of-distribution by
identifying and harnessing stable spatiotemporal patterns with reliable predictive capabilities. To
achieve this, we introduce a disentangled spatial attention network that captures both variant and
invariant patterns within dynamic graphs. This network empowers each node to focus on its historical
neighbors through a disentangled attention information propagation mechanism. Drawing inspiration
from the field of causal inference, we incorporate a random intervention mechanism. This innovative
approach involves sampling and recombining variant patterns across different periods to create an
intervention distribution, thereby eliminating the misleading effects of variable patterns. Consequently,
our model becomes capable of capturing and leveraging stable spatiotemporal patterns that offer
dependable predictive performance, even when dealing with out-of-distribution. Our contribution can
be summarized as follows:

• Firstly, we analyze the physical mechanisms behind data generation. This analysis forms the
foundation for constructing a causal graph, which explicitly describes the causal relationships
among various factors in the data and identifies the impact of hidden confounders.

• Secondly, we propose a spatiotemporal graph neural network prediction model based on the
principle of causal intervention. In our model, we use the backdoor criterion to effectively mitigate
the influence of hidden confounders.

• Finally, the reliability and validity of our model are validated by extensive experiments on
real-world datasets. Compared with the baseline model, our model improves by 1.37% on average.

2. Related work

Spatiotemporal Graph Neural Networks are a type of graph neural network used for processing
spatiotemporal data, capturing dependencies in both spatial and temporal dimensions [29]. They
find applications in multivariate time series forecasting, such as traffic flow prediction and energy
consumption forecasting. The approach involves representing multivariate time series data as a graph,
where nodes represent variables and edges denote relationships. Spatiotemporal features are then
extracted using graph convolution and temporal convolution operations for prediction [13]. Examples
include STGCN [17] and MTGNN [18] for handling non-Euclidean spaces and automatically learning
spatial dependencies. DCRNN [16] models traffic flow as a diffusion process on a directed graph, while
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ASTGNN [19] utilizes attention mechanisms to extract features. Recently, DSTGN [6] was introduced,
which can extract static and dynamic graph matrices to model long-term and short-term patterns
separately.

Disentangled Representation Learning is a machine learning approach aimed at acquiring repre-
sentations from data that can separate different factors or features [30]. Disentangled Representation
Learning is applied to attention mechanisms, mainly involving encoding vectors for queries, keys, and
values separately as content and positional vectors, thereby achieving disentangled representations of
content and position [31]. There are various methods for applying disentangled representation learning
to attention mechanisms, such as DeBERTa [30], Disenhan [32], and DisenKGAT [33]. They each use
different approaches to construct and compute disentangled matrices to achieve disentangled attention
for content and position.
Causal Inference plays a crucial role in shaping the design of machine learning algorithms, pro-

viding essential guidance for their development. As artificial intelligence continues to advance, an
increasing number of researchers are recognizing the pivotal role of causal inference in addressing the
limitations of existing AI methods, particularly in areas like abstraction, reasoning, and interpretability.
In his book The Book of Why, Turing Award winner Judea Pearl categorizes causal inference into three
levels: the first level is “association”; the second level is “intervention”; and the third level is “counterfac-
tual inference” [34]. Hidden confounders represent potential influences on causal inference [35]. These
factors are variables that exhibit correlations with both the independent and dependent variables but
do not lie on the causal path. The presence of hidden confounders can result in spurious correlations
or biases between independent and dependent variables, consequently interfering with or obscuring
causal effects. To mitigate the impact of hidden confounders, it becomes imperative to employ methods
aimed at identifying and controlling these hidden confounders.

3. Preliminaries

This paper focuses on the prediction of multivariate time series and leverages a graph-based structure
to capture the relationships among various variables. In this approach, individual variables in the data
are treated as nodes in a graph, and the observations associated with each node are interpreted as either
the node’s features or graph signals, which is an intuitive and natural methodology. To represent the
connections between these nodes, a graph adjacency matrix is employed.

Definition 1 (Graph 𝐺): We represent the relationships among multivariate variables using the
notation 𝐺 = (𝑉,𝐸,𝐴). In this context, the graph consists of a set of vertices (or nodes) 𝑉 ∈ R𝑁 and a
set of edges 𝐸, where each edge connects two vertices, indicating the presence of a specific relationship
between them. The matrix 𝐴 ∈ R𝑁×𝑁 describes the connections between these nodes. The adjacency
matrix has dimensions 𝑁 ×𝑁 , where 𝑁 represents the number of vertices in the graph.

The objective of predicting time-varying graph signals is to learn a mapping function that can
estimate the future features or properties of nodes within the graph based on their historical attributes.
This process entails leveraging the historical attributes of the nodes over the past 𝑇𝑝 time steps to make
predictions about the features or attributes of the nodes for the future 𝑇𝑓 time steps.(︀

X𝑡−𝑇𝑝+1,X𝑡−𝑇𝑝+2, . . . ,X𝑡

)︀ 𝑓−→
(︀
X𝑡+1,X𝑡+2, . . . ,X𝑡+𝑇𝑓

)︀
4. Method

In this section, we will begin by presenting the comprehensive flow of our model, as shown in Fig 3. We
will commence with an analysis of causal inference as applied to the learning process of graph neural
networks. We will involve introducing the relevant Structural Causal Models (SCM) and discussing
the concept of backdoor adjustment. Given our assumptions, we think that hidden confounders play
a pivotal role in influencing the model’s generalization. Consequently, we propose a novel strategy
to mitigate the adverse effects of these hidden confounders. The overarching model comprises four
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key components: a causal feature learning module, a K-layer spatiotemporal convolution module, a
causal intervention module, and a predictive output module. The interaction between each module
involves several steps. First, we disentangle the features into causal and non-causal features using the
causal feature module. Next, the model learns causal features and non-causal features separately in
K-layer spatiotemporal features. Then, we perform random interventions on non-causal features and
fuse causal features. Finally, we make the final prediction using the prediction module.

X2X1 XnX3
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Attention

G
N

N
G

N
N

Prediction

Temporal  

Attention

Spatial  

Attention

Spatial  Causal 

Attention

Spatial Shortcut 

Attention

Spatial  

convolution do

Train

Test

Hidden 

confounder

Figure 3: The overall model framework of CISTGNN. Hidden confounders can precipitate out-of-
distribution generalization issues. Our model is composed of a temporal attention module, a spatial
attention module, a causal intervention module, and a forecasting module. We disentangled the spatial
attention module into two distinct components: Spatial Causal Attention and Spatial Shortcut Attention.
In the end, we alleviate the bias induced by hidden confounders through the causal intervention.

4.1. Strutural causal model

We first analyze the underlying mechanisms of data generation from the perspective of structural
causal models, which can provide better interpretability for the model. We propose a novel framework,
CISTGNN, which incorporates causal reasoning into the prediction of future time series in a spatio-
temporal environment. We use a structural causal model (SCM) to describe the causal relationship
between input X, hidden confounders HC, causal feature C, shortcut features S, spatiotemporal state
H, and prediction target Y, as shown in Fig 2, where directed edges denote the causal relationships
among nodes. We assume that causal feature C and shortcut features S can be disentangled from the
spatio-temporal data X and integrate them to form the spatio-temporal state H, thus describing the
dynamic spatio-temporal patterns in the data.

4.2. Causal intervention via backdoor criterion

The contextual condition HC is defined as the common cause of both X and H. This situation can
lead to H being biased towards the general state while potentially disregarding specific environmental
factors due to dataset limitations, resulting in an unfair bias of H. It is evident from Fig 2 that certain
backdoor paths exist, including HC → X → C and HC → X → S. Breaking the link HC → X → C
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enables X to fairly incorporate each contextual condition C into the spatiotemporal state H. To achieve
graph representation learning, we ought to eliminate these backdoor paths. Fortunately, causal theory
[35, 34] offers a practical solution: we can apply do-calculus to variable C to eliminate these backdoor
paths by estimating Pm(H|C) = P(H|do(C)).

𝑃 (𝐻 | 𝑑𝑜(𝐶)) = 𝑃𝑚(𝐻 | 𝐶) (1)

=
∑︁
𝑠∈ℋ𝒞

𝑃𝑚(𝐻 | 𝐶, 𝑠)𝑃𝑚(𝑠 | 𝐶)

=
∑︁
𝑠∈ℋ𝒞

𝑃𝑚(𝐻 | 𝐶, 𝑠)𝑃𝑚(𝑠)

=
∑︁
𝑠∈ℋ𝒞

𝑃 (𝐻 | 𝐶, 𝑠)𝑃 (𝑠),

From the analysis of Formula (1), it is known that we can mitigate the bias brought by hidden con-
founders through the backdoor criterion. In our paper, our approach is to perform random interventions
on non-causal features and fuse causal features.

4.3. Disentangled dynamic Spatial attention

To better learn causal features, we disentangle spatial features into invariant patterns and variant
patterns. In the spatial dimension, different nodes interact with each other, and this interaction is highly
dynamic. To capture this dynamism, this paper employs an attention mechanism that can adaptively
capture spatial causal relationships. We use the following attention mechanism[19]:

S = B𝑠 · 𝜎
(︂(︁

𝒳 (𝑙−1)
ℎ A1

)︁
A2

(︁
A3𝒳 (𝑙−1)

ℎ

)︁𝑇
+ b𝑠

)︂
(2)

In this context, 𝒳 (𝑙−1)
ℎ represents the input data of the 𝑙-th layer, which is a three-dimensional tensor

characterized by dimensions 𝑁 ×𝐶𝑙−1 × 𝑇𝑙−1. Here, 𝑁 signifies the number of nodes, 𝐶𝑙−1 represents
the number of channels, and 𝑇𝑙−1 denotes the time length. 𝐵𝑠 stands for the parameter matrix for
spatial attention, which is a two-dimensional matrix with dimensions 𝑁 ×𝑁 . The bias for the spatial
attention mechanism denoted as 𝑏𝑠, is a one-dimensional vector with dimensions 𝑁 . Parameter 𝐴1 is a
one-dimensional vector with dimensions 𝑇𝑙−1. Additionally, 𝐴2 represents the parameter matrix for
spatial attention with dimensions 𝐶𝑙−1 × 𝑇𝑙−1, and 𝐴3 is a one-dimensional vector with dimensions
𝐶𝑙−1. To enhance the expressive power of the model, we apply the activation function 𝜎, which is a
non-linear function. The attention matrix 𝑆, is a two-dimensional matrix sized 𝑁 ×𝑁 . Each element
Si,j of this matrix represents the relevance strength between node 𝑖 and node 𝑗.

PI = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (Si,j) ,Pv = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (−Si,j) (3)

In the context of our model, we denote the masks for invariant and variant patterns as PI and Pv

respectively [36]. Notably, there exists a negative correlation between these two patterns. This negative
correlation arises from the observation that dynamic neighbors with higher attention scores in one
pattern tend to have lower attention scores in the other pattern. This intriguing relationship suggests
that, in different patterns, the model’s focus on dynamic neighbors can vary. This variation, in turn,
enhances the model’s ability to effectively capture specific structures and changes in the data.

4.4. Temporal attention

In the temporal dimension, traffic conditions exhibit correlations between different time steps, and
the nature of this correlation can change in response to varying situations. To effectively address this
dynamic nature of temporal data, we employ an attention mechanism that dynamically assigns varying
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levels of importance to different time steps. This approach enables the model to adapt its focus based
on specific situations, thereby enhancing its ability to capture the evolving correlations and variations
in the data.

Q = B𝑞 · 𝜎
(︂(︂(︁

𝒳 (𝑙−1)
ℎ

)︁𝑇
M1

)︂
M2

(︁
M3𝒳 (𝑟−1)

ℎ

)︁
+ b𝑞

)︂
(4)

Q′
𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (Qi,j) (5)

within our model, we employ learnable parameters denoted as B𝑞,b𝑞 ∈ R𝑇𝑙−1×𝑇𝑙−1 ,M1 ∈ R𝑁 ,M2 ∈
R𝐶𝑙−1×𝑁 , and M3 ∈ R𝐶𝑙−1 . These parameters are essential for computing the elements of the spatio-
temporal attention matrix, denoted as 𝑄. This matrix, with dimensions 𝑇𝑙−1 × 𝑇𝑙−1, serves as a
representation of the correlations between different time steps in the input data. The value of each
element Q𝑖,𝑗 in this matrix signifies the strength of dependency between the 𝑖-th and 𝑗-th time steps.

4.5. Spatail temporal convolution

The spatiotemporal convolution module utilizes graph convolution to model spatial structures and
standard convolution to simulate temporal dynamics. The synergy of these modules equips the neural
network to handle spatiotemporal data with precision, significantly improving its modeling capabilities
for complex tasks.

Graph convolution extends convolution operations to graph structures, capturing spatial features in
graph data, useful for tasks like traffic flow prediction. It’s implemented through spectral and spatial
methods. Spectral methods use Laplacian matrices but have high computational complexity. Spatial
methods aggregate features with weighted sums, proving more efficient and adaptable to dynamic
graphs. The Laplacian matrix, derived from adjacency and degree matrices, is crucial for structural
characterization. Eigenvalue decomposition of it yields matrices Λ and 𝑈 , providing spectral properties
insights. Graph Fourier transform, facilitated by 𝑈 , shifts signals from spatial to frequency domains,
enabling filtering. Graph convolution employs a kernel function 𝑔𝜃 and 𝑈 , involving a sequence of
graph Fourier transform, filtering, and inverse transform, forming a comprehensive framework for
graph signal processing.

Firstly, we can represent the Laplacian matrix and its eigenvalue decomposition as an equation:

L = D−A = UΛU𝑇 (6)

where A is the adjacent matrix, I𝑁 is a unit matrix, and the degree matrix D ∈ R𝑁×𝑁 is a diagonal
matrix, consisting of node degrees, D𝑖𝑖 =

∑︀
𝑗 A𝑖𝑗 .

Secondly, we can represent the graph Fourier transform and inverse graph Fourier transform as an
equation:

�̂� = U𝑇𝑥, 𝑥 = U�̂� (7)

Graph convolution is a method used to extract spatial features and dependencies in signals on graphs.
The core idea is to define a kernel function 𝑔𝜃 using the Laplacian matrix and its eigenvalues, and then
apply this kernel function to filter the signal 𝑥 on the graph. The graph convolution operation can be
represented by the following formula:

𝑔𝜃 *𝐺 𝑥 = 𝑔𝜃(L)𝑥 = 𝑔𝜃
(︀
UΛU𝑇

)︀
𝑥 = U𝑔𝜃(Λ)U𝑇𝑥 (8)

in graph convolution, *𝐺 signifies the operation transforming signals on a graph. Initially, 𝑔𝜃 and
𝑥 undergo graph Fourier transforms to the frequency domain. These are then multiplied, and the
convolution result is obtained via inverse graph Fourier transform. The matrix 𝑈 facilitates the forward
transform, while U𝑇 enables the inverse, translating signals between spatial and frequency domains.
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Combined, these steps form the graph convolution process, elucidating its foundational concepts and
procedural flow.

Nevertheless, in the context of large-scale graphs, a direct eigenvalue decomposition of the Laplacian
matrix can be exceedingly time-consuming. To mitigate this challenge, our paper adopts a more efficient
approach based on the utilization of Chebyshev polynomials to approximate the solution[37].

𝑔𝜃 *𝐺 𝑥 = 𝑔𝜃(L)𝑥 =

𝐾−1∑︁
𝑘=0

𝜃𝑘𝑇𝑘(L̃)𝑥 (9)

The recursive definition of Chebyshev polynomials is integral to our approach. L̃ = 2
𝜆max

L− I𝑁 , 𝜆max

is the maximum eigenvalue of the Laplacian matrix.This definition is as follows: 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥)−
𝑇𝑘−2(𝑥), with initial values 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥. This recursive definition is pivotal in our method
as it effectively extracts information from up to K− 1 neighboring nodes centered around each focal
node and applies the convolution kernel 𝑔𝜃 . To finalize the graph convolution process, we employ the
Rectified Linear Unit (ReLU) as the activation function, denoted as ReLU (𝑔𝜃 *𝐺 𝑥). This combination
of steps allows efficient and scalable processing of large-scale graphs, effectively approximating the
convolution operation of the Laplacian matrix using Chebyshev polynomials.

To dynamically adapt and fine-tune the correlations between nodes, our approach introduces a
novel element. For each term of the Chebyshev polynomial, we perform a multiplication operation
by taking 𝑇𝑘(̃︀L) and multiplying it by spatial attention matrix PI ∈ R𝑁×𝑁 and PV ∈ R𝑁×𝑁 . This
operation is symbolized as 𝑇𝑘(L̃)⊙PI and 𝑇𝑘(L̃)⊙PV, where the symbol ⊙ represents the Hadamard
product. Consequently, the graph convolution formula mentioned earlier can be succinctly represented
as follows:

𝑔𝜃 *𝐺 𝑥 = 𝑔𝜃(L)𝑥 =

𝐾−1∑︁
𝑘=0

𝜃𝑘

(︁
𝑇𝑘(L̃)⊙PI

)︁
𝑥 (10)

𝑔𝜃 *𝐺 𝑥 = 𝑔𝜃(L)𝑥 =
𝐾−1∑︁
𝑘=0

𝜃𝑘

(︁
𝑇𝑘(L̃)⊙Pv

)︁
𝑥 (11)

This definition can be extended to accommodate graph signals with multiple channels. For instance,
in recent developments, the input is represented as 𝒳 (𝑙−1)

ℎ , where each node’s features encompass
𝐶𝑙−1 channels. At each time step 𝑡, 𝐶𝑙 filters are applied to the graph 𝑋𝑡, yielding 𝑔𝜃 *𝐺 𝑥, wher Θ =
(Θ1,Θ2, . . . ,Θ𝐶𝑙

) ∈ R𝐾×𝐶𝑙−1×𝐶𝑙 represents the convolutional kernel parameters[38]. Consequently,
each node is updated by leveraging information from its 0 to K− 1 order neighbors.

After conducting a graph convolution operation to capture the neighborhood information of each
node in the spatial dimension, then we introduce a standard convolutional layer in the temporal
dimension. The primary purpose of this convolutional layer is to update the node signals by effectively
integrating information from adjacent time slices.

𝒳 (𝑙)
ℎ = Re𝐿𝑈

(︁
Φ *

(︁
Re𝐿𝑈

(︁
𝑔𝜃 *𝐺 �̂� (𝑙−1)

ℎ

)︁)︁)︁
(12)

In this formula, the parameter 𝒳 (𝑙−1)
ℎ denotes the output of the 𝑙-th layer within the recent component. 𝜃

represents the parameters of the time-dimension convolution kernel, 𝑔𝜃 signifies the graph convolution
kernel function, *𝐺 denotes the graph convolution operation, and Re𝐿𝑈 stands for the rectified linear
unit activation function. This formula can be broken down into the following sequential steps:

We introduce a spatial-temporal convolution module that relies on spatial-temporal convolution
operations and spatial-temporal attention mechanisms. The purpose is to extract both spatial and
temporal features from traffic data. To achieve this, we stack multiple spatial-temporal convolution
modules and spatial-temporal attention modules within a spatial-temporal block. This strategy allows
us to comprehensively capture a broad spectrum of dynamic spatial-temporal correlations. To ensure
that the output of each component aligns with the prediction target, we have incorporated a fully
connected layer after each component. Additionally, we utilize the rectified linear unit (ReLU) as the
activation function.
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5. Experiment

5.1. Dateset

We propose a novel spatiotemporal graph neural network called CISTGNN, which excels in handling
spatiotemporal data. We evaluate its performance through a multi-step prediction task, aiming to predict
data for multiple future time steps. We conduct Experiments on four publicly available traffic datasets
that already include graph structures. On datasets with graph structures, we compare CISTGNN with
other spatiotemporal graph neural networks that use predefined graphs.

5.2. Experimental settings

We evaluate the performance of our proposed CISTGNN model using four traffic datasets, PeMSD3,
PeMSD4, PeMSD7, and PeMSD8, both of which come equipped with graph structures. We divide the
dataset into training, validation, and test sets in a 6:2:2 ratio, maintaining the chronological order. In
the multi-step prediction task, we leverage data from the preceding 12 time steps to forecast data for
the subsequent 12-time steps, effectively predicting traffic flow for the next hour based on the previous
hour’s data. Our CISTGNN model is implemented using the PyTorch framework, and the experiments
are conducted on a machine featuring an Intel(R) Xeon(R) Silver 4310 2.10GHz 12-core CPU and an
NVIDIA GeForce GTX 4090 with 24 GB of GPU memory. The source code for our CISTGNN can be
found at https://github.com/xinxinluo123/CISTGNN. During model training, we employ the Adam
optimizer with a learning rate of 0.001. The model’s multi-step prediction task consists of Stacking
three spatio-temporal layers. The first layer of the output module consists of 512 output channels, while
the second layer has 12 output channels. Our training process set 80 epochs, with a node embedding
dimension set at 10. The batch size remains configured at 32. Additionally, we leverage Chebyshev
polynomials of order 2, utilizing a total of 64 Chebyshev filters and 64 temporal filters.

5.3. Baseline methods and metrics

To evaluate the performance of the multi-step prediction task, we employ three evaluation metrics:
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error
(RMSE). We denote the real signal as 𝑌 and the predicted signal as 𝑌 . Both are represented as matrices
with dimensions 𝑁 × 𝑇 , where 𝑁 signifies the number of nodes, 𝑇 signifies the number of time steps,
and 𝜌 indicates the test set. These metrics provide valuable insights into the accuracy and robustness of
our predictions.

We assess the performance of our model through a multi-step prediction task and conduct a compar-
ative analysis against nine baseline models: FC-LSTM [39], TCN [40], VAR [4], SVR [41], DCRNN [16],
STGCN [17], ASTGCN [19], Graph WaveNet [42], STSGCN [43].

Table 2
Baseline comparison on traffic datasets for spatial–temporal GNN.

Dataset Metrics FC-LSTM TCN VAR SVR DCRNN STGCN ASTGCN Graph WaveNet STSGCN CISTGNN

PeMSD3

MAE 21.33 19.33 19.72 19.77 19.56 ± 0.32 17.62 ± 0.13 18.67 ± 0.42 19.85 ± 0.03 17.48 ± 0.15 17.03 ± 0.22

RMSE 35.11 33.24 32.38 32.78 29.86 ± 0.47 33.87 ± 1.18 30.71 ± 1.02 32.94 ± 0.18 29.21 ± 0.56 28.99 ± 0.14

MAPE (%) 22.33 19.86 20.50 23.04 16.83 ± 0.13 17.33 ± 0.94 19.85 ± 1.06 19.31 ± 0.49 16.78 ± 0.20 16.49 ± 0.60

PeMSD4

MAE 26.2 23.11 24.44 26.18 24.42 ± 0.06 23.90 ± 0.17 22.90 ± 0.20 25.54 ± 0.03 21.19 ± 0.10 20.88 ± 0.10

RMSE 40.49 37.25 37.76 38.91 37.48 ± 0.10 36.43 ± 0.22 35.59 ± 0.35 39.70 ± 0.04 33.65 ± 0.20 33.77 ± 0.07

MAPE (%) 19.30 15.48 17.27 22.84 16.86 ± 0.09 13.67 ± 0.14 16.75 ± 0.59 17.29 ± 0.24 13.90 ± 0.05 13.63 ± 0.02

PeMSD7

MAE 29.96 32.68 27.96 28.45 24.45 ± 0.85 26.22 ± 0.37 28.13 ± 0.70 26.85 ± 0.05 24.26 ± 0.14 24.03 ± 0.04

RMSE 43.94 42.23 41.31 42.67 37.61 ± 1.18 39.18 ± 0.42 43.67 ± 1.33 42.78 ± 0.07 39.23 ± 0.27 38.41 ± 0.74

MAPE (%) 14.34 14.22 12.11 14.00 10.67 ± 0.53 10.74 ± 0.16 13.31 ± 0.55 12.12 ± 0.41 10.21 ± 0.05 10.05 ± 0.07

PeMSD8

MAE 22.20 22.69 19.83 20.92 18.49 ± 0.16 18.79 ± 0.49 18.72 ± 0.16 19.13 ± 0.08 17.13 ± 0.09 17.07 ± 0.01

RMSE 33.06 35.79 29.24 31.23 27.30 ± 0.22 28.23 ± 0.36 28.99 ± 0.11 31.05 ± 0.07 26.80 ± 0.18 27.24 ± 0.03

MAPE (%) 15.02 14.04 13.08 14.24 11.69 ± 0.06 10.55 ± 0.30 12.53 ± 0.48 12.68 ± 0.57 10.96 ± 0.07 10.86 ± 0.02

165

https://github.com/xinxinluo123/CISTGNN


Xinxin Luo et al. ICCBR’24 Workshop Proceedings

5.4. Comparison and analysis of prediction results

We utilize the CISTGNN model for the multi-step prediction task. In the context of multi-step prediction,
Table 2 provides an overall performance comparison between our CISTGNN model and 9 representative
comparison methods. This comparison is based on average MAE, RMSE, and MAPE across 12 prediction
time steps, leading to the following observations:

Table 2 shows the comparison of the prediction performance of CISTGNN with the 9 benchmark
methods. We observe that (1) time series prediction models, including traditional methods (i.e., VAR),
and machine learning-based methods (i.e., SVR) because they only consider temporal features but not
spatial correlation, which is equally important for spatio-temporal traffic prediction. Therefore, they
have the worst prediction performance (2) Spatiotemporal graph neural networks generally perform
better because they use graph neural networks to further model spatial correlation. DCRNN is a typical
RNN-based method for spatiotemporal graph data prediction, and STGCN, ASTGCN, Graph WaveNet,
and STSGCN are four typical CNN-based methods that only focus on the correlation of spatio-temporal
data and ignore the causality of spatio-temporal data.

We conduct experiments on the PEMS03 dataset. The results show that our method improves the
MAE, RMSE, and MAPE(%) by 0.82, 0.89, and 1.16 respectively, compared to the baseline method [19].
Similarly, on the PEMS07 dataset, our method improves the MAE, RMSE, and MAPE(%) by 1.55, 1.24,
and 1.27 respectively. Also, on the PEMS04 dataset, our method improves MAE, RMSE, and MAPE(%)
by 1.54, 1.58, and 2.24 respectively, and on the PEMS08 dataset, our method improves MAE, RMSE, and
MAPE(%) by 1.26, 1.31 and 1.64 respectively. Our model outperforms ASTGCN with a 2% improvement
in MAE on both the PeMSD4 and PeMSD8 datasets.

5.5. Ablation study

Our CISTGNN model comprises several key components, all of which contribute to the model’s perfor-
mance. To validate their effectiveness, we conducted ablation experiments on the PeMSD4 and PeMSD8
datasets by removing the following components:

• CISTGNN w/o causal intervention: Causal intervention has been removed, and spatiotemporal
attention is now directly transferred to the graph convolutional neural network, focusing solely
on the dynamic attention mechanism without causal intervention.

• CISTGNN w/o causal attention: Eliminate the causal attention module and replace it with direct
causal intervention on non-causal data.

• CISTGNN w/o causal intervention + causal attention: The causal intervention and causal attention
models in CISTGNN have been removed, allowing the model to concentrate solely on relevance
learning.

Figure 4: Results of CISTGNN in the ablation tests on the PeMSD4.

We evaluate the test results using three metrics: RMSE, MAPE, and MAE. The specific results are shown
in Fig 4 and Fig 5. From these results, we can make the following observations:

• The CISTGNN model outperforms all datasets, confirming the effectiveness of each component.
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Figure 5: Results of CISTGNN in the ablation tests on the PeMSD8.

• Removing causal intervention leads to a performance decrease, particularly in terms of RMSE on
the PeMSD4 dataset and MAE on the PeMSD8 dataset.

• Removing causal attention leads to performance degradation, especially in PeMSD8, which em-
phasizes the importance of establishing causal attention when establishing dynamic dependencies.

6. Conclusion

In our study, we rethink the utilization of spatio-temporal graph neural networks for multivariate
time-series prediction, with a specific emphasis on the causal perspective. We’ve discovered that
existing spatio-temporal graph neural network learning approaches frequently depend on shortcut
features to support their predictions. However, these shortcut features might inadvertently introduce
confounders and create backdoor paths, leading to erroneous correlations in spatiotemporal graph neural
network learning. To address this confounding effect, we introduce a causality-based attention-learning
mechanism and a causal intervention mechanism guided by causality theory. We propose the Causal
Intervention Spatiotemporal Graph Neural Network (CISTGNN), which offers a causal perspective on
time series forecasting. CISTGNN is composed of two crucial components: the Causal Spatiotemporal
Attention Module and the Causal Intervention Module. By distinguishing between causal relationships
and spurious ones, we reduce the model’s reliance on shortcut features and effectively leverage causal
features. Experimental results validate the efficacy of this approach.
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