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Abstract
Based on a novel visualization of redundancies caused by functional dependencies in relational data, this work motivates an
extension to multivalued dependencies. The earlier work is inspired by the visualization of dental plaque and colors cells
in relational data with hues depending on their grade of redundancy, which corresponds to a lower information content.
Lost values in a relation instance can be restored using given functional dependencies and other tuples. This effect also
holds for multivalued dependencies. However, restoring data using this dependency tends to require more data from the
rest of the relation. Thus, the redundancies caused by multivalued dependencies are much lower than the ones caused by
functional dependencies. The optimizations to reduce the computation effort from the original work generally do not hold for
multivalued dependencies, so a future challenge is to adapt these conditions to these dependencies. Our vision is to offer the
plaque test for more general kinds of dependencies as an efficient tool to visualize redundant data.
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1. Introduction
Visualization in relational data is an important topic.
There exist several models to visualize functional de-
pendencies, a cornerstone of database normalization, e.g.,
in sunburst diagrams or graph-based visualizations [1].
These approaches can be helpful for data exploration.
However, these models visualize the functional depen-
dencies stand-alone, without taking specific relation in-
stances into account. Hence, redundancies in databases
can hardly be identified in such a visualization.

Database schemas in sufficiently high normal form
avoid redundancies and prevent update anomalies. Are-
nas and Libkin [2] define a schema as well-designed if and
only if there is no possible instance containing redun-
dancies, which, in the case of functional dependencies,
equivalently means that the schema is in Boyce-Codd
normal form. Such redundancies caused by functional
dependencies are visualized by a novel principle, which is
presented in [3] and called “plaque test”. In this approach,
each cell in a relation instance is colored according to its
value of information content (or entropy), which depends
on a chosen set of fulfilled functional dependencies. Such
a visualization can be helpful to assist database normaliza-
tion and even for teaching normal forms. The theory of
computing this information content originates from [2]
and applies not only to functional dependencies but even
to generalized dependencies. In this work, we take the
obvious next step by extending the “plaque test” to mul-
tivalued dependencies and discuss their contribution to
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ID AlbumTitle Band BY RY TR TrackTitle

1 Not That. . . Anastacia 1999 2000 1 Not Th. . .
1 Not That. . . Anastacia 1999 2000 2 I’m Out. . .
1 Not That. . . Anastacia 1999 2000 3 Cowboy. . .
2 Wish You. . . Pink Floyd 1965 1975 1 Shine O. . .
3 Freak of. . . Anastacia 1999 2001 1 Paid my. . .
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Figure 1: Plaque test for the given relation with the functional
dependencies from (‹). Cell hues correspond to entropy values,
defined in the color scale. Figure adapted from [3].

the entropy values in relation instances.
The concept of “plaque test” for functional dependen-

cies [3] is illustrated in Figure 1. The relation1 shown
manages a CD collection. Each CD has an identifier (ID),
a title (AlbumTitle), and was released in a given year
(RYear/RY) by a band (Band), which was founded in a
given year (BYear/BY). Each CD has tracks (Track/TR)
and each track has a title (TrackTitle).

We consider the following functional dependencies:

ID Ñ AlbumTitle, Band, BYear, RYear

ID, Track Ñ TrackTitle and Band Ñ BYear
(‹)

The result of the “plaque test” for the functional de-
pendencies in (‹) is shown in the original instance in
Figure 1. The color hues are chosen corresponding to the
cell’s entropy, as defined in the legend on the right: the
more redundant the value, the smaller the entropy and
the deeper the blue. For white cells with entropy 1 we
say that this cell has full information content.
1Example from the German Wikipedia site on database normaliza-
tion, at https://de.wikipedia.org/wiki/Normalisierung_(Datenbank),
last accessed April 2024.
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If we consider the attribute “BYear”, lost values can be
recovered by checking the values in other tuples together
with two functional dependencies, while the values in
“AlbumTitle”, “Band” and “RYear” can only be recovered
using one functional dependency. This is a reason for
the lower entropy values in “BYear”. Additionally, this
column has differently high redundancies. This is due
to the fact that the founding year in the row with ID 1
can be restored either with the functional dependency
“ID Ñ BYear” or with “Band Ñ BYear”, while for the
row with ID 3 this can only be done with the latter one.

As stated above, the entropies depend on the choice
of functional dependencies. Adding the dependency
“BYear Ñ Band”, which is fulfilled in this instance, causes
lower entropies in “Band”. In general, adding dependen-
cies to the chosen set might reduce the entropies but
can never increase them. Choosing the set of all fulfilled
functional dependencies would cause the lowest possible
entropies. This case is considered as an example in [3].

A logical next step is the extension of the “plaque test”
to other dependencies, since the theoretical framework
from [2] applies to general constraints. We will consider
a relation with multivalued dependencies and compute
the entropies with these dependencies as input. If the
constraint set consists only of functional dependencies,
there are two rules presented in [3]: immediately identify
cells with an entropy of 1 and delete irrelevant rows and
columns to execute the computation on a smaller table.
However, these rules cannot be applied in the same way if
the set of constraints contains multivalued dependencies.

Contributions. We build on a visualization approach
for redundancies in relational databases caused by func-
tional dependencies, which relies on an existing theo-
retical framework. We discuss the generalization of this
approach to multivalued dependencies, which is in the
scope of the theoretical framework, but has never been
implemented or algorithmically optimized for implemen-
tation. We identify challenges in transferring simplifica-
tions for the redundancy computation, which are valid for
functional dependencies, to multivalued dependencies.

Structure. In Section 2 we define the preliminaries,
such as functional and multivalued dependencies and in-
formation content. In Section 3 we consider related work
on functional dependencies and information theory. In
Section 4 we present results for schemas with functional
dependencies and a possible extension to multivalued
dependencies. In Section 5 we discuss the next steps.

2. Preliminaries
We first introduce relations and functional dependencies
as in [3], that is, we take into account the order of the
tuples. We also use this principle for the definition of
multivalued dependencies. Due to the definition of the

entropy-related information content in [2] we need to
identify each tuple unambiguously. We introduce the
computation of the information content and present al-
gorithmic optimizations and an approximation approach.

2.1. Relations, Positions and Variables
In the following, the set of positive integers is denoted by
N :“ t1, 2, . . . u. We define a partial map, representing
an order-preserving relation, allowing duplicate tuples.

Definition 2.1. A relation 𝑅 of arity 𝑚 is specified by a fi-
nite set sortp𝑅q :“ t𝐴1, . . . , 𝐴𝑚u of attributes 𝐴𝑖. The
domain of an attribute 𝐴 is denoted by Domp𝐴q. Then
an instance 𝐼 of the relation 𝑅 is defined as a partial map
𝐼 : N á Domp𝐴1qˆ. . .ˆDomp𝐴𝑚q with finite domain
of definition Defp𝐼q :“ t𝑗 P N | 𝐼p𝑗q is definedu.

For simplification, we assume Domp𝐴q “ N for all
𝐴 P sortp𝑅q, i.e., each tuple consists of positive integers.

Definition 2.2. Let 𝑅 be a relation and 𝐼 an instance of 𝑅.
For a subset 𝛼 Ď sortp𝑅q of attributes, we have the
projection 𝜋𝛼p𝐼q of the tuples in 𝐼 to the attributes in 𝛼.

Given an instance 𝐼 of a relation 𝑅 we denote
by 𝑡𝑗r𝐴𝑘s the value of the attribute 𝐴𝑘 in the 𝑗-
th tuple 𝑡𝑗 :“ 𝐼p𝑗q of 𝐼 . Similarly, for a subset
𝛼 “ t𝐴1, . . . , 𝐴𝑠u Ď sortp𝑅q of attributes, we
denote by 𝑡𝑗r𝐴1 . . . 𝐴𝑠s or 𝑡𝑗r𝛼s the tuple of values
𝑡𝑗r𝐴1s, . . . , 𝑡𝑗r𝐴𝑠s, that is, the 𝑗-th tuple 𝜋𝛼p𝐼p𝑗qq of
the projection 𝜋𝛼p𝐼q. For subsets 𝛼, 𝛽 Ď sortp𝑅q we
define 𝑡𝑗r𝛼𝛽s :“ 𝑡𝑗r𝛼 Y 𝛽s.

Definition 2.3. Let 𝐼 be an instance of a relation 𝑅 with
attributes sortp𝑅q “ t𝐴1, . . . , 𝐴𝑚u. A position in 𝐼 is
a pair p𝑗, 𝐴𝑘q with 𝑗 P Defp𝐼q and 𝑘 P t1, . . . ,𝑚u; it
represents the cell of the 𝑘-th attribute of the 𝑗-th tuple,
with value 𝑡𝑗r𝐴𝑘s. The instance obtained by putting the
value 𝑣 at position 𝑝 “ p𝑗, 𝐴𝑘q is denoted by 𝐼𝑝Ð𝑣 .

Let 𝑄 “ t𝑞1, . . . , 𝑞𝑘u be positions, 𝑋 “ p𝑥1, . . . , 𝑥𝑘q

distinct variables, and 𝑉 “ p𝑣1, . . . , 𝑣𝑘q values in N.
The instance obtained by replacing each position 𝑞𝑖 by
the variable 𝑥𝑖 resp. by value 𝑣𝑖 for 1 ď 𝑖 ď 𝑘 is denoted
by 𝐼𝑄Ð𝑋 resp. 𝐼𝑄Ð𝑉 . Hence, the instance obtained by
replacing the positions from 𝑄 by variables, and then
position 𝑝 by the value 𝑣, is p𝐼𝑄Ð𝑋q𝑝Ð𝑣 .

We choose to define 𝑄 as a set, but 𝑋 and 𝑉 as tuples.
The reason is that the information content defined in [2],
which we will introduce in Section 2.3, considers sets of
lost values without duplicates and a fixed order, while
variables and values are determined for a fixed position
and, in the case of values, duplicates are possible.

2.2. Dependencies
In this section, we define syntax and semantics of func-
tional and multivalued dependencies. We start by defin-
ing functional dependencies as in [4].



Definition 2.4. A functional dependency in a relation 𝑅
is an expression of the form 𝑓 :“ 𝛼 Ñ 𝛽, where 𝛼, 𝛽 Ď

sortp𝑅q are sets of attributes. It is called simple, if 𝛽
consists of exactly one attribute.

An instance 𝐼 (without variables) of a relation 𝑅 is
said to fulfill the functional dependency 𝑓 (write 𝐼 |ù 𝑓 )
if for all 𝑗1, 𝑗2 P Defp𝐼q it holds

𝑡𝑗1 r𝛼s “ 𝑡𝑗2 r𝛼s ñ 𝑡𝑗1 r𝛽s “ 𝑡𝑗2 r𝛽s.

Next, we define multivalued dependencies as in [5].

Definition 2.5. A multivalued dependency in a relation 𝑅
is an expression of the form 𝑓 :“ 𝛼 ↠ 𝛽, where 𝛼, 𝛽 Ď

sortp𝑅q are sets of attributes.
An instance 𝐼 (without variables) of a relation 𝑅 is said

to fulfill the multivalued dependency 𝑓 (write 𝐼 |ù 𝑓 ) if
for all 𝑗1, 𝑗2 P Defp𝐼q with 𝑡𝑗1 r𝛼s “ 𝑡𝑗2 r𝛼s there exists
𝑗 P Defp𝐼q such that

𝑡𝑗1 r𝛼𝛽s “ 𝑡𝑗r𝛼𝛽s and 𝑡𝑗2 r𝛼𝛾s “ 𝑡𝑗r𝛼𝛾s,

where 𝛾 :“ sortp𝑅qzp𝛼 Y 𝛽q is the set of all attributes
not covered by 𝛼 and 𝛽.

From here we consider 𝐹 as a set of functional and
multivalued dependencies.

Definition 2.6. Let 𝐹 and 𝐼 be as above. The instance 𝐼
(without variables) fulfills 𝐹 (write 𝐼 |ù 𝐹 ) if 𝐼 |ù 𝑓 for
all 𝑓 P 𝐹 .

An instance 𝐼 containing distinct variables at positions
𝑄 “ t𝑞1, . . . , 𝑞𝑘u fulfills 𝑓 resp. 𝐹 if there exist values
𝑉 “ p𝑣1, . . . , 𝑣𝑘q such that it holds 𝐼𝑄Ð𝑉 |ù 𝑓 resp.
𝐼𝑄Ð𝑉 |ù 𝐹 .

To check 𝐼 |ù 𝐹 in the implementation, we apply the
equivalence with 𝐼 |ù 𝑓 @𝑓 P 𝐹 , which indeed holds for
instances 𝐼 without variables. If 𝐼 contains variables this
equivalence can be secured under additional conditions.
It clearly holds if 𝐹 is closed under logical implications.
If 𝐹 only contains functional dependencies, it suffices
to require the transitive closeness of 𝐹 . In the sense
of the theoretical framework [2] the computation leads
to the same results regardless if 𝐹 is a canonical cover,
closed under logical implications or in between. However,
applying the above equivalence can lead to incorrect
results for non-closed 𝐹 . Therefore, we offer an option to
compute the closure prior to entropy calculations, which
can be disabled if the closeness of the given set 𝐹 is clear
to reduce the computation time.

2.3. Entropy and Information Content
We now introduce the information content using the
(information-theoretic) entropy. Given two probabil-
ity spaces, the conditional entropy is introduced in [2]
and [3]. In an instance 𝐼 with a set Pos :“ Defp𝐼q ˆ

t𝐴1, . . . , 𝐴𝑚u of positions and a set 𝐹 of functional

and multivalued dependencies, for a considered position
𝑝 P Pos, we define two probability spaces as follows.

First, let ℬp𝐼, 𝑝q :“ p𝒫pPos zt𝑝uq, 𝑃ℬq, where 𝑃ℬ
is the uniform distribution on the set of all subsets of
Pos zt𝑝u. This space models the possible cases of a lost
set of possible values from the instance 𝐼 on positions
other than the considered one 𝑝.

Then, for 𝑘 P N we let 𝒜𝑘
𝐹 p𝐼, 𝑝q :“ pt1, . . . , 𝑘u, 𝑃𝒜q,

where the conditional probability of 𝑣 P t1, . . . , 𝑘u given
𝑄 Ď Pos zt𝑝u is equally distributed over 𝑉𝑄 :“ t𝑣 P

t1, . . . , 𝑘u | p𝐼𝑄Ð𝑋q𝑝Ð𝑣 |ù 𝐹 u and zero otherwise.
This space models the possible values in t1, . . . , 𝑘u at 𝑝,
given that 𝑄 is the set of lost value positions in 𝐼 .

With these two probability spaces, we can use the
conditional entropy of ℬp𝐼, 𝑝q given 𝒜𝑘

𝐹 p𝐼, 𝑝q, which
is denoted as 𝐻p𝒜𝑘

𝐹 p𝐼, 𝑝q | ℬp𝐼, 𝑝qq. This conditional
entropy measures some kind of uncertainty at position 𝑝,
if the value is lost and putting in natural numbers up
to 𝑘 is possible. From another perspective, one can say
that the conditional entropy is a quantification of the
information content at a position, if the value is present.
Intuitively, uncertainty, if a value is lost, corresponds to
information content, if the value is present.

We now present the information content of position
𝑝 P Pos in instance 𝐼 of relation 𝑅 with respect to a
set 𝐹 of functional and multivalued dependencies with
𝐼 |ù 𝐹 . While in [3] the special case, where 𝐹 consists
only of functional dependencies, is used, Arenas and
Libkin [2] define the information content for general
dependencies. Thus, the definition also holds for sets 𝐹
containing functional and multivalued dependencies.
Definition 2.7. Let 𝐹 , 𝐼 and 𝑝 be as introduced above.
The information content of position 𝑝 with respect to 𝐹
in instance 𝐼 is given as

INF𝐼p𝑝 | 𝐹 q :“ lim
𝑘Ñ8

INF𝑘
𝐼 p𝑝 | 𝐹 q

log 𝑘
,

where INF𝑘
𝐼 p𝑝 | 𝐹 q :“ 𝐻p𝒜𝑘

𝐹 p𝐼, 𝑝q | ℬp𝐼, 𝑝qq is the
conditional entropy of 𝒜𝑘

𝐹 p𝐼, 𝑝q given ℬp𝐼, 𝑝q.
The information content for possible values limited to

𝑘 is normalized by log 𝑘 and the limit of 𝑘 to infinity is
taken to cover the entire set of natural numbers.

Since the space ℬp𝐼, 𝑝q consists of all subsets of posi-
tions other than 𝑝, its size grows exponentially with the
size of the relation. In the remainder of the section, we
introduce optimizations and an approximate approach
from [3] to overcome this performance problem.

2.3.1. Optimizations

We illustrate the optimizations from [3] with an ex-
ample. Consider instance 𝐼 given in Figure 2 and the
(singleton) set 𝐹 :“ tA Ñ Cu of functional de-
pendencies. The two ways to optimize the computa-
tion are to directly identify positions with entropy 1



and to reduce the size of the problem. Note that it
is still an open question whether these optimizations
hold for a set containing multivalued dependencies.

A B C D

7 2 8 4
5 2 8 6
7 2 8 6

Figure 2:
Instance 𝐼 .

Identify ones.A position 𝑝 :“ p𝑗, 𝐴𝑘q

has an entropy of 1 if and only if for all
functional dependencies 𝑓 “ 𝛼 Ñ 𝛽 P

𝐹 with 𝐴𝑘 P 𝛽 we have that 𝑡𝑗r𝛼s is
unique in the (duplicate allowing) pro-
jection 𝜋𝛼p𝐼q. This means that a lost
value at position 𝑝 cannot be restored
by other tuples and thus has an infor-

mation content of 1. Hence, if a column does not appear
on the right-hand side of any functional dependency
from 𝐹 , the positions in the whole column have full
information content. This optimization allows to skip
the computation for all the positions with the introduced
property. In the example considered, all positions p𝑗, 𝐴𝑘q

with 𝐴𝑘 ‰ 𝐶 and position p2, 𝐶q have full information
content and we only have two positions left to compute.

Reduce problem size. Rows and columns can be deleted
under conditions and the computation can be performed
on the resulting subtable. Afterwards, the result is em-
bedded in the original table. A column can be deleted if
the attribute does not appear in any functional depen-
dency from the given set 𝐹 . A row can be deleted if all
its positions have entropy 1, which can be checked with
the previous optimization. In the example, the columns
𝐵 and 𝐷 can be deleted, as well as row 2. The resulting
subtable has only four positions, and thus the number of
subsets to be considered is reduced by a factor 212.

2.3.2. Approximation

For large tables, the entropy computation can be expen-
sive. The number of subsets 𝑄 Ď Pos zt𝑝u for a consid-
ered position 𝑝 grows exponentially with the table size.
Hence, even small tables can have a long computation
time. The aforementioned optimizations may possibly be
insufficient, especially when the rows and columns to be
deleted are rare. In a randomized approach, not all sub-
sets are considered, but only a fixed number of randomly
chosen ones. Depending on the number of samples, the
result can be sufficiently accurate with a high probability.
The approach is called the Monte Carlo method and in-
troduced in [6]. Building on that method, we derived the
entropy computation in our earlier work [3]. The method
holds for general dependencies; thus our derivation also
applies for multivalued dependencies.

Let INF𝐼p𝑝 | 𝐹,𝑄q :“ lim𝑘Ñ8
log#𝑉𝑄

log 𝑘
represent

the information content of position 𝑝 in instance 𝐼 with
respect to a set 𝐹 of functional or multivalued dependen-
cies with 𝐼 |ù 𝐹 , given a fixed subset 𝑄 Ď Pos zt𝑝u of
lost values. We define random variables

𝑋𝑖 : 𝒫pPos zt𝑝uq Ñ r0, 1s, 𝑄 ÞÑ INF𝐼p𝑝 | 𝐹,𝑄q.

Then Er𝑋𝑖s “ INF𝐼p𝑝 | 𝐹 q and for independent identi-
cally distributed 𝑋1, . . . , 𝑋𝑛 as above and their average
𝑋 :“ 1

𝑛

ř𝑛
𝑖“1 𝑋𝑖, for all 𝜀, 𝛿 ą 0 it holds

Pr
`

|𝑋 ´ INF𝐼p𝑝 | 𝐹 q| ě 𝜀
˘

ď 𝛿

provided that 𝑛 ě 2 lnp2{𝛿q{𝜀2. Here, 𝜀 stands for the
accuracy of the approximation, 𝛿 for an error probability,
thus the accuracy 𝜀 holds with a confidence of 1 ´ 𝛿 for
a number of samples 𝑛 as required in the inequality.

We show an example in which the number of sufficient
iterations is computed such that the entropies have a fixed
accuracy under a specified confidence.

Example 2.8. An accuracy of 0.01 with a confidence of
99% can be achieved with at least 2 lnp2{0.01q{0.012 «

100, 000 iterations. For an accuracy of 0.04 with
a confidence of 99.9% the sufficient sample size is
2 lnp2{0.001q{0.042 « 10, 000.

3. Related Work
Functional dependencies are a well-studied and estab-
lished research field. An approach to visualize functional
dependencies is a sunburst diagram [1]. This visualiza-
tion can help humans process a large number of func-
tional dependencies, but it is only on the schema level.

Conversely, Lee [5] proposes an information-theoretic
approach to analyze relational databases. In contrast
to the “plaque test”, given a concrete instance, the self-
information of a set of attributes using entropies is com-
puted, but without considering the entropies of individual
cells. We are not aware of a visualization of this frame-
work, however, this only considers the instance level.

The “plaque test” (see our earlier work in [3]) takes
schema and instance into account. For a given instance
and a set of functional dependencies, the information
content of each cell is calculated and visualized using
the term of entropy. This information content is directly
connected with the redundancy of the cell, and each
cell becomes a shade of blue depending on its degree
of redundancy, like a heat map. Intuitively, this means
that depending on the given functional dependencies and
other tuples in the relation, lost values in a cell can be
restored using these dependencies and the other tuples.
The more available tuples or functional dependencies we
have, the higher is the chance to restore a lost value, and
thus the higher is the redundancy in this considered cell.

The theoretical framework for the “plaque test” is pro-
vided in [2]. This work introduces the term information
content generally for all kinds of constraints in relational
databases. The computations for the “plaque test” are
simplified in our earlier work [3] and implemented only
for functional dependencies, and the next obvious step
is to extend this implementation for multivalued depen-
dencies. While the theoretical considerations hold for



Figure 3: “Plaque test” applied to a real-world dataset with
150 rows and a minimum entropy of 0.61 (rounded). The color
scale is normalized with respect to the minimum entropy value.
The zoom-in highlights a subset of rows and hides white cells
only. Figure adapted from [3].

multivalued dependencies, the “plaque test” optimiza-
tions [3] are only proven for functional dependencies.

4. Preliminary Results
In this section, we present the results of the “plaque test”
on a larger real-world dataset. Details on the implementa-
tion and the experimental setup can be found in [3]. The
informativeness, the optimizations, and the scalability are
discussed. Then we show an extension to a given set of
multivalued dependencies on a small example and make
considerations about the results and possible adjustments
of the optimizations and the Monte Carlo method.

4.1. Results for Functional Dependencies
As a real-world example, we used the first 150 rows of
a dataset that describes natural satellites and originates
from the WDC Web Table Corpus2 with 35 valid simple
functional dependencies. We analyzed the informative-
ness of the “plaque test”, the scalability of the exact com-
putations, and the improvement of the runtimes with the
Monte Carlo method from Section 2.3.2.

Informativeness. Figure 3 shows the “plaque test” for
the dataset with entropies calculated using the Monte
Carlo method with 100,000 iterations, thus an accuracy
of about 0.01 with a confidence of 99% (see Example 2.8).
White cells have entropies of exactly 1, i.e., no redun-
dancy, while blue cells have values below 1, where darker
hues have lower entropies. Redundancies are concen-
trated in the last column “Planet”. It appears that there
are several functional dependencies with “Planet” on the

2http://webdatacommons.org/webtables/index.html#results-2015

right-hand side, which cause the redundancies in the last
column. This consideration is a good indicator for the
informativeness of the “plaque test”.

Exact computation. The following results are stated
in the earlier work [3]. Without the optimizations from
Section 2.3.1, only the entropies of the relation contain-
ing the first three rows can be computed within 24 hours.
With the optimizations, two more rows are manageable
in this dataset. The optimizations reduce the runtime
for four rows from more than 24 hours to less than one
second, which shows their efficiency. The unoptimized
case shows exponential complexity. In the optimized
case, the runtime stays small for up to four rows since
the relevant subtables are small in this concrete instance.
Adding the fifth line causes more redundancies, which in-
creases the relevant table, and thus the computation time
significantly. Hence, the optimizations are only practica-
ble for small tables with a small number of redundancies,
such that the table size can be efficiently reduced. The
reduction potential depends on the concrete given table.

Monte Carlo method. The runtime of the Monte Carlo
method grows asymptotically linear with the number of
iterations. The number of rows mathematically causes a
quadratic growth of the runtime, since for the verifica-
tion of functional dependencies, pairs of rows have to be
considered. The numbers in [3] verify this assumption.
For the first 150 rows of the satellite dataset, 100,000 iter-
ations can be computed in less than 30 minutes, which is
a significant improvement over the exact computation.
This approximation costs little accuracy, but for 100,000
iterations, the error is within 0.01 around the exact value
with a probability of 99%. If an accuracy of 0.04 with
a confidence of 99.9% suffices, the number of iterations
can be reduced to 10,000 (see Example 2.8), reducing the
runtime for the first 150 rows to less than three minutes.

Entropy values are mainly used to scale the hues for vi-
sualization, thus small errors compared with the range of
values are not exactly noticeable by a human eye. Reduc-
ing accuracy requirements opens possibilities to handle
datasets beyond 150 rows. Finding sufficient accuracies
for satisfactory visualizations motivates further research.

4.2. First Steps for Multivalued
Dependencies

We now consider entropies in instances with multival-
ued dependencies. The relation3 in Figure 4a manages
university courses and attributes “Course”, “Book” and
“Lecturer”. The following multivalued dependencies hold:

Course ↠ Book and Course ↠ Lecturer (‹‹)

3Example adapted from English Wikipedia site on multivalued depen-
dencies, at https://en.wikipedia.org/wiki/Multivalued_dependency,
last accessed April 2024.

http://webdatacommons.org/webtables/index.html#results-2015
https://en.wikipedia.org/wiki/Multivalued_dependency


Course Book Lecturer

AHA Silber. . . John. . .
AHA Neder. . . John. . .
AHA Silber. . . Will. . .
AHA Neder. . . Will. . .
AHA Silber. . . Chris. . .
AHA Neder. . . Chris. . .
OSO Silber. . . John. . .
OSO Silber. . . Will. . .
SQL Introd. . . Raym. . .

(a) The relational input data.

Course Book Lecturer

0.9999 0.9968 0.9958
0.9986 0.9992 0.9957
0.9992 0.9975 0.9996
0.9999 0.9989 0.9994
0.9997 0.9993 0.9998
0.9999 0.9996 0.9998
1 0.9998 1
1 0.9998 1
1 1 1

(b) Entropies for (‹‹).

Figure 4: Plaque test for the given relation with multivalued
dependencies from (‹‹). Hues correspond to entropy values.

Figure 4 shows the plaque test, with these two mul-
tivalued dependencies as input. It contains the relation
in Figure 4a and a table with entropies and colored cells,
analogously to entropies for functional dependencies, in
Figure 4b. While full entropies are exact, the other values
are rounded to four digits after the dot.

The resulting table shows small redundancies com-
pared to those caused by functional dependencies in the
introductory example. This indicates that the subsets of
lost values such that a value in a considered position can
be restored using the given multivalued dependencies
and the rest of the relation instance are very rare.

Applying the Monte Carlo method can lead to false
positive cases of full information content, most probably
if the chosen number of iterations is small. This error
appears when there is no randomly chosen subset such
that the value in a considered position can be restored.
This consideration and the small computed redundancies
indicate that the Monte Carlo method in instances with
multivalued dependencies should be applied with a better
accuracy than with functional dependencies.

Finding reasons for the small differences in the en-
tropies over the relation can be a challenge. Another
opportunity for future work will be to find optimizations
analogously to the case of functional dependencies. It
involves finding a necessary and sufficient condition for
cells with full information content, so that false positive
entropies of 1 can be excluded. It also contains finding
conditions for reducing the problem size to make bigger
problems practically computable.

5. Open Research Challenges
We see several future challenges in our visualization ap-
proach of redundancies in relational data. We discuss
the problems of optimizing the computation effort for
constraint sets with multivalued dependencies, the scala-
bility of the computation when applying the Monte Carlo
method and a user study to elaborate the potential of us-

ing the “plaque test” for teaching purposes.
Optimizations for multivalued dependencies. The opti-

mizations from Section 2.3.1 hold in relations with func-
tional dependencies, however, cannot be immediately
transferred to multivalued dependencies. Hence, the re-
duction of the problem size seems to be more complicated
with multivalued dependencies involved. Even if only
a part of the attributes appears in a multivalued depen-
dency, the value of all attributes can be relevant for its
validation. This reduces the possibility to delete columns
in the original relation. Hence, finding optimizations
holding also for multivalued dependencies, which are
backed by formal proofs, requires theoretical research.

Scalability. Even with the prior simplifications, there
are many scenarios where the entropy computation is
practically out of reach. The Monte Carlo method avoids
exponential runtime. For functional dependencies, 150 tu-
ples are manageable. One goal is to execute computations
for even larger datasets, possible approaches to address
this are parallelization and dynamic programming.

Due to many entropies, caused by multivalued depen-
dencies, close to 1, false positive entropies of 1 are likely
when applying the Monte Carlo method only. Without
an optimization to find cells with full information content
immediately, these false positives cannot be identified.
Hence, finding a combination of optimizations and ap-
proximation, as for functional dependencies but adapted
to multivalued dependencies, is another challenge.

User study. We are planning to use the “plaque test”
for an experiment involving students. Our assumption is
that a visualization of redundancies can be helpful in find-
ing normalization approaches. The question is whether
students using such a visualization tool can easily suspect
ways for a suitable decomposition of a schema containing
several redundancies and the user study shall give us an
idea if the “plaque” is helpful. If the results of the study
confirm our assumption, we see potential for the “plaque
test” as a tool to support the teaching of normal forms.
The experimental schemas shall contain functional as
well as multivalued dependencies. The results can be
helpful to understand the interpretability of the plaque.

Summarizing all the possible challenges, a combination
of theory, algorithmic, and user study requires skills in
different disciplines and allows us to view the problem
of redundancies from several perspectives.
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