
Genetic Algorithm for Maritime Route Planning Projects 

with Improved Constraints 

Natalia Bushuyeva1,*,†, Andrii Ivko1,†, Andriy Romanov2,†, Mykola Malaksiano2,† and 

Vadim Romanuke3,† 

1 Kyiv National University of Construction and Architecture, Povitroflotskyi av., 31, Kyiv, 03037, Ukraine 
2 Odessa National Maritime University, Mechnikova str, 34, Odesa, 65029, Ukraine  
3 Vinnytsia Institute of Trade and Economics of State University of Trade and Economics City, Soborna str, 87, 
Vinnytsia, 21050, Ukraine 

 

Abstract 
The increasing competition in the shipping market entails a constant increase in requirements 
for the efficiency of shipping companies. As practice shows, among the key means, that allow to 
notable increase in maritime transportation efficiency, are the implementation of innovative 
information technologies and project management methods. In this article, we introduce an 
implementation of a genetic algorithm with improved tour constraints that allows to increase the 
maritime route planning projects efficiency. We consider using genetic algorithms for maritime 
cargo transportation planning projects with such constraints as feeder capacity, accumulation 
intensity of cargo at the port and maximum route duration or time window. Such constraints are 
based on the specificity and intensity of maritime operations and bring the multiple travelling 
salesman problem for maritime cargo delivery closer to actual project conditions. Besides, the 
introduced restrictions allow for improvement in the search for a solution compared to a genetic 
algorithm that uses a maximum route length constraint and minimizes the number of involved 
feeders. Our tests show that the algorithm with improved constraints allows us to obtain a 
solution with real-world restrictions, which in turn increases the practical significance of the 
research. During the implementation of the presented constraints, the data set required to run 
the algorithm is enhanced, as well as a function that evaluates the results of the algorithm – the 
fitness function. The result of the research is a genetic algorithm capable of increasing the 
maritime route planning projects' efficiency while adhering to specified constraints. In addition, 
a comparison of the new algorithm with an algorithm that is designed to find the shortest routes 
only is presented. 
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1. Introduction 

The cargo delivery market develops very rapidly, which requires the use of modern 

technologies to satisfy all market needs and maximize profits. The gross tonnage of 

container carriers since 1980 has increased from 11 up to 275 million metric tons [1, 2] and 

tends to further increase. 

Great practical and theoretical interest is in the development of methods for organizing 

and managing maritime transportation systems, which can significantly increase the 

efficiency of cargo transportation, including the transportation of container cargo. 

Significant progress has now been achieved in this direction due to the development and 

implementation of modern information technologies and appropriate project management 

methods. Thus, SMART intelligence models for managing innovation projects and methods 

for goal setting and risk management in transport infrastructure development projects are 

proposed in works [3, 4]. Innovative models of project portfolio structure dynamics taking 

into account resistance of information entropy are proposed in [5, 6, 7]. Paper [8] proposes 

a project management model of container feeder line organization focused on the nature 

and parameters of external container flows. Paper [9] develops a mathematical approach to 

the optimization of transportation projects. It is worth mentioning that cargo 

transportation is one of the major sources of water and air pollution. As for the greenhouse 

effect, shipping represents 2.6 % of overall emissions [10]. Therefore, one of the current 

areas of research in the development of modern maritime transport infrastructure is the 

development of models for environmentally oriented project management and the 

development of methods to ensure their sustainability. Work [11] proposes an integral 

approach to vulnerability assessment for ship operation projects. Papers [12, 13] develop 

methods for managing the eco-logistics system project based on the genetic approach. 

Environmental Efficiency of Ship Operation projects and measures to enhance the 

ecological safety of ships and reduce operational pollution to the environment in Terms of 

Freight Transportation Effectiveness Provision are studied in [14, 15]. 

When implementing projects for organizing and managing the operation of a feeder fleet, 

complex issues often arise. Therefore, it is generally accepted that the efficient tour implies 

its minimally possible length for a scheduled delivery. It is important to note that planning 

delivery routes requires not only to follow the minimization of route length. There are 

additional factors to consider that are an integral part of water transportation: 

1. The capacity of each feeder in the fleet operated by the company. 

2. The amount of cargo that is accumulated at each port in one day. 

3. Time windows that define the period when the feeder is expected to arrive at the 

port. 

Minimizing the route length should be done by taking into account the above-listed 

factors. The route length minimization along with the introduced factors is a transportation 

optimization problem equivalent to the traveling salesman problem [16, 17]. In the case of 

maritime cargo delivery, the travelling salesman problem solves the task of routing efficient 

tours of feeders. 



Our problem formulation is based on the complicated version of the travelling salesman 

problem, namely the multiple travelling salesman problem. Such a version of the problem 

is considered in this article, since companies, involved in maritime transportation, use more 

than one feeder. It is an NP-hard problem in combinatorial optimization, whose exact 

solution usually takes too long to be obtained because exact algorithms perform reasonably 

fast only for small-sized problems [18]. Heuristic algorithms perform far much faster 

producing approximated solutions and saving computational resources (which are 

equivalent to time and budget) [19, 20]. 

The genetic algorithm is one of the best heuristics allowing us to find tours whose length 

is practically close to the minimal length of the delivery [21, 22]. Sometimes the length 

found heuristically coincides with the length in the exact solution. There are various ways 

to improve the performance of a genetic algorithm. The algorithm assigns a penalty to 

routes that do not satisfy the algorithm's specified constraints. The impact of the penalty 

and a study on how it can be improved is presented in [23]. The basic mutation operation 

in a genetic algorithm is the crossover operation, which is also known as a two-point 

crossover. A variation of the algorithm with a modified three-point crossover is discussed 

in [24]. It is also worth mentioning the importance of the random number generator, which 

is present in the genetic algorithm at the stage of forming an initial population, as well as 

during the process of mutations. A study of the influence of the random number generator 

on the operation of the genetic algorithm can be found in the article [25]. 

When constructing the optimal route, the length of the route should be minimized while 

simultaneously adhering to restrictions on the capacity of feeders, the volume of 

accumulated cargo in ports and the timing of the feeder’s arrival at the port for unloading 

and loading cargo. Therefore, all these restrictions need to be implemented into the genetic 

algorithm, and we need to analyze how they will affect the route search in comparison with 

the algorithm without additional restrictions. To obtain the best-approximated solution, the 

adjustable inputs (like the population size, mutation operators, and others) should be 

optimally configured. The optimal configuration is a very tough task being itself an 

optimization problem (similar, e.g., to the optimization in AutoML [26, 27]). In this way, 

rules of thumb are widely accepted based on recent experience [28, 29]. Apart from that, to 

achieve maximum results, it is necessary to use studies devoted to improving the 

performance of the genetic algorithm [23, 24, 25]. 

2. Problem statement 

The goal is to describe, implement, and justify the importance of using a genetic algorithm 

for maritime cargo delivery projects with improved constraints. Moreover, a comparison 

with a version of the genetic algorithm without enhanced restrictions should be presented. 

To achieve the goal, the following four tasks are to be fulfilled: 

1. To substantiate the inclusion of the feeder capacity, accumulation intensity of cargo 

at the port, and maximum route duration constraints into the algorithm. 

2. To show the advantage of the algorithm using improved constraints compared to the 

algorithm using only tour length constraints. 



3. To discuss the significance and practical applicability of the suggested 

improvements in the genetic algorithm. 

4. Make an unbiased conclusion on the contribution to the field of genetic algorithms 

used, in particular, to optimize maritime cargo delivery planning. An outlook of how 

the research should be extended and advanced is to be made as well 

3. Maritime cargo delivery model 

The travelling salesman problem is a classic problem in combinatorial optimization where 

the objective is to find the shortest possible route that visits each city exactly once and 

returns to the origin city. When applied to maritime cargo delivery, the travelling salesman 

problem model can be adapted to find the most efficient route for delivering cargo to 

multiple ports while minimizing costs such as time, fuel, and other resources. This 

formulation extends the single travelling salesman problem to handle multiple salesmen. 

The main goal remains the same — to minimize the total cost of the route. This cost can be 

defined as the sum of distances, time, fuel consumption, or any other relevant metric 

associated with maritime cargo delivery. As with the single travelling salesman problem, 

solving the multiple travelling salesman problem optimally can be computationally 

challenging for large instances, and approximation algorithms or heuristics may be utilized 

to find good solutions efficiently. 

The following variables are used in a simplified maritime cargo delivery model [23, 24, 

25]: 𝑁the number of ports, 𝑝𝑘1 and 𝑝𝑘2 are the horizontal and vertical components of the 

position of the port 𝑘, and 𝑀𝑚𝑎𝑥 the number of feeders available to accomplish the delivery. 

Every feeder 𝑚starts its tour off port 1 and ends up returning to that port. We denote the 

current number of feeders by 𝑀, so 

𝑀 ≤ 𝑀𝑚𝑎𝑥. (1) 

It is important to note that a feeder can only visit a port on its route once, returning to 

the starting port, so each route is a closed loop. In this loop, we use flagging denoted by a 

set𝑋 to distinguish visited and non-visited ports by the feeder (the flag is 1 if a port was 

visited; otherwise, it is 0). 

In our previous works, we considered a model in which the feeder had a limitation on 

the maximum 𝑟𝑚𝑎𝑥 and minimum 𝑟𝑚𝑖𝑛 route lengths. The goal was to find routes that would 

not require re-fueling, allowing to save time and money. In this work, the restriction 𝑟𝑚𝑎𝑥 is 

removed because refuelling costs are considered acceptable for sea transportation. Instead 

of a route length limitation, new constraints have been added on: feeder 𝑚 capacity 𝐶𝑚, 

accumulation intensity 𝐴𝑛𝑚 of cargo at port 𝑛visited by the feeder 𝑚, and maximum route 

duration 𝐷𝑚𝑎𝑥. The tour duration 𝐷𝑚 of the feeder 𝑚 should be 

𝐷𝑚 ≤ 𝐷𝑚𝑎𝑥 ∀𝑚 = 1, 𝑀. (2) 

The following constraint reflects the ability of feeders to serve all the cargo accumulated at 

ports during the tour: 

𝐶𝑚 ≥ ∑ 𝐴𝑛𝑚 ⋅ 𝐷𝑚𝑛∈𝐼𝑚
  ∀𝑚 = 1, 𝑀  by ⋃ 𝐼𝑚

𝑀
𝑚=1 = {1,  𝑁} and 1 ∈ 𝐼𝑚, (3) 



where 𝐼𝑚 is a set of numbers of the ports visited by feeder 𝑚, 

⋂ 𝐼𝑚
𝑀
𝑚=1 = {1}. 

To optimize the maritime cargo delivery, the sum of all the tours of the feeders is to be 

minimized. The respective objective function is 

𝑑𝛴(𝑁,  𝑀,  𝑋) = ∑ ∑ ∑ 𝑥𝑘𝑗𝑚 ⋅ 𝑑(𝑘,  𝑗)𝑀
𝑚=1

𝑁
𝑗=1

𝑁
𝑘=1 , (4) 

where 𝑑(𝑘,  𝑗) is the distance between port 𝑘 and port 𝑗 covered by feeder 𝑚, which is 

flagged by 𝑥𝑘𝑗𝑚. The minimization goal is to find such a set of flags 𝑋∗, at which 

𝑑𝛴(𝑁,  𝑀, 𝑋∗) = 𝑚𝑖𝑛 
𝑋

 𝑑𝛴(𝑁,  𝑀,  𝑋) (5) 

for (4) under constraints (2) and (3). The solution is a set of the most rational tours of 

feeders that do not violate any constraint. Sum (5) of these tours is the length of the shortest 

route to deliver maritime cargo and return to the hub or depot. 

4. Genetic algorithm with maximum tour length constraint 

The genetic algorithm is a method for solving optimization problems that is based on 

natural selection. The genetic algorithm repeatedly modifies a population of individual 

solutions. At each step, the genetic algorithm selects individuals from the current 

population to be ancestors and uses them to produce the children for the next generation. 

Over successive generations, the population evolves toward an optimal solution. In the 

process of new population generation, mutations occur. The algorithm used in our article 

uses mutations such as flip, swap, slide, and crossover [21, 23]. Moreover, these mutations 

can be combined, which allows to creation of complex mutations. Each of these operations 

modifies the individual in its way, resulting in a quasioptimal solution [24]. 

After all mutations have been performed over the population, the evaluation and 

selection steps take place. All generated solutions are passed through a fitness function, 

which evaluates how close a given solution is to the optimal solution of the desired problem 

and checks whether the route satisfies all specified constraints. If any of the defined 

constraints are violated, then the solution is penalized, being made not feasible, which 

means that it may not take part in subsequent mutations. Solutions that do not score 

penalties or score less than others are marked as feasible solutions and will be used in 

subsequent mutations. 

Our previous works [23, 24, 25] considered a genetic algorithm that searched for the 

shortest delivery route with a limitation on the maximum route length. The fitness function 

evaluated the length of the route of each feeder, and if it was longer than the defined 

constraint — the penalty was assigned. This restriction was used to allow the feeder to go 

through the cargo delivery route without refuelling. This would reduce fuel costs and avoid 

spending additional time on refuelling. This article discusses a new set of constraints, as 

well as an expanded set of input data to the algorithm. Besides, the maximum route length 

restriction is omitted, since refueling costs are considered allowable during the process of 

cargo delivery. 



5. Genetic algorithm with improved constraints 

The genetic algorithm discussed in this article has been enhanced with restrictions such as 

feeder capacity, accumulation intensity of cargo at the port, and maximum route duration. 

These restrictions reflect the real processes that occur in maritime cargo delivery 

companies. The inclusion of these new concepts in the algorithm allows it to be used to build 

delivery routes taking into account all the complexities and specialties of the maritime 

delivery business. 

Feeder capacity determines the maximum amount of cargo that can be transported on a 

single tour. By considering feeder capacity constraints in genetic algorithms, shipping 

companies can optimize the allocation of cargo to feeders, ensuring that each feeder is 

utilized to its maximum capacity. This leads to more efficient resource utilization and cost-

effective transportation operations. Optimizing feeder capacity allocation helps minimize 

shipping expenses by reducing the number of feeders required to transport the same 

volume of cargo. Operating feeders within their designed capacity limits is essential for 

ensuring safety and stability at sea. By adhering to feeder capacity limits, shipping 

companies can mitigate the risk of accidents, collisions, and other maritime incidents. 

Feeder capacity regulations, such as those related to load lines and stability criteria, must 

be adhered to for regulatory compliance and maritime safety. Genetic algorithms can be 

used to find an optimal combination of feeders and routes, taking into account feeder 

capacities, fuel consumption, port fees, and other relevant factors. This leads to overall cost 

savings for shipping companies. Considering feeder capacity constraints helps prevent the 

risk of feeder overloading, which can compromise stability and pose safety hazards. Overall, 

feeder capacity is a critical factor in maritime cargo delivery, and its consideration in genetic 

algorithms for route optimization is essential for achieving efficient, cost-effective, and safe 

transportation operations. 

Cargo accumulation intensity refers to the maximum number of cargo that a port can 

accumulate within a given time frame. It encompasses various factors such as berth 

availability, crane capacity, storage facilities, and labour resources. Feeder capacity 

together with cargo accumulation intensity play critical roles in maritime cargo delivery by 

ensuring efficient resource utilization, reducing costs, and minimizing delays. Genetic 

algorithms offer a powerful optimization approach to address these challenges by 

dynamically allocating resources, optimizing scheduling decisions, and balancing 

competing objectives to achieve optimal solutions that maximize efficiency and 

performance in maritime logistics operations. 

Time windows define specific time frames within which feeders must arrive or depart 

from ports, terminals, or other maritime facilities. In our formulation of the problem, this 

denotes the maximum duration of the route during which the feeder must visit all its ports. 

Adhering to these time windows ensures smooth and efficient operations by synchronizing 

feeder movements with port schedules, cargo handling activities, and other logistical 

processes. Time windows help manage berth availability and allocation at ports by 

regulating feeder arrivals and departures. By scheduling feeder arrivals within designated 

time windows, shipping companies can optimize berth utilization, minimize waiting times, 

and reduce congestion at port facilities. Time windows enable better integration and 



coordination across different segments of the supply chain, including shipping, logistics, and 

distribution. By aligning feeder schedules with downstream transportation modes, storage 

facilities, and customer requirements, time windows help streamline cargo flows and 

improve supply chain responsiveness. In the genetic algorithm, time windows are reflected 

as the maximum route duration and mean the number of days when the feeder is expected 

to arrive at the port. 

The above-listed constraints are programmed into the genetic algorithm that is used to 

construct maritime cargo delivery routes by (2) and (3). Experiments are to be conducted 

to determine how these innovations affected the quality of algorithms' computation. 

6. Testing 

In the scope of the testing section, the algorithms with tour length constraints and improved 

maritime constraints are compared. Further in the article, the algorithm with tour length 

constraint will be indicated as GA_1 and the algorithm with improved constraints will be 

referred to as GA_2. Each experiment is carried out under the same conditions — the same 

port map and the number of feeders pre-determined beforehand. 

First of all, the comparison of algorithms for route planning utilizing a single feeder is 

performed. From the results presented in Figures 1 and 2, it is clear that there is no 

significant difference in the solutions obtained, although the GA_1 route is 1.32% shorter 

than the GA_2 route. This may be because different constraints are involved in the selection 

process. In general, we can claim that the new restrictions do not affect the construction of 

a route for one feeder. Such an experiment represents the classic travelling salesman 

problem. In such a formulation of the problem, there may be requirements for the order of 

visiting ports, but this case is not in the scope of this article. It is worth also noting that 

transport companies do not operate with one feeder, so we are not considering this case. 

 

Figure 1: Solution generated by GA_1 for one feeder 



 

Figure 2: Solution generated by GA_2 for one feeder 

The following experiment tests the influence of the merging probability. Within the 

crossover operation, two chromosomes as tours of two different feeders may be merged 

into a single tour allowing to decrease the number of feeders used to deliver maritime cargo. 

This is done by using a merging probability value given at the input of the genetic algorithm. 

 

Figure 3: Solution generated by GA_2 with merging probability disabled 



Figures 3 and 4 show the influence of the merging probability on the operation of the 

algorithm when managing a static number of feeders. The solution without merging 

probability (Figure 3) has built a route for 4 feeders without violating the specified 

constraints on feeder capacity and the expected delivery window of 10 days. A solution 

where feeders are merged (Figure 4) results in a shorter route. After the appearance of the 

merged individual, the population is filled with solutions with merged routes and this is 

repeated at each subsequent iteration. As a result, a solution is reduced to the route of one 

feeder, which does not satisfy the algorithms' conditions, although it is rightly considered 

as the shortest route. In this regard, the use of the merging probability should be excluded 

in the current formulation of the problem. If too many feeders are used, it may turn out that 

they will run with a low load. At this point, to get out of this situation, the algorithm can be 

re-launched with fewer feeders. However, such an approach may not be considered optimal. 

One of the options is to reduce the speed of movement of feeders along the received routes. 

This will save on fuel, and increase the amount of cargo accumulated in ports, thereby 

increasing the fullness of feeders, and, as a result, they will move more filled. Another option 

for selecting the composition of the fleet could be a meta-algorithm that will sort through 

various combinations of the company’s fleet and run a genetic algorithm for each set of 

feeders — as a result, the optimal route with the lowest transportation costs will be found. 

Both of these options require further research and are out of the scope of this article. 

 

Figure 4: Solution generated by GA_2 with merging probability enabled 



 

Figure 5: Solution generated by GA_1 without constraint violation 

 

 

Figure 6: Solution generated by GA_2 with maximum route duration constraint violated 

The GA_1 algorithm takes into account the minimum number of visited ports and the 

maximum length of feeders' routes. Therefore, Figure 5 displays that a feeder with the 



shortest tour visits only two ports, and the feeder with the longest tour visits the majority 

of ports on the map. In this case, the algorithm's limitations are not violated. As stated 

earlier, the algorithm should not rely only on the length of the route. It should build 

solutions considering the feeder capacity, accumulation intensity of cargo at the port, and 

maximum route duration. With such conditions, the solution is not suitable, because the 

duration of the feeder tour with the most visited ports (30 ports) does not fit the time 

window of 10 days — the route duration is 13 days. GA_1 simply does not know about the 

existence of such a restriction, that is constraint (2). In the GA_2 algorithm, it is immediately 

noticeable that feeders visit more than 5 ports and they do not have a huge difference (up 

to several times) in the visited ports. The feeder with the longest route has visited 22 ports 

in 10 days. Such routes are obtained because when one feeder travels too far, it does not 

comply with restrictions on either capacity or delivery time. The algorithm assigns penalty 

points to such an individual and it becomes irrelevant. Due to this, the algorithm begins to 

generate solutions, where the load from a large route is distributed among the remaining 

feeders. This is repeated at each iteration of the algorithm until a solution that satisfies all 

the conditions and restrictions is found. It is also possible that the resulting solution will 

partially not satisfy the restrictions. In this case, we can assume that there is not enough 

capacity to meet all the conditions or that one more additional feeder is needed to fit into 

the time window. 

Figure 6 shows the route for three feeders that visit all ports in the specified time 

windows, but one limitation is not met — on the route of the feeder with the most ports, 

1490 containers are accumulated in 10 days, even though the feeder itself has a capacity of 

500 containers. Herein, constraint (3) is violated. To build a route for the delivery of goods 

for this set of ports, it is necessary to replace one feeder with a capacity of 500 containers 

by 1000 or add one extra feeder with a capacity of 500. Two solutions that increase the 

capabilities of the fleet are presented in the figures below. 

 

Figure 7: Solution generated by GA_2 for fleet of 4 feeders with same capacities 



 

 

Figure 8: Solution generated by GA_2 for fleet of 3 feeders — one of them has an increased 

capacity 

Figure 7 shows a solution where one extra feeder is added to the fleet. In this solution, 

the restrictions are not violated — the longest route is completed in 7 days and 476 

containers are accumulated at the ports. Figure 8 shows a solution that involves replacing 

one feeder with a larger capacity. The restrictions are not violated as well — on the longest 

route of 9 days, 999 containers are generated. Thus, there are two options for constructing 

a route for delivering cargo to this set of ports. 

7. Conclusion 

We have presented a genetic algorithm with improved constraints for maritime cargo 

delivery route planning projects formulated as a multiple travelling salesman problem. 

Feeder capacity, accumulation intensity of cargo at the port, and maximum route duration 

expand the capabilities of the genetic algorithm, which otherwise would search for the 

shortest route only. However, the need to use the simplified algorithm, without additional 

constraints, should not be completely excluded, because there may be conditions for the 

projects where route planning is needed for one feeder or feeders without restrictions on 

cargo flow or timing. Such cases may arise for small projects which involve just a few feeders 

and a moderate number of ports.  



For projects dealing with a medium or large fleet with responsibilities for cargo delivery 

times, the proposed version of the genetic algorithm with improved constraints will have 

great practical importance. An improved algorithm expands the set of algorithm 

constraints, which in turn narrows the set of possible solutions. 

Thus, the contribution to the development of algorithms for solving the problem of 

maritime cargo delivery is obvious. In comparison with other studies on this topic like 

improvement of 2-point crossovers, tour constraint penalties, and influence of 

pseudorandom number generators, one more way has been studied to improve the 

practical performance of the genetic algorithm, in particular, for multiple travelling 

salesman problems. 

At the moment, there are two directions for possible further improvements of the 

algorithm. First, when searching for the optimal delivery route, a new step of optimization 

can be added after all tours are determined. This step will check the possibility of reducing 

the speed of the feeder along the route. In the algorithm, described in this article, the speed 

of the feeder is not taken into account. This step of speed analysis would allow us to reduce 

the speed, thereby significantly reducing fuel consumption which may notably increase the 

financial and ecological efficiency of the project. At the same time, it is important not to 

violate the restrictions on the feeder capacity, accumulation intensity of cargo at the port, 

and maximum route duration. Secondly, we should consider the possibility of implementing 

a meta-algorithm on top of the genetic algorithm to select the optimal fleet composition. 

Such a meta-algorithm would allow the selection of the optimal set of feeders and, together 

with the speed analysis step, make a major contribution to the automation and optimization 

of decision-making for maritime cargo delivery projects. 
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