
Handling Time-Series Data in a Relational DBMS:
Challenges and Solutions – Abstract
Jan Kristof Nidzwetzki1

1Timescale, Inc.

Abstract
Storing and analyzing time-series data, such as stock
prices or sensor readings, is crucial for many applica-
tions, and database management systems (DBMS) are
often used for this purpose. However, handling time-
series data poses challenges for DBMS, as the system
needs to continuously be able to insert new data without
blocking due to parallel running queries or maintenance
operations. Additionally, datasets can become large, and
analytical queries that utilize aggregates are common
(e.g., obtaining the maximum and average temperature
per sensor per hour over the last 24 hours). To meet the
requirements of these time-based use cases, specialized
DBMS tailored for time-series data have been developed.
However, many developers already know how to write
queries using the structured query language (SQL), and
most application architectures already rely on a relational
DBMS like PostgreSQL. Moreover, they prefer to use a fa-
miliar, well-established, and proven software component
rather than introducing new technology. Unfortunately,
PostgreSQL does not handle time-series data well.

TimescaleDB is an open-source extension for Post-
greSQL that enhances its ability to efficiently handle time-
series data. The extension introduces several features to
PostgreSQL:

1. Operators for managing time-series data within
SQL, including functions like time_bucket(),
which facilitates grouping and aggregation
queries over specific time intervals.

2. Automatic partitioning of large tables.
TimescaleDB uses hypertables to partition
data. A hypertable consists of multiple
PostgreSQL tables called chunks.

3. Optimized query plans, which are designed to
handle time-series data effectively. For instance,
plan-time and execution-time partition pruning
allow it to process only partitions that contain
the required data.

35th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), May 22-24, 2024, Herdecke, Germany.
$ jnidzwetzki@gmx.de (J. K. Nidzwetzki)
� https://jnidzwetzki.github.io/ (J. K. Nidzwetzki)
� 0000-0002-2650-8019 (J. K. Nidzwetzki)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

4. Transparent and mutable columnar compression
to minimize disk space usage, I/O operations, and
improve data locality. This also allows aggrega-
tion queries to be performed directly on the data
in its columnar form.

5. A job framework that enables the implementa-
tion of data lifecycle policies directly within Post-
greSQL. For example, old data can be removed
after a certain period of time. Instead of delet-
ing individual tuples, entire chunks are removed.
This is a fast and efficient operation since a com-
plete table is dropped; it also prevents the creation
of dead tuples (i.e., deleted or outdated tuples that
are still present in a table and need to be phys-
ically removed by PostgreSQL during a costly
VACUUM operation).

6. Continuous aggregates that pre-compute the re-
sults of aggregation queries on time-series data
(like a self-updating materialized view). In addi-
tion, continuous aggregates can be used to down-
sample large datasets. For example, storing only
the average value per hour can reduce data size
while still providing sufficient accuracy for many
applications.

In my presentation, I will discuss the core principles of
managing time-series data using TimescaleDB, as well as
the challenges I have worked on in the past few months.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:jnidzwetzki@gmx.de
https://jnidzwetzki.github.io/
https://orcid.org/0000-0002-2650-8019
https://creativecommons.org/licenses/by/4.0

