
Optimizing Geometric Pattern Matching Utilizing Caching
of Decomposed Queries in Partitioned Datasets
Martin Poppinga1,2

1Universität Hamburg, Fachbereich Informatik, 22527 Hamburg, Germany
2Universität Hamburg, ZBH – Center for Bioinformatics, 20146 Hamburg, Germany

Abstract
In research, searching for patterns within large datasets is a common task but often results in long-running queries. Various
approaches exist to speed up individual searches, for example, indexing, denormalization, or caching. These approaches come
with their advantages, but also limitations. For caching, the data is usually either cached on a low level, for example, to buffer
data structures in memory to increase the read access performance, or the complete results are stored for specific queries so
that if the same query is observed again, the system can serve the cached result instead of recomputing the results in the
database management system. In this work, we propose an architecture that can increase read performance by utilizing
a caching approach that acts as an index by storing references to distinct partitions based on partial queries. This allows
memory-efficient caching while gaining the ability to improve not only already-seen queries but also queries that have not
been computed before. This approach is designed for workloads often observed in scientific domains, targeting analytical
queries that search for patterns in datasets, for example, in bioinformatics, spatial data, or time series.

Keywords
Caching, Index Structures, Partitioning, Pattern Matching, Query Decomposition, RDBMS, SQL

1. Introduction
In the scientific domain, one of the often occurring tasks
is to search for defined patterns, for example, searching
for patterns in protein structures in bioinformatics [1] or
patterns in spatial datasets [2]. While simple properties
are fast to find in datasets using index structures, other
properties are more complex or require computational ef-
fort if several data points are put in relation to each other.
If the pattern contains, for example, several spatial points
with distance constraints, the distances between many
possible points need to be calculated for each search.
This can be even more challenging if distances are not
Euclidean but, for example, require a shortest-path rout-
ing. Complete denormalization is often impractical since
the selected points can vary depending on the query and
use case. Although relations between points can be de-
normalized in a small dataset, for example, in a property
graph, there would be too many possible combinations
in large datasets. If a changing set of rows, depending on
specified attributes, is put into relation to each other, the
data is often stored in a relational database management
system (RDBMS).

As usually only points within the same area need to
be compared, many problems can be divided into individ-
ual search problems if the dataset has multiple disjunct
partitions. Examples of natural partitions in datasets

35th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), May 22-24, 2024, Herdecke, Germany.
$ martin.poppinga@uni-hamburg.de (M. Poppinga)
� 0000-0001-8529-8376 (M. Poppinga)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

are individual days in temporal data, regions in geospa-
tial data, or experiments in scientific data. To obtain all
matches where the given properties are fulfilled, usually
all partitions need to be searched. Putting different data
points in relation to each other requires joining them.
Optimizing the join order or using search trees speeds
up processing. If the attribute conditions are not specific,
a high number of join candidates need to be considered,
and indexes may be of limited use. Optimizations do
not remove the necessity of performing time-consuming
computations in many cases. This is especially trouble-
some if these queries have an increased runtime due to
complex conditions and a large dataset spanning across
many partitions.

Even if analytical queries often have conditions spec-
ified that are used frequently among several searches,
their results are often recomputed for each new search.
To reduce the number of required condition checks,
we aim to store already computed conditions of partial
queries.

We propose utilizing an architecture that enriches a
cache with already-seen queries and their derivatives. To
gain the derivatives, we utilize query decomposition to
find partial queries. This cache acts as an index structure
to map queries to partitions to reduce the search space
for a given query. The cache stores references to all par-
titions with at least one result for the specific cached
query, reducing the number of partitions that must be
searched if the system encounters a query found in the
cache. This allows for more flexible utilization, as im-
provements are not restricted to a specific kind of query,
as in many denormalization approaches. It also allows

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:martin.poppinga@uni-hamburg.de
https://orcid.org/0000-0001-8529-8376
https://creativecommons.org/licenses/by/4.0

for combining multiple cache hits for one query, unlike a
common result cache, allowing it to work for new queries.
Utilizing already-seen query parts can be combined with
a warmed-up cache approach, where we pre-populate
the cache with expected conditions, like an often-used
timespan, a specific set of regions or experiments, or
predefined fingerprints.

2. Background

2.1. Definitions
A partition consists of a set of data points where the data
can be put in relation to each other. These can be, for
example, spatial areas, time frames, or individual experi-
ments. This work focuses on disjunct natural partitions
defined by some partition key per data point. If overlap-
ping partitions are required, data points can be duplicated
to all relevant partitions to ensure that matches are found
within one partition.

A query is a defined search in a dataset. For this work,
we focus on analytical SQL queries that search for groups
of data points related to each other. They specify con-
ditions that describe a pattern searched in the data to
mine for matching occurrences. They match within a
single partition and often place data points in relation to
each other by some property, such as a distance. See also
Section 3.1.

A partial query is a query that uses only a subset of
predicates of another query by removing one or multiple
conditions or dimensions involved. One query can have
multiple partial queries as derivates. Such partial queries
are created by decomposing queries[3].

2.2. Related Work
Database Systems Depending on the workload, dif-
ferent storage models in database systems have advan-
tages over others. Designated solutions target scien-
tific data, such as SciDB[4] or DuckDB[5]. As column-
based databases generally perform well for aggregations
[6], they are often used for analytical queries. Systems
like DuckDB target OLAP (Online Analytical Processing)
queries, while most relational systems focus on OLTP
(Online Transaction Processing). While column-based
systems are beneficial for most analytical queries, as ag-
gregations on individual rows are of interest, queries that
need to be executed on various subsets of the data and
use changing attributes for selections often rely on row-
based systems. Many approaches to improve query speed
include data denormalization [7]. If relationships are of
interest, graph databases are often utilized. However,
on large datasets, if each point has a potential (spatial)
relationship to all other points in the same partition, the

number may become too large to be represented as a
graph or otherwise denormalized.

Relational database management systems (RDBMS) are
generally utilized to store normalized data. Here, each
data point is stored in a row in a table and joined with
other data points depending on the query, computing
relations, and checking conditions if needed. RDBMS
can handle large amounts of data and, in many cases,
achieve very good performance metrics. Depending on
the data and queries, different index structures are used
to increase read performance, common structures are
B-trees [8], r-trees [9] for spatial data, or bitmap indexes
[10] for range conditions. Index structures allow individ-
ual rows or sets of rows to be found efficiently, but can
lose effectiveness in cases where rows are put in relation
to each other and single conditions are not very selective
(see Section 3.1).

Searching Patterns This work aims mainly to im-
prove query runtime to find geometric patterns in protein
data [1]. However, it is also targeted to resemble a useful
approach for searching for spatial properties in geospatial
datasets [2] and other domains that face similar work-
loads. In previous work [11], we showed that for our
scientific workload in GeoMine [1], the database man-
agement system achieved better performance if given
flexibility to reorder and optimize query execution plans,
in contrast to customized algorithmic approaches. Al-
though systems can optimize query execution plans, the
query and index design must also be sufficient to allow
such optimizations. However, with increasing dataset
size, these classical approaches came to their limits if the
whole dataset needed to be searched.

Caching Different techniques are utilized to improve
query response times in databases. One way to reduce
the computational load is by reusing already computed
results by caching parts of the data. RDBMS often buffer
pages in memory to prevent slow access to secondary
storage, for example, often accessed indexes or tables. As
relational databases focus on data consistency, serving
outdated results would be a big issue. Cache invalidation,
deciding if a cache no longer holds a valid result set, is a
big problem and can cause computational overhead.

It is also possible to cache the complete results re-
lated to a query, allowing for a fast return of previously
seen queries. This reduces the load on databases that fre-
quently serve the same queries, for example, on a website.
This can be directly integrated into the database or added
as a separate caching layer in the application logic or
by using some middleware. Often, such approaches uti-
lize designated in-memory key-value stores for caching
[12].However, these approaches only serve the results to
exactly these queries that have been computed before,

and if large result sets are returned, memory consump-
tion is also of concern. Other approaches, for example,
for SBQL (Stack-based Query Language), use the object-
oriented model to decompose a query and cache specific
subqueries based on the object tree [13].

Materialized Views On many systems, materialized
views [14] do exist, which serve similar purposes as result
caching. They allow precomputation of SQL expressions
and transformations, reducing the need to compute these
parts for each query execution. These views can be uti-
lized directly in queries by specifying the view in contrast
to the base table. Furthermore, there are approaches to
redirect queries from the base table directly to the mate-
rialized view by rewriting the queries [14].

Keeping the views valid is usually transparent to the
user as the RDBMS handles the updates if entries are
added or updated. However, as with other denormaliza-
tion techniques, they come with increased storage con-
sumption and reduced write performance. In addition,
precomputations are usually only beneficial for specific
queries; if varying queries are expected, multiple mate-
rialized views are required, often with individual index
structures, which further increase storage consumption.

Filter Individual solutions exist for applications where
indexes to fingerprinted structures are specified. Such
descriptors describe the areas in which these predefined
structures are present. For example, in [15], spatial trian-
gle structures are defined in a fingerprinting approach.
The triangle descriptor, a bit vector, represents whether
the given triangle is in a partition. This allows the extrac-
tion of all specified triangles (or, more generally, defined
patterns or fingerprints) from a query and compares all
bit filters to reduce the number of partitions to search in
the following steps.

There are two ways to specify which structures are
present in which partitions. An inverted index describes
which partitions each descriptor is present in, for exam-
ple, by providing a list of partition keys or using a bit
vector in which the partitions are encoded. Alternatively,
a forward index can be used where it is for each parti-
tion specified which descriptors are present. This can be
stored as a list again, or if only estimated containment
is needed by structures like bloom filters, which reduces
the memory footprint. Both approaches have advantages
and drawbacks depending on the individual workload.

3. Basic Concept

3.1. Problem Description
Our work aims at scientific workloads with no frequent
updates, where we want to improve query response times.

The described environment is related to the workload
described in GeoMine [1], but it is also expected to be sim-
ilar in other scientific domains. It is designed for a user-
defined search through a research application where the
user defines properties that must be matched in the data.
Such flexible data mining tasks are often exploratory, run-
ning similar queries until the desired pattern is found.

The conditions bring various data points in relation
to each other, for example, by defining the distances be-
tween various points selected by their attributes. This
creates queries that join several large tables in a single
query [11], as, for example, an SQL query processed by
an RDBMS. Such a query looks for all occurrences of the
specified properties within several areas. The different
areas can be viewed as natural partitions specified by
partition keys. In our example (see Listing 1), these are
cities, reducing required table joins to those within a city.
In other workloads, such partitions could be individual
experiments or data sources with no relevant connec-
tions between two partitions. Data points are selected
by their attributes, such as the type or name of a point
of interest (POI), and placed in relation to each other, for
example, by a maximum distance. One query consists of
multiple references to one or more tables that are related
to each other, if no special conditions between individual
data points are specified, the result consists of all combi-
nations of all matching points within a partition. Further,
partitions can be part of other conditions like a subquery
restricting the number of partitions.

Listing 1: Example for a spatial query, defining condi-
tions between several points

SELECT p1 . name
FROM p o i as p1 , p o i as p2 , p o i as p3
WHERE p1 . type = ’ s c h o o l ’
AND p2 . name ILIKE ’%museum% ’
AND p3 . type = ’ s o c c e r _ f i e l d ’
AND d i s t (p1 . geom , p2 . geom) < 200
AND d i s t (p1 . geom , p3 . geom) < 500
AND p1 . c i t y = p2 . c i t y
AND p1 . c i t y = p3 . c i t y
AND p1 . c i t y in (SELECT c i t y FROM

c i t i e s WHERE p o p u l a t i o n < 1 0 0 0 0)

As only spatial relations within a partition need to be
computed, this reduces the number of required compar-
isons; still, many combinations of data points must be
checked. As the number of relevant points can often be
reduced by filtering for the point’s attributes, the usage
of spatial indexes in the presence of a partition key is of
limited use if the partitions are small. In our example,
we could use a spatial index to select all points that are
within the defined distance. However, since attributes
need to be checked for each point, in many cases, it is
faster to instead filter for the attributes and compute the

distances to all matching points within the partition. As
each query may filter for different attributes, multiple
indexes would be required, creating even more overhead
maintaining combined spatial indexes. Furthermore, be-
cause of the high number of theoretical combinations, the
distances can usually not be easily precomputed, which
limits the usage of range-based indexes.

In cases where we have a highly selective point, we
can directly limit the search to these partitions. How-
ever, individual data points, even if filtered by multiple
attributes, are often not very specific, as similar points
are present in many, if not most, partitions. For exam-
ple, most cities will have a school, many a school with
a nearby soccer field, but only a few also have a nearby
museum, while each type of POI may be present in most
cities. If the search contains, for example, conditions
with text searches with a prefixed wildcard, a high num-
ber of points may need to be evaluated, even if a point
has only a few matches, due to limited indexing possi-
bilities. Although each point itself is not very selective,
the combination of several points, together with distance
constraints, reduces the number of results.

Depending on the environment, a dataset can consist
of thousands to millions of partitions and data points
can have low cardinality, so that single conditions are
very unspecific. As matches can theoretically occur in all
partitions, the entire dataset with many points must be
considered for each query. One way to reduce the search
space is to utilize caching.

3.2. Basic Approach
Our approach does not aim to replace the RDBMS; it
tries to help the system search more efficiently by re-
ducing the search space. If only a limited number of
partitions need to be considered, less data must be read
from the secondary storage, and the computational effort
of distance checks needs to be performed in fewer parti-
tions. In contrast to other caching approaches, we focus
on the partition keys instead of the actual results; this
has several benefits, as will be discussed later. We must
know which partitions the query may find valid results,
to reduce the search space. As we search for conjunctive
conditions, we can determine that partitions in which at
least one query condition is not fulfilled cannot contain a
valid result. The same is true for any subset of conditions
or tables involved.

Using this property, we can check for each (sub)set
of conditions if we have information stored; if we have
information, we can restrict the search to the stored par-
titions, as shown in Figure 1. 𝐴, 𝐵 and 𝐶 are sets of
partition keys based on conditions 𝑎, 𝑏 and 𝑐. These con-
ditions can be selections on attributes of a single point,
as well as multiple points that are put in relation to each
other via a distance or similar. If we have stored the set of

B

A C

B

A

CA A∩C
A∩B

A∩B

A∩B∩C

A∩C

Figure 1: Sets of partitions of different conditions. Each set
consists of partition keys based on the corresponding condi-
tion or set of conditions. If intersecting sets of partitions, the
search space can reduced for queries. If different subsets are
known, they also can be intersected.

partition keys in which conditions 𝑎 ∧ 𝑏 are fulfilled and
the set of partition keys in which 𝑎 ∧ 𝑐 is fulfilled from
previous queries, we can restrict the search space for a
new query 𝑎 ∧ 𝑏 ∧ 𝑐 to a smaller number of partitions in
𝐴 ∩𝐵 ∩ 𝐶 .

This way, we can restrict the search to the intersection
of all known conditions if we have information on mul-
tiple subsets of conditions. In the best case, combining
several conditions can restrict the search space to only
those partitions where we have valid results. This can
be, for example, the case if seeing a very similar query or
having encountered multiple queries that contain each
one part of the new query. This approach works best if
a restrictive part of the query has been cached, so new
queries which added or changed other constraints ben-
efit, but also combining several less restrictive sets of
partition keys can lead to a overall reduced number of
partitions to search.

3.3. Populating the Cache
The cache will be populated by analyzing queries ob-
served on the database system. The system will moni-
tor the database logs and obtain all queries that are run
against the database. It will rerun the queries seen in the
database and store the resulting partition keys. Further-
more, the system will identify partial queries, which are
queries that are based on the original search but omit
one or more of the joined tables. These partial queries

consist of all possible combinations that are conjunc-
tively connected. For this, the conjunctive normal form
is created. With this approach, it is more resilient to
changes in queries, as we have valid results in the cache
if a part of the original query is changed and searched
again. The system can be restricted to limit the number of
derivations of the query to prevent too many unspecific
partial queries from being created from a decomposed
query. To ensure better cache utilization, we can addi-
tionally generate more generalized queries, for example,
by rounding numeral conditions like distances to integers
to prevent cache misses if a distance is slightly changed.
However, defining which generalization steps are helpful
may depend on the dataset. In a final step, the query
is rearranged and normalized so that a unique hash is
generated for each query, regardless of different named
aliases or a different ordering of conditions. We utilize
a concurrently running system to avoid a negative im-
pact on the user experience, which would occur if we
materialize intermediate results, as they usually existed
only in memory or were never computed due to optimiza-
tion techniques of the database. The cache now contains
hashes of (partial)queries with all partition keys where
results for this query can be found.

3.4. Utilizing the Cache
If a query is run, it is checked against all known entries
in the cache. For this, the query is, like while cache pop-
ulation, normalized and decomposed into all possible
partial queries. In addition, more variants can be created
than were created while populating the cache. Additional
query variants, for example, with a wider range condi-
tion, can be utilized as long as we can guarantee query
containment so that no results are lost. From all partial
queries found in the caches, the sets of stored partition
keys can be intersected, resulting in a set of partition
keys that can then be appended to the SQL query, which
is executed on the RDBMS (see Figure 2). The partition
keys may contain false positives, but the result remains
valid as the RDBMS still verifies all conditions.

4. Considerations
Storage Usage If a partial query has a large set of re-
sults, it needs more storage to store partition keys, and, at
the same time, it has less benefit in the overall approach.
It is possible to store only queries that yield fewer than
a specified number of partitions to reduce the required
storage space. To prevent the entry from being calculated
repeatedly, a separate table can hold the number of parti-
tions resulting from each query, indicating that the query
has already been computed. To focus on more specific
queries, it can be beneficial to only cache query variants

hash1

hash3
hash2

hash4

Hashes Partition keys

{0,3,4}
{0,1}

{0,1,4,5}
{3,4,5}

Query
∩ {0,4}

hash5 not in cache

Figure 2: A query is decomposed in partial queries, each
represented by a hash; In this example hash1, hash3 and
hash5, of whom hash1 and hash3 are already present in the
cache. Hash5 was not found in the cache, as this partial query
was not seen before and is ignored. The partition keys of
the matched hashes are intersected and can then be used to
restrict the search space to partitions 0 and 4.

with table combinations that have a specific relation to
each other, like a distance metric, as otherwise too many
results could be found, increasing computation time and
the number of partitions. Furthermore, to reduce mem-
ory consumption, it could be possible to group partitions
and reference these clusters; this can be beneficial if the
data has many similarities between different partitions.
In a similar approach, queries with similar result sets can
be grouped. Here, the hashing function must be adapted
and the results for all combined hashes must be united.
If there are a high number of unspecific conditions, it is
also possible to maintain a negative cache, containing
per query all partitions where no matches are found; all
such matches can then be united and used in the SQL
query or cut with the result for the positive cache. How
effective it is to store the partition keys instead of the
actual results in terms of storage consumption depends
on the size of the partitions and the number of results
per partition. Here, further analyses are necessary for
specific workloads.

As we focus on read-only and append-only datasets,
cache invalidation is currently not in our focus. For sci-
entific datasets, many projects work with dataset dumps
with no updates or only periodic ones. To prevent in-
definite growth of the cache, eviction strategies, such as
least recently used or removing the largest (least specific)
cache entries, can be used.

Dataset Updates Datasets can be updated as long as
partitions are immutable. Deleting partitions would in-
crease the false positive rate, but not create false nega-
tives. Append-only datasets can be handled by maintain-
ing a list of the newest partition available when adding a
query to the cache. If we hit a cache entry created in an
old database state, we can identify the oldest state and
add all partitions to our result set that were added later.
To prevent a growing number of false positives, cached
queries can be rerun to update the set of partitions.

If data within an existing partition is changed, this par-

tition either needs to be considered for each subsequent
search regardless of its presence in a cache entry, or all
cache entries must be revalidated for this partition.

Prepopulation It is also possible to prepopulate the
cache with expected queries, for example, by altering
the seen queries by changing individual attributes. Also,
often searched fingerprint-like patterns can be precom-
puted, and structures specific enough to reduce the
number of partitions can be integrated, integrating ap-
proaches described in Related Work.

Effectiveness This approach relies on recurring pat-
terns in queries and disjunct partitions. This approach
creates some overhead, so the effectiveness must be high
enough to reduce the overall runtime. For this, the fre-
quency of the cache hit and the number of false positive
quotes are most relevant. In addition, it may not be help-
ful for a search that requires less than a few seconds.

In addition to complex partial queries, it may also be
beneficial to store simple queries. While these queries
can usulay be quickly resolved by a relational system, it
can also be beneficial to reduce the number of possible
partitions early within a cache as it reduces computa-
tional effort in intersecting and rewriting the query.

5. Technical Realization
Usage Although this approach is designed to work
with standard SQL, it should also directly work with
common extensions, such as the spatial PostGIS1 exten-
sion for PostgreSQL. The approach itself is also not lim-
ited to a defined language and can be utilized in various
environments. Furthermore, this approach can still be
combined with alternative techniques, such as a fan-out
in distributed setups or specilized index structures.

Data Storage Different solutions are possible to store
the cache. Each cache entry could be realized as a sep-
arate materialized view, while query rewriting would
allow each existing matching view to be joined to restrict
the search space. Similarly, large tables can be utilized to
reference partition keys or key-value approaches within
the RDBMS. These approaches allow all data to be stored
within a single location, and the RDBMS to have maxi-
mum freedom for optimization steps. Alternatively, an
external key-value store can be used. To integrate this,
either a query engine like PrestoDB2 can be utilized, or
the RDBMS can provide such integration. Furthermore,
query rewriting could happen at the application level,
where the cache is based on an embedded store or a sep-
arate system.
1https://www.postgis.net/
2https://prestodb.io/

Data Structure Storing the cache in an inverted index
or some related data structure helps fast retrieval of the
set of partition keys for a given query. Adding a new
cache entry is also simple, as just a new key value pair
needs to be added, even if this may cause some balancing
of the data structure. Also, it would be possible to store
not a set of partition keys but utilizing a bit vector, de-
scribing in which partitions the query is matching. Fast
intersections are possible here, but storage consumption
is higher in contrast to sets with only a few members.
Alternatively, a forward index can be used to store the
queries that match for each partition. This can reduce
storage consumption, but increases search time as all
indexes need to be checked. However, using probabilistic
data structures, such as a bloom filter or a hierarchical
bloom filter, can reduce storage consumption and search
time.

6. Conclusion
Although it does not eliminate the need for database com-
putations, our approach aims to reduce the search space
within the database and, therefore, the runtime. As we
decided to store only the set of partitions and not the
actual results, it consumes less memory and creates less
overhead to intersect and serialize the query. In addition,
cache hits of different partial queries can be combined. It
allows the utilization of multicolumn indexes based on
partition keys, reducing access time when verifying con-
ditions. Since sets of partition keys of partial queries can
be intersected, it is more resistant to changes in queries
than other approaches. This allows it to provide cached
results even if new queries are run that combine elements
of already existing queries. In contrast to approaches that
rely solely on precalculated structures, this approach is
more flexible in terms of relevant structures expressed
by the queries, which allows for a better reduction of the
search space.

Open questions remain for future work as the choice
of technology is still open for discussion. Although the
general approach works with different technologies, de-
pending on the specific workloads, the utilization of in-
verted and forward indexes, as well as the usage of sets
and descriptors, must be evaluated. Different approaches
may be combined to utilize positive and negative sets or
probabilistic structures, such as a bloom filter. The op-
tions where to store the cache, range from an embedded
system within the application, a separate key-value store,
to storing it within the same database as the original data.
Additionally, a middleware or separate processing layer
could be used to integrate our approach with existing
systems and approaches.

References
[1] J. Graef, C. Ehrt, K. Diedrich, M. Poppinga, N. Ritter,

M. Rarey, Searching geometric patterns in protein
binding sites and their application to data mining
in protein kinase structures, Journal of Medicinal
Chemistry 65 (2022) 1384–1395. doi:10.1021/acs.
jmedchem.1c01046.

[2] Y. Fang, R. Cheng, G. Cong, N. Mamoulis, Y. Li,
On spatial pattern matching, in: 2018 IEEE
34th International Conference on Data Engineer-
ing (ICDE), 2018, pp. 293–304. doi:10.1109/ICDE.
2018.00035.

[3] E. Wong, K. Youssefi, Decomposition—a strategy
for query processing, ACM Trans. Database Syst. 1
(1976) 223–241. doi:10.1145/320473.320479.

[4] M. Stonebraker, P. Brown, D. Zhang, J. Becla, Scidb:
A database management system for applications
with complex analytics, Computing in Science &
Engineering 15 (2013).

[5] M. Raasveldt, H. Mühleisen, Duckdb: an embed-
dable analytical database, in: Proceedings of the
2019 International Conference on Management of
Data, 2019.

[6] G. P. Copeland, S. N. Khoshafian, A decomposition
storage model, SIGMOD Rec. 14 (1985) 268–279.
doi:10.1145/971699.318923.

[7] G. Sanders, S. Shin, Denormalization effects on
performance of rdbms, in: Proceedings of the 34th
Annual Hawaii International Conference on System
Sciences, 2001, pp. 9 pp.–. doi:10.1109/HICSS.
2001.926306.

[8] D. Comer, Ubiquitous b-tree, ACM Computing
Surveys (CSUR) 11 (1979) 121–137.

[9] A. Guttman, R-trees: A dynamic index structure for
spatial searching, in: Proceedings of the 1984 ACM
SIGMOD international conference on Management
of data, 1984, pp. 47–57.

[10] C.-Y. Chan, Y. E. Ioannidis, Bitmap index design
and evaluation, in: Proceedings of the 1998 ACM
SIGMOD international conference on Management
of data, 1998, pp. 355–366.

[11] M. Poppinga, J. Graef, K. Diedrich, M. Rarey, N. Rit-
ter, Database and workflow optimizations for
spatial-geometric queries in geomine, in: Lernen,
Wissen, Daten, Analysen (LWDA) Conference Pro-
ceedings, 2023, pp. 86–97.

[12] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang,
M. Paleczny, Workload analysis of a large-scale
key-value store, in: Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Com-
puter Systems, 2012, pp. 53–64.

[13] P. Cybula, K. Subieta, Decomposition of sbql queries
for optimal result caching, in: 2011 Federated Con-

ference on Computer Science and Information Sys-
tems (FedCSIS), 2011, pp. 841–848.

[14] R. Chirkova, J. Yang, Materialized views, Founda-
tions and Trends® in Databases 4 (2012) 295–405.
doi:10.1561/1900000020.

[15] T. Inhester, S. Bietz, M. Hilbig, R. Schmidt, M. Rarey,
Index-based searching of interaction patterns in
large collections of protein–ligand interfaces, Jour-
nal of Chemical Information and Modeling 57 (2017)
148–158. doi:10.1021/acs.jcim.6b00561.

http://dx.doi.org/10.1021/acs.jmedchem.1c01046
http://dx.doi.org/10.1021/acs.jmedchem.1c01046
http://dx.doi.org/10.1109/ICDE.2018.00035
http://dx.doi.org/10.1109/ICDE.2018.00035
http://dx.doi.org/10.1145/320473.320479
http://dx.doi.org/10.1145/971699.318923
http://dx.doi.org/10.1109/HICSS.2001.926306
http://dx.doi.org/10.1109/HICSS.2001.926306
http://dx.doi.org/10.1561/1900000020
http://dx.doi.org/10.1021/acs.jcim.6b00561

	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Related Work

	3 Basic Concept
	3.1 Problem Description
	3.2 Basic Approach
	3.3 Populating the Cache
	3.4 Utilizing the Cache

	4 Considerations
	5 Technical Realization
	6 Conclusion

