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Abstract

In recent years, so-called lakehouses have emerged as a new type of data platform that intends to combine characteristics
of data warehouses and data lakes. Although companies started to employ the associated concepts and technologies as
part of their analytics architectures, little is known about their practical medium- and long-term experiences as well as
proven architectural decisions. Additionally, there is only limited knowledge about how lakehouses can be utilized effectively
in an industrial context. Hence, it remains unclear under which circumstances lakehouses represent a viable alternative
to conventional data platforms. To address this gap, we conducted a case study on a real-world industrial case, in which
manufacturing data needs to be managed and analytically exploited. Within the scope of this case, a dedicated analytics
department has been testing and leveraging a lakehouse approach for several months in a productive environment with high
data volumes and various types of analytical workloads. The paper at hand presents the results of our within-case analyses
and focuses on the industrial setting of the case as well as the architecture of the utilized lakehouse. This way, it provides

preliminary insights on the application of lakehouses in industrial practice and refers to useful architectural decisions.
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1. Introduction

With the growing range of capabilities for data acquisi-
tion and the current advances in the field of analytics [1],
data is becoming an increasingly important asset for en-
terprises of all business fields. For example, in the in-
dustrial sector, data from the shop floor can be exploited
with data mining and machine learning techniques for
efficiently orchestrating manufacturing processes, pre-
dicting the quality of products and scheduling the main-
tenance of machines [2]. Similarly, this also applies to
organizations from other business fields, such as health-
care [3] and agriculture [4].

Data platforms constitute the technical foundation for
all kinds of analytics applications within enterprises, as
they are capable of storing and managing huge amounts
of data for analytical purposes and thus support data
collection, processing and analysis [5]. Traditional data
warehouses [6] and the more modern data lakes [7] repre-
sent the two most popular types of data platforms. Origi-
nally, they were designed for different kinds of analytics
applications and hence tend to show rather opposing
characteristics [8]: While conventional data warehouses
share many similarities with relational databases and
are primarily utilized for reporting and Online Analyti-
cal Processing (OLAP) workloads, their proprietary data
formats and rigid data models impede explorative data
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analyses and are typically less suited for many types of
advanced analytics [8, 9, 10], such as data mining.

Data lakes attempt to close this gap by enabling the
storage of raw data in their original formats, without
requiring the data to be transformed into a pre-defined
schema before it can be loaded onto the data platform.
For this purpose, data lakes typically employ highly scal-
able and cost-effective storage systems like distributed
file systems or object storages. However, in comparison
to data warehouses, this increased flexibility comes at
the cost of less comfortable data management and anal-
ysis capabilities. In summary, it can be concluded that
data warehouses typically represent a reasonable choice
for use cases in which the analysis questions are already
known in advance, while exploratory workloads with
unknown analysis questions are more appropriately sup-
ported by data lakes. Consequently, enterprises often
need to operate both types of data platforms in parallel
and either exchange or replicate the data between them
in order to be able to serve all kinds of analytical work-
loads. This commonly results in complex architectures,
high operational costs and slow analytical processes [9].

In order to address these issues, efforts have recently
been made to develop so-called lakehouses, which rep-
resent another variant of data platform that intends to
combine desirable characteristics of data warehouses and
data lakes. This way, lakehouses are supposed to serve
all kinds of analytical workloads by a single data plat-
form. In literature, multiple different definitions for lake-
houses exist [9, 11, 12] and apparently, there is currently
no final consensus on how lakehouses can be charac-
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terized. Nevertheless, most authors seem to agree that
data lakes, which are based on highly scalable storage
systems and have been enhanced for additional data
warehousing capabilities with the help of certain spe-
cialized frameworks, can generally be referred to as lake-
houses [13, 14, 15, 16, 17].

The most popular representatives of such frameworks
are the open-source projects Delta Lake', Apache Hudi*
and Apache Iceberg’. All of these frameworks provide
libraries for various popular data query and processing
engines, such as Apache Spark® and Apache Flink’, and
enhance them for additional data warehousing capabil-
ities when working on data that resides on distributed
file systems or object storages. This includes features for
abstracting stored data as tables with relational charac-
teristics, ensuring ACID properties and enabling efficient
batch and stream processing [13, 14, 12]. Consequently,
data can be flexibly stored in open formats and in a di-
rectly accessible manner, but still be conveniently pro-
cessed and queried. This allows such lakehouses to cover
large portions of the typical analytical workloads of data
warehouses and data lakes.

In literature, several works can be found that pro-
pose and discuss different lakehouse implementations
based on these frameworks, such as for the domains of
healthcare [18, 19, 20], biomedical research [21], network
management [22], IT security [23] and geospatial analyt-
ics [24]. However, these descriptions often lack details
regarding the chosen architectural decisions and the ex-
tent to which these decisions have proven over time,
especially in terms of aspects such as data organization,
data modelling and data flow. Furthermore, to the best
of our knowledge, there are yet no works available that
present industrial real-world implementations of lake-
houses for the manufacturing sector. As a consequence,
it remains unclear under which circumstances and with
which architectures lakehouses may represent a viable
alternative to conventional data warehouses and data
lakes for enterprises in this field. In an effort to address
this gap, we conducted a case study on a real-world in-
dustrial case in which an analytics department developed,
tested and leveraged a lakehouse approach for the man-
agement and analytical exploitation of manufacturing
data from the shop floor with a volume in the magnitude
of terabytes. This lakehouse has been in use for several
months in a productive environment with various analyt-
ical workloads and hence represents a suitable candidate
for investigating architectural decisions.

Section 2 explains the methodological approach of our
study and introduces the industrial setting of the case.
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Section 3 then presents the first results of our within-case
analyses by discussing the architecture of the data plat-
form and pointing to interesting architectural decisions.
Finally, Section 4 concludes our work.

2. The Manufacturing Case

Case studies are generally recognized as an appropriate
research method for complex topics and topics where
the context needs to be taken into consideration [25].
Both applies to the research field of data platforms, as the
construction of such platforms constitutes complex tasks
that are subject to rapid developments and innovations,
while architectural decisions and practical experiences
of enterprises likely depend on contextual aspects, such
as the domain and size of the enterprise, the available
data volumes and the analytical use cases.

In the scope of our case study for the manufacturing
case, we conducted interviews with one solution archi-
tect and one data engineer of the responsible analytics
department, who both have been involved in the devel-
opment of the corresponding lakehouse. The interviews
lasted between 45 and 60 minutes and followed a semi-
structured approach, for which questions had already
been prepared in advance, but were spontaneously sup-
plemented by follow-up questions during the interviews.
The asked questions were related to the context of the
manufacturing case, including the available data sources
and the requirements for the data analyses that are sup-
posed to be performed, as well as various architectural
aspects of the developed lakehouse (cf. Section 3). Af-
terwards, the transcribed answers of the interview par-
ticipants were structured and analyzed with the help of
qualitative coding techniques.

Table 1 summarizes important characteristics of the
investigated case, including details about the source data
and the intended analytical use cases.

Table 1
Characteristics of the investigated manufacturing case.

Source Data: Machine and Sensor Data

Source Systems: | Manufacturing Execution System

Data Types: Structured, Unstructured

Data Volumes: Terabytes

Analytical Reporting, OLAP, Machine Learning,
Workloads: Near-realtime Reporting

Analytics Types: | Descriptive, Diagnostic, Predictive

Business Users, Data Analysts,

Users: Lo
Data Scientists

This manufacturing case is situated at a large-scale,
globally operating manufacturer, which develops and
produces technical components of high volume. Along
the shop floor, manufacturing machines and sensors col-
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Figure 1: The lakehouse architecture as applied in the manufacturing case.

lect various types of data, reflecting the quality of the
workpieces and the condition of the machines. This data
is primarily made available in a Manufacturing Execu-
tion System (MES) and ingested as data stream into a
lakehouse-like data platform. Besides structured mea-
surement values of the machines and sensors, this data
also includes graphical images of particularly error-prone
parts of the produced technical components. A dedicated
analytics department constisting out of multiple solution
architects and data engineers is involved in this case and
responsible for the development and operation of the data
platform. The goal of this data platform is the collection,
management, preparation and analysis of the generated
manufacturing data in order to enable self-service ana-
lytics for business users and data analysts. This includes
traditional reporting and OLAP workloads, but also near-
realtime reporting, since some analysis results are sup-
posed to be displayed on dashboards along the shop floor.
In addition, data scientists pursue to train machine learn-
ing models from the available image data, which should
enable the automatically detection of faulty workpieces
with the help of image classification techniques.

3. The Lakehouse Architecture

As part of the case study, we examine the architecture of
the lakehouse data platform that is employed in the man-
ufacturing case and, in particular, focus on interesting
architectural decisions that were made during its devel-
opment, for example with respect to aspects such as data
organization, data modeling and data flow.

During the interviews, both participants confirmed to
us that after several months of operation, they are satis-

fied with both the lakehouse approach in general, as well
as the architecture they have developed, since it allowed
them to meet their requirements in terms of performance
and the required range of analytical workloads. We there-
fore assume that their architectural decisions regarding
the lakehouse have practically proven their suitability at
least in the medium term.

In the context of this work, lakehouses can largely be
regarded as data lakes that consist of a distributed file
system or an object storage and have been enhanced for
additional data warehousing capabilities with the help
of specific frameworks, such as Delta Lake, Apache Hudi
and Apache Iceberg [12]. Therefore, we utilized the Data
Lake Architecture Framework by Giebler et al. [26] as a
reference to guide and structure our within-case analysis
for the architecture of the data platform. However, we
limited ourselves to the aspects Data Organization, Data
Modeling, Data Flow, Data Storage and Infrastructure, as
these were most strongly covered during the interviews.
Figure 1 illustrates the current architecture of the lake-
house that is applied in the investigated manufacturing
case. Here, the lakehouse is depicted in the center, while
the data sources and analytical workloads are shown on
the left- and right-hand side. The lakehouse consists of
multiple zones [27], which separate data of different gran-
ularity, quality and purpose. The individual aspects of
this architecture according to the Data Lake Architecture
Framework are discussed in the following sections.



3.1. Infrastructure and Data Storage

The lakehouse is built on top of Azure Data Lake Storage
Gen2° as underlying storage system, which is a cloud
object storage offered by Microsoft Azure’. For the batch
and stream processing of data within the data platform,
Databricks® is leveraged. In the investigated case, this
processing engine heavily utilizes the Delta Lake frame-
work, which persists the data on the object storage as
data files in the column-oriented format Apache Par-
quet * and allows to represent collections of such data
files as self-contained tables with relational properties
on the logical level. In addition, the cloud-managed ser-
vice Confluent Kafka'’ is used as event hub that buffers
the streaming data before the ingestion into the lake-
house. For reporting, the data analysts primarily rely on
Power BI'' in connection with SQL endpoints provided
by Databricks'®, while OLAP workloads are performed
by executing SQL queries directly through Databricks.
Near-realtime reporting and machine learning are also
conducted via Databricks with the help of the correspond-
ing libraries for streaming'® and machine learning'*. The
decisions for the technologies that are utilized in this
data platform were made on the basis of a prototype. Ac-
cording to the interview participants, an important factor
for their selection was that they were already offered as
part of a cloud solution and considered more mature than
comparable open source projects at that time.

3.2. Data Flow

The measurement data that is generated by the machines
and sensors on the shop floor is in the JSON format and,
as illustrated in Figure 1, first forwarded to the event hub,
which temporarily stores and buffers the data before it is
loaded into the lakehouse. This way, the utilized stream
processing engine can control the rate at which the data
is ingested and processed. The stream processing engine
then reads the newly arrived data from the event hub and
stores it in tables of the Delta Lake framework within
the Raw Zone of the lakehouse. It is worth noting that
these first tables of the data flow store the serialized, un-
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flattened data. This means that instead of de-serializing
the incoming data records and mapping their embedded
fields to corresponding columns of a table, the whole
JSON string as such is stored in one text-based column of
the table. This allows to store the raw data without need-
ing perform potentially error-prone transformations dur-
ing the ingestion, which could potentially lead to loss of
information or failures. At the same time, the additional
data management features of the Delta Lake framework,
such as time travel capabilities and ACID guarantees, can
be used on the raw data. From there, the ingested data
is further processed in the scope of multiple stream pro-
cessing steps, where the data is persisted on the object
storage after each step. Within the scope of these steps,
the raw JSON data is also de-serialized and transformed
into a tabular representation, where each table consists
of potentially multiple columns of suitable types that can
be mapped to fields of the original source data.

The subsequent processing steps are responsible for
different tasks such as flattening, cleansing and integrat-
ing the data, so that consolidated and unified data is
made available in the Harmonization Zone. Starting from
the Harmonization Zone, the data is then further pre-
processed and prepared for the available analytical use
cases, which includes the execution of filtering opera-
tions and the calculation of aggregations according to
specific columns. As a result, the Delivery Zone finally
contains data that is optimized for the respective ana-
lytical applications in terms of quality, granularity and
performance. This data can then be consumed either via
SQL queries for the reporting and OLAP workloads or as
data streams, which allow to regularly update the dash-
boards on the shop floor. However, the stream processing
jobs that are defined on the processing engine are not
running continuously. Instead, they are only started at
regular time intervals, for example once per day, and
then process all data that has accumulated on the event
hub in the meantime. After a certain runtime, the pro-
cessing jobs are suspended again. As the analytics use
cases of the manufacturing scenario are not time-critical
according to the participants of the interviews, this ap-
proach allows to save resources and costs in comparison
to continuously or long running stream processing jobs.

Besides the structured machine and sensor data, also
the graphical images of the produced workpieces need
to be managed on the data platform in order to enable
machine learning tasks. In contrast to the measurement
data, this unstructured, binary data is not transmitted
to the event hub and instead regularly ingested into the
Raw Zone of the object storage via batch processing. Fur-
thermore, the image files are not embedded into tables of
the Delta Lake framework, but persisted in their original
image formats on the object storage. Within the data
platform, the images are only processed and prepared in
a rudimentary manner and almost directly transferred to
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the Machine Learning Zone, where they can be used by
data scientists for machine learning experiments.

3.3. Data Modeling

According to the participants of the interviews, data
modeling is carried out only informally, meaning that
data models are created ad-hoc depending on the struc-
ture of the data that is provided by the data sources
and the requirements of the analytical use cases. Hence,
widely researched modelling approaches, such as normal
forms [28], multi-dimensional modeling [29] or the Data
Vault concept [30] are not explicitly applied. Moreover,
the data is intentionally de-normalized, as this enables a
higher query performance at the cost of increased storage
space, which represents a reasonable trade-off for cloud
environments due to the lower costs for storage space in
comparison to computational resources.

3.4. Data Organization

The lakehouse architecture of the manufacturing case
applies a zone model for organizing the data of different
granularity, quality and application-specificity within
the lakehouse. In particular, this zone model defines
four zones: A Raw Zone, which stores the raw and only
slightly processed data, a Harmonization Zone, in which
the relational, consolidated and unified data resides, a
Delivery Zone for pre-aggregated, application-specific
data and a Machine Learning Zone that holds data that
is relevant for machine learning activities. These zones
can be roughly mapped to the Raw Zone, Harmonized
Zone, Delivery Zone and Explorative Zone of the Zone
Reference Model (ZRM), which was originally proposed
by Giebler at al. [27] for the data organization within data
lakes. According to the participants of the interviews,
both the use of a zone model in general, as well as the
zones that were specifically selected for this case have
proven their suitability. Therefore, it can be concluded
that zone models for data lakes appear also to be relevant
in the context of lakehouses and may be a suitable choice
for organizing the data in these kind of data platforms.

4. Conclusion

This paper presented a real-world case in which a lake-
house has been developed and leveraged for the man-
agement and analysis of manufacturing data in indus-
trial practice. In the scope of our study, we particularly
focused on the architecture of the lakehouse, as well
as the industrial setting and underlying goals. In this
course, some interesting architectural decisions could
be observed: Our study revealed that in the investigated
case a) the periodic execution of stream processing jobs is

preferred over continuously running stream processing
jobs for economic reasons, b) that ingested raw data is
stored and managed as serialized JSON strings in tables
and not in raw text files, c) that data modelling is carried
out only informally and that de-normalization techniques
are applied in order to increase the query performance
at the expense of higher costs for storage space and d)
that zone models appear to be a suitable technique for
data organization within lakehouses.

In future work, we plan to compare this case with
several other real-world cases from different domains
in terms of architectural similarities, the motivational
factors for enterprises to utilize lakehouses, practical
experiences and encountered challenges. This way, we
want to further expand the findings of our work and
become capable of generalizing them.
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