
Constraint Management and Data Placement in the Context
of Polyglot Persistence

Felix Kiehn1,*,†, Mareike Schmidt1,† and Fabian Panse2

1Universität Hamburg, Vogt-Kölln-Str. 30, 22527, Hamburg, Germany
2Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

Abstract
Novel database architectures, data models and technologies have long challenged the one size fits all paradigm. Poly-
and MultiStores emerged as a solution to combine these new data stores, each with their own strengths and weaknesses.
Unfortunately, these systems come with their own set of problems such as a lack of support for adaptivity, data updates, or
migration processes. In this work, we propose solutions intended as first steps towards solving these problems. In detail, we
look at two main topics, (1) Data Placement and Workload Analysis as well as (2) Data Migration and Integrity Constraint
Management, and discuss the challenges associated with them.

Keywords
Polyglot Persistence, Poly-/MultiStore, Data Placement, Constraint Management, Data Migration, Adaptivity

1. Introduction
Since the late 2000s novel ways to deal with an ever-
growing amount of (oftentimes unstructured) data have
emerged and continue to inspire new database systems
and data models. All of these new systems, whether
NoSQL or more advanced relational systems, have their
own strengths and weaknesses [1]. Given the large
amount of different systems optimized for different use
cases, developers are often confronted with keeping track
of where these systems excel or where not [2]. Addi-
tionally, the traditional way of using a single database
solution for a project and the associated one size fits all
mindset is no longer valid [3, 4]. Furthermore, beside
so-called microservices [5], smaller functional sub-units
of larger projects, each with its own database solution,
there have also been efforts in recent years to combine
several heterogeneous data stores (database systems). In
an effort to combine the various strengths of these sys-
tems, they are unified within a mediation system and
exposed to users as a single data store system [1]. The

35th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), May 22-24, 2024, Herdecke, Germany.
*Corresponding author.
†

These authors contributed equally.
$ felix.kiehn@uni-hamburg.de (F. Kiehn);
mareike.schmidt-3@uni-hamburg.de (M. Schmidt);
fabian.panse@hpi.de (F. Panse)
� https:
//vsis-www.informatik.uni-hamburg.de/vsis/members/look/2291
(F. Kiehn); https:
//vsis-www.informatik.uni-hamburg.de/vsis/members/look/2290
(M. Schmidt);
https://hpi.de/naumann/people/dr-fabian-panse.html (F. Panse)
� 0000-0003-2345-8551 (F. Kiehn); 0000-0002-7330-6276
(M. Schmidt); 0000-0002-0675-4116 (F. Panse)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

focus of these systems, coined Multi- and PolyStores [6],
range from aiming to offer the full data store experience
(e.g., Polypheny-DB [7], BigDAWG [8]) to cross-platform
data processing systems (e.g., Apache Wayang [9]). Most
of these systems hold a static, manually designated map-
ping to place data to the respective data stores and lack
any form of flexibility. However, to appropriately react
to (possibly changing) requirements based on workloads
and users’ service level agreements (SLAs), these systems
should be able to determine an optimal data placement in-
cluding an appropriate handling of potential constraints.
Therefore, we want to discuss two main problems and
outline possible solutions and ideas: (1) How to calcu-
late an optimal data placement based on current data,
workload, SLAs, and deployed data stores, and (2) how
to model and validate integrity constraints in data stores
as well as implement efficient update/insert processes in
a Multi-/PolyStore setting.

In Section 2, we describe the concept of PolyStores in
detail and present the state of the art in Section 3. In Sec-
tions 4 and 5, we focus on our two main topics of Data
Placement and Constraint Management, respectively. Fi-
nally, we provide a brief conclusion in Section 6.

2. Multi-/PolyStores
Before we dive deeper into the aforementioned problems,
we want to establish what Poly- and MultiStores are in
detail first. They can both be classified as "[s]ystems
federating specialized data stores and enabling query
processing across heterogeneous data models [...]" [6].

The main difference between these systems is the
amount of query interfaces they offer. MultiStores have
one single query interface whereas PolyStores incorpo-
rate multiple interfaces (Figure 1). However, both are

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:felix.kiehn@uni-hamburg.de
mailto:mareike.schmidt-3@uni-hamburg.de
mailto:fabian.panse@hpi.de
https://vsis-www.informatik.uni-hamburg.de/vsis/members/look/2291
https://vsis-www.informatik.uni-hamburg.de/vsis/members/look/2291
https://vsis-www.informatik.uni-hamburg.de/vsis/members/look/2290
https://vsis-www.informatik.uni-hamburg.de/vsis/members/look/2290
https://hpi.de/naumann/people/dr-fabian-panse.html
https://orcid.org/0000-0003-2345-8551
https://orcid.org/0000-0002-7330-6276
https://orcid.org/0000-0002-0675-4116
https://creativecommons.org/licenses/by/4.0

DS1 DS2 DS3

MultiStore

Heterogenous Data Stores

Single
Query

Interface

DS1 DS2 DS3

PolyStore

Heterogenous Data Stores

Multiple
Query

Interface

Figure 1: Difference between Multi- and PolyStores (Based
on: Tan et al.[6])

built upon heterogeneous data stores. This distinguishes
them from other system classes such as federated systems
or polylingual1 systems, which use a homogeneous selec-
tion of data stores as well as single (federated) and mul-
tiple (polyglot) query interfaces respectively [6]. Given
that the issues addressed in our research impact both Mul-
tiStores and PolyStores alike, we will employ the term
’PolyStores’ to encompass both system classes through-
out the subsequent discourse for clarity and consistency.

Regarding their architecture, most PolyStores use a
Mediator-Wrapper Architecture [10] and can be distin-
guish based on (1) how tightly-coupled the mediation
layer is with the underlying data stores, (2) how they
model the relationships between the different schemas,
(3) how they combine data from different stores using dif-
ferent join algorithms, or (4) how they optimize queries
across multiple stores to leverage the stores’ strengths
[11, 12].

3. State of the Art
In the following, we want to deep dive into an exemplary
selection of PolyStores to highlight how these systems
work, what they offer, and in which areas the current
research lacks.

Apache Wayang, originally developed as Rheem [13],
is a platform-agnostic data analytics framework which
decouples the application from the underlying data store
and places itself in the middle to perform the cross-
platform data processing [9]. Data processing jobs are
written as Wayang plans which are then mapped from

1Polylingual system are named Polyglot Systems in [6] and some
other publications.

platform-agnostic to platform-specific operators and op-
timized based on cost estimates. The migration of data
is done without materialized views or permanent data
migration but on-demand if data is needed to be shipped
from one store to another. The migration and transfor-
mation of the data is implemented by using a directed
conversion graph, which defines the transformation rules
from one model to the other.

BigDAWG, a PolyStore developed at MIT and North-
western University, is designed as a 3-layer architecture
[8]. The first layer contains applications and visualiza-
tions whereas the second layer represents a mediation
layer responsible for query planning and optimization.
The third layer is formed of so-called islands of infor-
mation. Each island is built of a data model, a query
language and a set of underlying data stores.

Without a consideration of write operations or data
placement, the sole focus of the system is the pro-
cessing of complex, island-overarching read operations.
While querying a specified island using so-called SCOPE-
operations, data shipping can be manually initiated be-
tween different islands using CAST-operations. However,
transformations from the data model of one island to the
model of another island have to be defined manually by
the user. Query planning and optimization in BigDAWG
is achieved by building a performance catalog of query
plans. In addition, She at al. introduce the concept of
semantic equivalence for query planning according to
which "Semantically equivalent queries [...] are substi-
tutable" [14].

Polypheny was first introduced in [7] as a project
of the University of Basel and later transformed into a
company2. From their original vision, a highly adaptive
PolyStore, the current release3 already supports a va-
riety of data stores with different data models such as
PostgreSQL for multimodel, MongoDB for document and
Neo4j for graph data. Schema information is managed
using name spaces, each of which has its own data model.
Datasets are assigned manually to one of these name
spaces as well as one or several data stores. Queries can
be formulated using several languages such as SQL, CQL,
and Cypher. Additionally, it is possible to formulate name
space or store overarching queries for some languages
(e.g., SQL). However, the processing of these queries was,
at least in our test of the available prototype, unstable
and the transformation between different data models
rudimentary. For instance, when querying data residing
in a document store (e.g., MongoDB) with SQL, the data
is transformed into the relational model in a way that
leads to a table with one column containing complete
documents.

2https://polypheny.com/en/
3https://github.com/polypheny/Polypheny-DB/releases/tag/v0.9.1
(v0.9.1)

4. Data Placement

Polystore

Store A migration Store B

Store Cmigration migration

Use Case

Dataset 1

Dataset 2

Dataset 3

SLA

Query Query
Query

Query

Data Placement

Store A
Dataset 1

Store C
Dataset 2

Store B
Dataset 3

Figure 2: Operational costs of the PolyStore and use case
information are used to compute the best data placement.

While the placement of operators on data stores for
PolyStores has already been the topic of current research
[15, 16, 9], a suitable assignment of datasets (e.g., rela-
tional tables, MongoDB collections, or graph nodes with
the same label) to data stores is still one of the key chal-
lenges. A poor choice in this regard might prevent the
polyglot system from exploiting all the capacities of the
underlying data stores. Choosing the right store for a
dataset comes into play in the following situations: (1) A
new dataset is inserted, (2) existing data records are up-
dated or deleted significantly changing a dataset’s char-
acteristics, (3) the workload (and thus the access patterns)
changes, (4) the users’ SLAs, such as certain consistency
guarantees or runtime requirements, change, or (5) the
underlying architecture changes (e.g., a new data store is
added).

In all cases, the best assignment for a given dataset
depends on (1) the architectural characteristics of the
system, (2) the intended workload for this dataset and
(3) predefined SLAs. The impact of these three aspects
as well as first ideas to combine them within one model,
are illustrated in Figure 2. Within this section, we will
first present an attempt to tackle the problem of data
placement and then discuss all three aspects in more
detail with respect to our proposed approach.

4.1. Defining a Data Placement Model
To be able to provide an optimized placement of datasets
in data stores, a model has to be created that incorporates
the characteristics of the related PolyStore and require-
ments defined by the intended use case. In a first attempt,
the placement itself can basically be described as a binary
assignment problem. In [17], Tu et al. already used a sim-

ilar approach for the assignment of encryption methods
to columns of relational tables.

In our context, we propose the following formulation
of a mathematical binary optimization problem to com-
pute an optimal set of dataset assignments 𝑋 :

argmin
𝑋

∑︁
𝑑∈𝐷

∑︁
𝑠∈𝑆

∑︁
𝑜∈𝑂

𝑤𝑑𝑜𝑐𝑜𝑠𝑥𝑑𝑠 (1)

Here, 𝐷 contains the datasets that should be assigned,
𝑆 is the set of available data stores and 𝑂 is the set of
supported operators. Furthermore, 𝑐𝑜𝑠 are the costs de-
rived from the PolyStore measurements (Subsection 4.2)
and the weights 𝑤𝑑𝑜 model the distribution of operations
for each dataset 𝑑 (Subsection 4.3). 𝑥𝑑𝑠 is the resulting
assignment being 1 if dataset 𝑑 is assigned to data store
𝑠 and 0 otherwise.

In order to ensure that every dataset is assigned to
exactly one data store, the following constraint is added
to the minimization:

∀𝑑 ∈ 𝐷 :
∑︁
𝑠∈𝑆

𝑥𝑑𝑠 = 1 (2)

Up to this point, only the characteristics of the Poly-
Store and the workload of the use case define the data
placement. To also ensure compliance with the provided
SLAs, further constraints are added to the minimization.
These will be discussed in more detail in Subsection 4.4.

4.2. Cost Measurement of PolyStore
Characteristics

To be able to estimate the costs of operations within a
polyglot system, it has to be determined if and how an
operation can be processed. Based on results from [12],
the analyzed PolyStores use up to four possible ways of
computing operations:

1. One of the underlying data stores is able to serve
the operation directly so that it can be pushed
down and computed there.

2. A data store does not offer the given operation but
it can perform a semantically equivalent sequence
of operations instead.

3. There exists a semantically equivalent sequence
where different parts of the sequence can be per-
formed on different data stores with data being
shipped between these stores.

4. There exists a semantically equivalent sequence
where parts of the sequence can be performed
within some of the underlying data stores and
the final operations can be performed within the
mediation layer.

1 SELECT a . row_num , b . col_num ,
2 SUM(a . value ∗ b . value)
3 FROM a , b
4 WHERE a . col_num = b . row_num
5 GROUP BY a . row_num , b . col_num ;

(a) using relational databases

1 multiply (a , b)

(b) using SciDB

Figure 3: Semantically equivalent formulations of a multipli-
cation of matrices a and b

Choosing between these four possibilities is a key chal-
lenge in query optimization and is highly intertwined
with the placement of datasets in data stores. To be able to
choose the best solution, costs such as operation runtime,
memory consumption, latency, and even transformation
and migration costs have to be considered during the
assignment of datasets. We are currently working on
assessing these costs for different PolyStores.

4.3. Workload Analysis
Information on how a dataset will be processed for a

given use case is an important factor for the optimality of
a data placement. The question here is not only how an
operation can be performed but also how often it occurs
compared to others. Therefore, it is necessary to extract
the distribution of operations for each dataset from a
predefined sample workload.

To assess a given workload while staying independent
of the chosen query language and its individual capaci-
ties, a unifying abstract model for queries is necessary.
Hence, we currently develop a tree model that is enriched
by optional schema information. In order to be able to
correctly combine the weights (𝑤𝑑𝑜) extracted from the
tree with the operational costs, we enable the system
to find semantically equivalent sequences (e.g., us-
ing pattern matching) and to replace them by a single,
more complex operation. Figure 3 shows two formu-
lations of a matrix multiplication. Here, the sequence of
cross product, selection, and aggregation will be replaced
within our model by a multiply operation.

Factoring more complex operations into the distribu-
tion derived from the workload, will facilitate the calcula-
tion of operation costs as it enables the system to replace
the costs for one operation by the costs of a sequence of
operations and migrations. Therefore, all ways of com-
puting operations described in Section 4.2 are considered
in the overall minimization.

4.4. Service Level Agreements
As outlined in Subsection 4.1, necessary characteristics of
data processing have to be considered when optimizing
the placement of datasets. A broad overview of SLAs
can be found in [2]. While the need for some of these
functionalities, such as the applicability of graph algo-
rithms or the processing of joins, are already captured
in the weights extracted from the workload, other de-
mands such as transactions or consistency guarantees
have to be incorporated differently. Within our proposed
data placement model, we guarantee that the resulting
data placement satisfies all defined SLAs by adding the
following set of constraints:

∀𝑑 ∈ 𝐷 : ∀𝑐 ∈ 𝐶𝑑 :
∑︁

𝑠∈𝑆∖𝑆𝑐

𝑥𝑑𝑠 = 0 (3)

Here, 𝐷 contains all datasets to be assigned, whereas
𝐶𝑑 is the set of SLAs required for a certain dataset 𝑑.
𝑆 is the set of supported data stores, 𝑆𝑐 is the set of
stores supporting a given SLA 𝑐 and 𝑥𝑑𝑠 represents the
assignment. The given formulation implies that the sum
of assignments of 𝑑 to data stores not supporting a given
SLA (e.g., strong consistency) is 0. Therefore, datasets
cannot be assigned to these data stores.

4.5. Usability, Practicability and Future
Directions

With our proposed optimization model, we present a
first solution to tackle the problem of data placement in
PolyStores. It can be used for both, the initial placement
of data by solving the optimization in advance and for
adapting the placement to a changing workload by mea-
suring the workload during a predefined time interval
and adjusting the weights accordingly.

Since the number of data stores |𝑆| supported by one
PolyStore is rather small and the number of datasets |𝐷|
is unlikely to exceed a few hundred, the computational
effort for the optimization is manageable in practice. Es-
pecially in the case where a dataset is assigned to exactly
one store, there are only |𝑆| × |𝐷| possible solutions.

Nevertheless, there are some drawbacks, that have to
be solved in future work: (1) Currently, the costs are only
defined by data store and operation. Here, (pre-)known
characteristics of the datasets and its attributes with re-
gard to certain operations, such as selectivity, have to be
incorporated. (2) Replication and vertical partitioning of
datasets across different data stores might be desirable.

5. Constraint Management and
Data Migration

As motivated in Section 1, developer are confronted with
a multitude of data stores and a demand for using dif-
ferent stores in parallel to benefit from their respective
strengths [2, 5]. PolyStores pose a possible solution for
developers who don’t have the resources or knowledge
to be well-versed with all these different data stores and
their quirks by managing all data stores transparently
under a mediation layer [12]. However, transparency
introduces a new problem that PolyStores have to deal
with: What if users want guarantees (e.g., foreign key or
check constraints) but know nothing about the underly-
ing data store landscape, the capabilities of the stores, or
even the location of their data? In this case, PolyStores
need mechanisms to either delegate these requirements
to the stores or implement missing constraints in the
mediation layer. In the following section, we will discuss
challenges that arise in this context and discuss possible
solutions for them.

5.1. Constraint Modeling
For a PolyStore to delegate constraint handling or sup-
port store capabilities, we need a better grasp of what
constraints are supported by which data stores. We focus
on popular data stores, such as MongoDB, Neo4J, and
PostgreSQL, to cover a broad selection of data models.
Especially NoSQL systems lack support for constraints
on their data, as these systems focus more on flexible or
loosely connected data models [2]. Additionally, we have
to consider support for constraints that concern multiple
data stores such as foreign key or check constraints that
reference data in other stores.

For this purpose, we propose a mediation layer compo-
nent orchestrating constraints by adding support (1) for
missing constraints on stores who lack them and (2) for
cross-data-store constraints not achievable on a single
store. As these data models oftentimes were not designed
with full integrity control in mind in order to maximize
case-specific performance benefits, such an approach
will add overhead to the whole system’s performance. To
minimize this overhead a strong priority lies on imple-
menting missing constraints by methods provided by the
stores themselves if possible.

To better handle the constraint management in the
mediation layer some kind of catalog of the data residing
in the stores is required. Meta-modeling the data is a
promising approach which can be used to (1) catalogue
the data in a single schema, (2) transform the data (and
potentially the constraints as well) efficiently between
stores by avoiding direct store-to-store transformations
(3) and finally build the foundation of migrating data as
well as the imposed constraints from store to store. In

recent years multiple approaches for meta-models for
polyglot persistence were proposed, such as U-Schema
[18], M-Schema [19], or the Canonical Models used by
[20] for data transformation and migration. It is our goal
to implement our constraint approach into a suitable
meta model to build upon already available work and en-
hance its capabilities to our needs. For this, a meta-model
should fulfill a number of criteria including: (1) Given
the focus on the data stores PostgreSQL, Neo4J and Mon-
goDB, the meta-model must include the relational, the
document, and the graph model. (2) For the focus on
integrity constraints as well as an efficient validation of
them, the transformation between meta-model and data
store model should generate very "natural" data in the
sense that e.g. data transformed from graph to relational
is similar to data that was intended and designed for the
relational model in mind. If graph nodes and edges were
to be put into two simple tables (one for nodes and one
for adjacency), the validation of constraints – which are
typically defined on single entity types – will become
very inefficient because the corresponding tuples would
have to be identified first.

Migrating data between data stores to place it where it
can be handled most efficiently is a key factor to enable
PolyStores to adapt themselves to changing requirements.
Ultimately, the need for migration stems from the data
placement problem already discussed in Section 4. In
combination with the previously established reasons for
introducing constraint handling into these systems (e.g.,
transparency), one has to preserve and transform con-
straints in the migration process as well. A further chal-
lenge with the migration process lies in how to verify that
the transformed constraints are still semantically equiva-
lent to the old ones. When transforming data between
different data models while keeping the constraints intact
one must take the different semantics of the models into
account (e.g., null values). The authors of the query lan-
guage SQL++ which is part of the MultiStore FORWARD
[21] include variable semantic definitions per query to
bridge the different data model semantics. As SQL++
aims to provide an SQL-like, implementation-agnostic
experience which is detached from the actual data store,
the addendum at the end of each query seems like a
suitable solution. However, if implemented as part of a
PolyStore mediation layer such semantics can be baked
directly into the system. This shows that a migration
process with constraints needs to consider the different
semantics of the underlying data stores and their data
models to ensure equivalence to work properly. From
this, different challenges can be identified:

1. Developing an abstract language for modeling
constraints that can be integrated into the meta
model and translated to the languages of the un-
derlying stores (e.g., SQL check constraints).

2. Developing a mechanism to rewrite constraints
affected by a data migration process so that the
resulting set of constraints is semantically equiv-
alent to the original set of constraints (i.e., the
rewriting is accurate and complete).

5.2. Constraint Validation
As already discussed in [11] and [12], efficient updates
over multiple data stores themselves are a hard problem
as these involve intermediary results and query steps.

As seen in the two round approach illustrated in Fig-
ure 4, in order to execute the update command the medi-
ator has to work in steps: (1) The mediator determines
all records that need to be updated and calculates a table
with intermediary results (depicted 𝐷 in Line 2). (2) The
intermediary results are then used to update the original
record based on their IDs (see Lines 6-7). This approach
leads to an updated state in our PolyStore but begs the
question of whether a more efficient one-round variant
may be possible. This is especially important if we con-
sider more advanced and complicated queries which may
need more than two rounds to be solvable. Furthermore,
there are few to no PolyStores out there, that support up-
date/insert queries over their heterogeneous data stores.

While the previous section mostly focused on the topic
of how to model constraints in a polyglot persistence
environment, we have to consider the validation process
of constraints, too. This mainly matters during inserting
or updating data in our PolyStore and boils down to two
core problems we want to focus on:

1. Finding an efficient way to update/insert data
across multiple data stores.

2. Incorporating the constraint validation into a
polyglot data update/insert process.

The last challenge can be further divided into:

• Efficient validation of constraints involving data
distributed across different data stores.

• Consistent execution of referential actions across
different data stores under reuse of existing mech-
anisms within the individual stores.

A naive validation of constraints in the mediator may
require loading large amounts of data from the individual
data stores. Efficient validation strategies must therefore
attempt to minimize such loading with the help of indices
(e.g., for unique constraints) and clever query generation.

In summary, developing efficient update/insert as well
as constraint validation processes within PolyStores
presents considerable challenges. As we move forward,
it is imperative to develop mechanisms that not only en-
sure efficient data handling but also uphold referential
integrity and consistency across multiple data stores.

intermediary
result

1 −− Gathe r r e l e v a n t r e c o r d s
2 SELECT ID , A ∗ 1 . 1 + B AS D
3 FROM T1 WHERE C= ’WI ’ ;
4

5 −− Update each r e c o r d based on i t s ID
6 UPDATE T1 SET A = 9 . 5 WHERE ID = 2 ;
7 UPDATE T1 SET A = 8 . 5 WHERE ID = 3 ;
8 . . .

Figure 4: Example for a two-round approach for updates on
a PolyStore (Adapted from [11])

6. Conclusion
In this paper, we explained the concepts of Multi- and
PolyStores and the open challenges within these systems
with respect to data placement and constraint manage-
ment. Based on our research and the current develop-
ment direction of state-of-the-art PolyStores, we identi-
fied adaptivity as a key factor for future research in this
field. To ensure adaptivity, we propose research ideas in
the topics of (i) data placement and workload analysis as
well as (ii) data migration and constraint management.

For data placement, we plan to incorporate a unifying
abstract model into the process of workload analysis. The
results of the analytical process and the characteristics of
the PolyStore are then cast into an optimization model,
that computes an assignment of datasets to data stores.

For a migration process in PolyStores we introduced
the idea of an overarching constraint management sys-
tem as well as the incorporation of a meta-model. Fur-
thermore, we discussed the need for efficient update pro-
cesses for constraint validation.

Both topics are important step stones on the way to
a fully adaptive PolyStores which can fulfill their initial
promise to enable users to benefit from modern data store
solutions without knowing every nook and cranny of the
used technologies.

References
[1] P. J. Sadalage, M. Fowler, NoSQL Distilled: A Brief

Guide to the Emerging World of Polyglot Persis-
tence, Pearson Education, Boston, Massachusetts,
USA, 2012.

[2] F. Gessert, W. Wingerath, S. Friedrich, N. Ritter,
NoSQL database systems: a survey and decision
guidance, CSRD 32 (2017) 353–365. doi:10.1007/
s00450-016-0334-3.

[3] M. Stonebraker, U. Çetintemel, "one size fits all":
An idea whose time has come and gone (abstract),
in: K. Aberer, M. J. Franklin, S. Nishio (Eds.), Pro-
ceedings of the 21st International Conference on
Data Engineering (ICDE), IEEE, 2005, pp. 2–11.
doi:10.1109/ICDE.2005.1.

[4] M. Stonebraker, C. Bear, U. Çetintemel, M. Cher-
niack, T. Ge, N. Hachem, S. Harizopoulos, J. Lifter,
J. Rogers, S. B. Zdonik, One size fits all? part 2:
Benchmarking studies, in: Third Biennial Confer-
ence on Innovative Data Systems Research (CIDR),
2007, pp. 173–184. URL: http://cidrdb.org/cidr2007/
papers/cidr07p20.pdf.

[5] W. Hasselbring, G. Steinacker, Microservice ar-
chitectures for scalability, agility and reliability in
e-commerce, in: IEEE International Conference on
Software Architecture Workshops (ICSAW), 2017,
pp. 243–246. doi:10.1109/ICSAW.2017.11.

[6] R. Tan, R. Chirkova, V. Gadepally, T. G. Mattson, En-
abling query processing across heterogeneous data
models: A survey, in: IEEE Big Data, 2017, pp. 3211–
3220. doi:10.1109/BigData.2017.8258302.

[7] M. Vogt, A. Stiemer, H. Schuldt, Polypheny-db: To-
wards a distributed and self-adaptive polystore, in:
IEEE Big Data, 2018, pp. 3364–3373. doi:10.1109/
BigData.2018.8622353.

[8] J. Duggan, A. J. Elmore, M. Stonebraker, M. Bal-
azinska, B. Howe, J. Kepner, S. Madden, D. Maier,
T. Mattson, S. Zdonik, The BigDAWG Polystore
System, ACM SIGMOD Record 44 (2015) 11–16.
doi:10.1145/2814710.2814713.

[9] K. Beedkar, B. Contreras-Rojas, H. Gavriilidis,
Z. Kaoudi, V. Markl, R. Pardo-Meza, J.-A. Quiané-
Ruiz, Apache wayang: A unified data analytics
framework, ACM SIGMOD Record 52 (2023) 30–35.
doi:10.1145/3631504.3631510.

[10] A. Doan, A. Halevy, Z. Ives, Principles of Data Inte-
gration, Elsevier, Amsterdam, Netherlands, 2012.

[11] F. Kiehn, M. Schmidt, D. Glake, F. Panse,
W. Wingerath, B. Wollmer, M. Poppinga, N. Rit-
ter, Polyglot data management: state of the art &
open challenges, Proc. VLDB Endow. 15 (2022)
3750–3753. URL: https://vldb2022.dbis.hamburg/.
doi:10.14778/3554821.3554891.

[12] D. Glake, F. Kiehn, M. Schmidt, F. Panse, N. Ritter,

Towards polyglot data stores – overview and open
research questions, 2022. arXiv:2204.05779.

[13] D. Agrawal, L. Ba, L. Berti-Equille, S. Chawla,
A. Elmagarmid, H. Hammady, Y. Idris, Z. Kaoudi,
Z. Khayyat, S. Kruse, M. Ouzzani, P. Papotti, J.-A.
Quiane-Ruiz, N. Tang, M. J. Zaki, Rheem: Enabling
multi-platform task execution, in: Proceedings
of the 2016 International Conference on Manage-
ment of Data (SIGMOD), ACM, 2016, p. 2069–2072.
doi:10.1145/2882903.2899414.

[14] Z. She, S. Ravishankar, J. Duggan, Bigdawg poly-
store query optimization through semantic equiva-
lences, in: IEEE High Performance Extreme Com-
puting Conference (HPEC), 2016, pp. 1–6. doi:10.
1109/HPEC.2016.7761584.

[15] D. Glake, M. Schmidt, F. Kiehn, F. Panse, U. Lenfers,
T. Clemen, N. Ritter, Operator placement for spatio-
temporal tasks, in: 2022 IEEE International Con-
ference on Big Data (Big Data), 2022, pp. 281–290.
doi:10.1109/BigData55660.2022.10020279.

[16] Z. Kaoudi, J.-A. Quiané-Ruiz, B. Contreras-Rojas,
R. Pardo-Meza, A. Troudi, S. Chawla, Ml-based
cross-platform query optimization, in: 2020 IEEE
36th International Conference on Data Engineer-
ing (ICDE), 2020, pp. 1489–1500. doi:10.1109/
ICDE48307.2020.00132.

[17] S. L. Tu, M. F. Kaashoek, S. R. Madden, N. Zeldovich,
Processing analytical queries over encrypted data,
Proceedings of the 39th International Conference
on Very Large Data Bases (PVLDB) (2013). doi:10.
14778/2535573.2488336.

[18] C. J. F. Candel, D. Sevilla Ruiz, J. J. García-
Molina, A unified metamodel for nosql and re-
lational databases, Information Systems 104 (2022)
101898. doi:https://doi.org/10.1016/j.is.
2021.101898.

[19] A. Conrad, P. Utzmann, M. Klettke, U. Störl, Meta-
models to support database migration between het-
erogeneous data stores, in: Proceedings of the
25th International Conference on Model Driven
Engineering Languages and Systems (MODELS):
Companion Proceedings, ACM, 2022, p. 546–551.
doi:10.1145/3550356.3561574.

[20] T. Vanhove, M. Sebrechts, G. Van Seghbroeck,
T. Wauters, B. Volckaert, F. De Turck, Data transfor-
mation as a means towards dynamic data storage
and polyglot persistence, International Journal of
Network Management 27 (2017) e1976. doi:https:
//doi.org/10.1002/nem.1976.

[21] K. W. Ong, Y. Papakonstantinou, R. Vernoux,
The SQL++ semi-structured data model and
query language: A capabilities survey of sql-
on-hadoop, nosql and newsql databases, 2014.
arXiv:1405.3631.

http://dx.doi.org/10.1007/s00450-016-0334-3
http://dx.doi.org/10.1007/s00450-016-0334-3
http://dx.doi.org/10.1109/ICDE.2005.1
http://cidrdb.org/cidr2007/papers/cidr07p20.pdf
http://cidrdb.org/cidr2007/papers/cidr07p20.pdf
http://dx.doi.org/10.1109/ICSAW.2017.11
http://dx.doi.org/10.1109/BigData.2017.8258302
http://dx.doi.org/10.1109/BigData.2018.8622353
http://dx.doi.org/10.1109/BigData.2018.8622353
http://dx.doi.org/10.1145/2814710.2814713
http://dx.doi.org/10.1145/3631504.3631510
https://vldb2022.dbis.hamburg/
http://dx.doi.org/10.14778/3554821.3554891
http://arxiv.org/abs/2204.05779
http://dx.doi.org/10.1145/2882903.2899414
http://dx.doi.org/10.1109/HPEC.2016.7761584
http://dx.doi.org/10.1109/HPEC.2016.7761584
http://dx.doi.org/10.1109/BigData55660.2022.10020279
http://dx.doi.org/10.1109/ICDE48307.2020.00132
http://dx.doi.org/10.1109/ICDE48307.2020.00132
http://dx.doi.org/10.14778/2535573.2488336
http://dx.doi.org/10.14778/2535573.2488336
http://dx.doi.org/https://doi.org/10.1016/j.is.2021.101898
http://dx.doi.org/https://doi.org/10.1016/j.is.2021.101898
http://dx.doi.org/10.1145/3550356.3561574
http://dx.doi.org/https://doi.org/10.1002/nem.1976
http://dx.doi.org/https://doi.org/10.1002/nem.1976
http://arxiv.org/abs/1405.3631

	1 Introduction
	2 Multi-/PolyStores
	3 State of the Art
	4 Data Placement
	4.1 Defining a Data Placement Model
	4.2 Cost Measurement of PolyStore Characteristics
	4.3 Workload Analysis
	4.4 Service Level Agreements
	4.5 Usability, Practicability and Future Directions

	5 Constraint Management and Data Migration
	5.1 Constraint Modeling
	5.2 Constraint Validation

	6 Conclusion

