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Abstract
Many physical systems in the real world exhibit complex behavior, making it difficult to identify their dynamics. To overcome
this problem, prototypes are created to provide a better insight into the behavior of such systems. However, building these
prototypes using traditional methods is often slow due to the computational intensity required to accurately capture the
detailed complexities within these systems and the large parameter space that needs to be explored. Data-driven approaches,
such as machine learning and deep learning frameworks, have the potential to significantly speed up this process by
generalizing the model. In this study, we explore the use of such an approach to understand the complex and non-linear
behavior of dynamical systems, using resistive random access memory (ReRAM) devices as a case study. It is important to
emphasize that modeling ReRAM is only one specific example in our wider investigation, which aims to design predictive
models for a range of non-linear dynamical systems. Our work attempts to overcome the limitations of traditional research
and development by using neural networks to reproduce the complex behavior of ReRAM cells accurately. We introduce
a hybrid dual-input neural network architecture (HDiNN), equipped with a custom loss function, to capture both spatial
and temporal patterns, improving the predictability of cell behavior under different conditions. This involves integrating
important factors such as material properties, device geometry, and electrical interactions into our model to explain the
complexities of ReRAM technology. However, our ambitions extend far beyond ReRAM to develop methods to help create
innovative, durable solutions in various fields. This study highlights the impact of predictive modeling in advancing materials
science and demonstrates the transformative potential of neural networks in improving the design and optimization of future
technologies.
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1. Introduction
Many physical systems in the real world, from natural
phenomena to engineered materials, show complex be-
havior. This complexity presents significant challenges,
such as the difficulty of predicting system responses un-
der different conditions, the need for extensive compu-
tational resources to model these behaviors accurately,
and the challenge of translating theoretical models into
practical applications. Effective modeling of these sys-
tems requires a deep understanding of the behaviors
themselves and how they can be replicated and analyzed
in a predictive framework[1]. In materials science, for
example, this behavior can take many forms, including
phase transitions, piezoelectric effects, and memory re-
sistance changes, and represents a fascinating and, at
the same time challenging aspect of materials research.
However, the journey from concept to the manufactur-
ing of these materials and devices is often costly and
time-consuming [2, 3]. To overcome these challenges,
researchers are increasingly relying on computational
simulations to navigate the complexities of material be-
havior and device functionality. These simulations allow
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the exploration of a wide range of parameters and pro-
vide insights that guide experimental and design efforts.
Although simulations are useful, they can still be time-
consuming, which can create a bottleneck in the research
and development process. Therefore, it would be ben-
eficial to speed up this process, which can be achieved
through the use of data-driven models such as machine
learning algorithms. With such models, it is possible to
reduce both simulation time and the number of experi-
ments required by accurately predicting the behavior of
these complex systems. This would make the research
process more efficient and increase the speed with which
new materials and devices can be designed. Such predic-
tive capabilities could also serve as a powerful tool for
guiding simulation experiments, optimizing resources,
and accelerating innovation.

In this work, we will focus on exploring a specific
example from materials science: learning the behavior
of resistive random access memory (ReRAM) devices.
By investigating the dynamic and non-linear behavior
associated with these materials, we aim to demonstrate
the potential of predictive modeling in advancing the
design and optimization of ReRAM technologies and to
set a precedent for future research and development in
this area.
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Table 1
Memrsitive device parameters and their range of values used in the charge transport simulations. [10]

Parameter Name Symbol Range Unit Parameter type
Band gap 𝐸g [0.3, 3.5] eV Material parameters

Electron affinity 𝜒e [1.0, 5.0] eV
Left Schottky barrier 𝜑0 (𝑥1) [0.001, 2] eV

Right Schottky barrier 𝜑0 (𝑥2) [0.001, 2] eV
Relative electric permittivity 𝜀r [1, 15] 1

Image-charge rel. el. permittivity 𝜀i [1, 15] 1
Electron/hole effective mass 𝑚*

n,𝑚
*
p [0.1, 0.9] kg

Electron/hole mobility 𝜇n, 𝜇p [10−6, 500] m2/(Vs)

Vacancy mobility 𝜇x [10−18, 10−8] m2/(Vs) Mobile defects
Vacancy energy level 𝐸a [0.1, 3.0] eV

Maximum vacancy concentration 𝑁x 1028 m−3

Channel length 𝐿 [0.5, 2] 𝜇m Geometry
Channel width 𝑊 10 𝜇m

Channel thickness 𝐷 0.015 𝜇m

Voltage amplitude 𝑈max [5, 13] V Voltage
Voltage period 𝑡p [1, 20] s

2. Resistive Random Access
Memory (ReRAM)

ReRAM is a class of non-volatile memory that uses the
switching properties of materials to enable data storage
and retrieval. The switching property refers to the ability
of a material within the ReRAM structure to change its
electrical resistance between a high resistance state (HRS)
and a low resistance state (LRS) in response to an applied
voltage [4, 5, 6, 7].

Accurate model of ReRAM is essential for predicting
the behaviour of these devices under various conditions,
enabling engineers and researchers to simulate and anal-
yse the effects of material properties, device geometry,
electrical contacts and applied voltages on device func-
tionality [8, 9] and in general to improve understanding
and ability to effectively predicting memristive device
behavior.

Many models have been proposed to improve our un-
derstanding and ability to effectively predict memristor
behavior. These models range from simple representa-
tions to complex frameworks that capture the complex
dynamics of memristor function [11, 12, 13, 14, 15]. The
linear ion drift model is a fundamental approach to the
simulation of memristive devices and it is valued for
simplicity and ease of use. However, its tendency to
oversimplify the complexity of memristor operation and
neglect of nonlinear dynamics limits its usefulness for
in-depth analysis [11]. At the other end of the complexity
spectrum is the Simmons tunnel barrier model, which is
notable for its integration of quantum mechanical princi-
ples via tunneling effects, providing accurate simulations
particularly suited to thin film memristor applications
[12]. Meanwhile, models such as the Team model and its

Biolek (VTEAM) variant are characterized by their broad
coverage and flexibility, being able to model a wide range
of memristor behavior by manipulating various parame-
ters [13, 14]. The Generalised Memristor Model takes this
flexibility even further by considering a wide range of
behaviors and allowing the inclusion of device-specific
features [15]. However, the complexity of these mod-
els requires significant computational effort and a deep
understanding of device parameters to achieve accurate
simulations [16, 17].

3. Data-driven Model for ReRAM
Behavior Prediction

The use of neural networks accelerates the simulation of
ReRAM devices by recognizing relevant features and ef-
fectively representing the complex, non-linear dynamics
inherent in these devices. Our research aims to predict
the behavior of ReRAM devices, considering a range of
factors such as material properties, device structure, elec-
trical contacts, and the progression of external voltage
over time. An extensive list of discrete parameters incor-
porated into the model is presented in Table 1.

Recent studies have highlighted the potential of
physics-informed neural networks (PINNs) in accurately
predicting the behavior of memristive devices and resis-
tive random access memory (ReRAM) [18, 19]. These
methods combine traditional physics-based models with
neural network techniques to effectively simulate and
forecast device behavior. Similarly, Fan et al. [20, 21]
introduced graph-based neural networks to capture the
intricate details of semiconductor devices, including ma-
terial properties, device characteristics, and spatial re-
lationships. While promising, these approaches would



Figure 1: Schematic of the proposed hybrid neural network architecture. The diagram shows the integration of time series
and discrete inputs, starting with separate input layers. Time series data is processed through CNN-RNN layers, while discrete
inputs pass through a CNN-dense network. Both streams converge in a connected layer, which then feeds into a series of
hidden layers for final data storage.

benefit from more extensive experimental validation and
comprehensive dataset descriptions to fully demonstrate
their effectiveness.

To address these complex challenges, we present a
hybrid dual-input neural network (HDiNN) architec-
ture. This framework combines the strengths of con-
volutional neural networks (CNNs), recurrent neural net-
works (RNNs), specifically LSTM layers [22], and dense
networks [23, 24, 25]. RNNs are used in combination
with CNNs to unravel spatial and temporal patterns in se-
quential data, while CNNs extract features from discrete
data points, followed by dense networks to assimilate
contextual information [26, 22]. By embedding these ex-
tensive parameters into our predictive model, we aim
to enhance the understanding of their collective impact
on the behavior of ReRAM devices. Our methodology is
expected to contribute to the evolution of ReRAM tech-
nologies, leading to more efficient, reliable, and scalable
memory solutions.

4. Methodology
Our study introduces a dual-input hybrid neural network
model to aid the simulation and optimization of ReRAM
cells. The basis for the training and validation of our
model is a comprehensive dataset derived from a detailed
physical charge transport model[10]. The computational

model used in this study describes a ReRAM cell based on
the presence of mobile charged vacancies in the memris-
tive material. It solves a set of coupled partial differential
equations to capture the detailed physical mechanisms
that lead to hysteresis in the I-V characteristics of mem-
ristive devices. The charge transport model is already
validated by measurements [10].

4.1. Hybrid Neural Network Architecture
At the heart of our approach is the development of
a hybrid neural network architecture. This architec-
ture uniquely combines the sequential data processing
strength of CNNs and RNNs with the skillful parameter
handling and feature extraction typical of CNNs followed
by dense networks [27, 28, 29, 5]. Figure 1 shows the gen-
eral schematic of our proposed neural network.

The process starts with a CNN layer, which enhances
the feature detection capabilities of the incoming data.
This is followed by the RNN segment, which uses LSTM
units that are well-suited to recognizing and preserv-
ing long-term temporal dependencies. This capability
is critical for modeling dynamic systems such as those
represented by ReRAM cells. In addition, convolutional
layers are embedded within the dense network to detect
local spatial features at different scales, enhancing the
model’s ability to identify intricate patterns in the time



Figure 2: Scatter plot shows the deviation of individual MSE values from the average MSE for a set of test samples. The blue
line represents the average level of MSE across all samples, providing a reference for comparing the variance of individual
sample errors from this baseline.

series data.
The dense network segment is specifically used to

manage discrete parameters, such as material properties
and geometric configurations, which are critical in in-
fluencing device performance. The outputs from both
the CNN-RNN and CNN-dense network segments are
merged to create a cohesive representation that encapsu-
lates both temporal dynamics and specific parameter in-
formation. This aggregated feature set is then processed
through additional dense layers, ultimately leading to an
output layer specifically designed to predict the desired
current (I) response of a memristive device under varying
operating conditions.

4.2. Loss Function
In this work, we introduce a composite loss function,
designed to optimize model performance by minimizing
prediction error, ensuring trend accuracy, prioritizing
critical points, and being robust to outliers. The loss
function consists of several components, each addressing
different aspects of prediction fidelity. Below, we mathe-
matically describe each component and their integration
into the composite loss [30, 31].
Mean Squared Error (MSE): The MSE component

quantifies the average of the squares of the errors be-
tween the predicted values (𝑦𝑝𝑟𝑒𝑑) and the actual values
(𝑦𝑡𝑟𝑢𝑒). It is defined as:

MSE =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑝𝑟𝑒𝑑𝑖 − 𝑦𝑡𝑟𝑢𝑒𝑖)
2 (1)

Gradient Error: This measures the error in the rate

of change between consecutive predictions and actual
values, emphasizing the importance of capturing trends.
It is computed as:

Gradient Error =
1

𝑛− 1

𝑛−1∑︁
𝑖=1

(︀
|𝑦𝑝𝑟𝑒𝑑𝑖+1 − 𝑦𝑝𝑟𝑒𝑑𝑖 |

−|𝑦𝑡𝑟𝑢𝑒𝑖+1 − 𝑦𝑡𝑟𝑢𝑒𝑖 |
)︀2 (2)

Peak MSE Loss: This component assigns additional
weight to errors at peak points, where the actual data
exhibits significant changes. Peaks are identified where
the gradient of the actual data exceeds a defined multiple
of its maximum value. The Peak MSE loss is defined as:

Peak MSE =
1

𝑛

𝑛∑︁
𝑖=1

𝑤𝑝𝑒𝑎𝑘·(𝑦𝑝𝑟𝑒𝑑𝑖−𝑦𝑡𝑟𝑢𝑒𝑖)
2·peak𝑖

(3)

where 𝑤𝑝𝑒𝑎𝑘 is the weight assigned to peak points, and
𝑝𝑒𝑎𝑘𝑖 is a binary indicator that equals 1 for data points
identified as peaks and 0 otherwise. The formulation
ensures that errors at peak points are amplified by the
weight 𝑤𝑝𝑒𝑎𝑘 .

The final composite loss function integrates the above
components with weighting factors to balance their con-
tributions. It is defined as:

Combined Loss = 𝛼 ·MSE+(1−𝛼) ·Gradient Error

+ Peak MSE (4)

where 𝛼 is a weighting factor that balances the contribu-
tion of MSE and Gradient Error.



Figure 3: Comparison of experimental data and simulations and our selected approach in two distinct output.

5. Experimental Setup
In this study, we used a dataset comprising 1000 simula-
tions derived from the physical charge transport model
as described in Section 4. The dataset includes 16 model
parameters as inputs, a sequence of implemented volt-
ages, and the corresponding current as outputs [10]. To
generate the dataset, the set of input parameters were
systematically varied over a physically reasonable range,
as shown in Table 1 [32, 33, 34].

To manage computational demands and optimize pro-
cessing time, we downsampled the time-series data by
randomly selecting 20% of the samples to retain, re-
moving the remaining samples. This downsampling step
ensures the manageability of the dataset without com-
promising its diversity.

The dataset was divided into a training set (70% of
the total data) and a test set (30% of the total data). The
training set was used to fit the network parameters and
generate an accurate forecasting model, while the test
set was used to evaluate the performance of the models.

Normalization was applied to all input parameters,
scaling them to a uniform range between 0 and 1 to fa-
cilitate effective training. The model’s output was the
prediction of resistance based on the given input param-
eter set and sequence of voltage. Each set of experiments
was run five times to account for the stochastic nature
of neural network training.

To evaluate the accuracy of our model, we compared
its predictions with the dataset generated from the phys-
ical charge transport model using standard regression
metrics. The mean squared error (MSE), for a dataset of
length 𝑁 is calculated by measuring the average squared

differences between predicted values 𝑦 and ground truth
𝑦. We also use the mean absolute error (MAE), to measure
average absolute difference between 𝑦 and 𝑦.

6. Results and discussion
The hybrid dual-input neural network (HDiNN) devel-
oped to estimate the behavior of ReRAM cells gives en-
couraging results. Models effectiveness is measured by
its ability to mimic the current values of ReRAM devices.
The current predictions were found to be in close agree-
ment with both simulation results and experimental data.

It is important to note that since our model was trained
exclusively on simulation data rather than actual experi-
mental measurements, it does not surpass the accuracy
of the simulation data. The main purpose of comparing
the experimental data with the models predictions and
simulations is to validate the quality of the simulations
used in the training process. An additional consideration
in our research is the exclusion of real-world measure-
ments, largely because many of the parameters outlined
in Table 1 are not easily accessible in experimental ob-
servations, whereas they can be precisely controlled and
recorded in simulations.

Another reason for using a data-driven hybrid neu-
ral network approach is computational time efficiency.
While a single simulation run can take approximately
4 hours, the total training time for the neural network
is typically less than 1 hour. This significant difference
in time efficiency highlights the advantage of using our
HDiNN model, especially in scenarios where rapid itera-
tion and model refinement are critical.



Figure 4: (a) an analysis of prediction lengths versus MSE shows a slight increase in MSE with extended prediction spans; (b)
the plot shows a positive correlation between dataset size and prediction accuracy, suggesting improved performance with
increasing volume of training data.

In quantitative terms, HDiNN designed to predict the
current behavior in ReRAM cells registered MSE of 0.002
and MAE of 0.0029. For a more comprehensive under-
standing of the prediction quality, we evaluated the vari-
ance of the MSE for each prediction relative to the aver-
age MSE, as shown in Figure 2. Furthermore, to quali-
tatively show the accuracy of the model, we examined
two different case studies where the model predictions,
the simulated data, and the actual measured data are
compared, as shown in Figure 3. We evaluated the per-
formance of our model over different prediction lengths
and dataset sizes (Figure 4.a,b). Despite a slight increase
in MSE with longer prediction spans, the models main-
tained consistent accuracy, indicating their robustness
to different simulation scales(Figure 4.a). Furthermore,
our results revealed a positive correlation between the
size of the training dataset and prediction accuracy, high-
lighting the importance of comprehensive training data
in the development of robust memristor models (Figure
4.b).

7. Future Work
The results of the model presented are promising, but
there are several areas for future research to improve the
potential of ReRAM. Despite progress, ReRAM technolo-
gies still face challenges such as inconsistent resistance
conditions, limited read/write longevity, and the search
for a standardized switching mechanism. Overcoming
these obstacles is essential to meet the demanding relia-
bility standards needed to bring this revolutionary data
storage technology to the mass market.

For future work, our research aims to extend the ap-
plicability of our data-driven models beyond the domain
of resistive random access memory devices to a broader

range of nonlinear dynamical systems in various disci-
plines. We will explore the potential of neural networks
to uncover the complexity of these systems.
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