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Abstract
Autoregressive models are fundamental in time series analysis, with the AR(1) process being particularly relevant in fields like
economics for modeling error terms with serial correlation. However, conventional estimation techniques such as Ordinary
Least Squares (OLS) and Maximum Likelihood Estimation (MLE) exhibit bias when estimating the AR(1) parameter, especially
with short time series data. This bias can impact the reliability of statistical inference when using these methods to model
the error term. This paper investigates various bias-correction methods for AR(1), comparing analytical, simulation-based,
and bootstrapping techniques in detail. Each method’s effectiveness in mitigating bias is assessed, along with a proposed
solution to address the overfitting issue highlighted in recent literature, aiming to improve model accuracy. Furthermore, we
advocate for exploring machine learning methodologies as a promising approach to enhance AR(1) process estimation. Our
findings suggest that the adaptability and ability of machine learning to handle complex patterns could lead to significant
advancements in the precision of AR(1) parameter estimates. This innovative approach not only expands the horizons of time
series analysis but also creates new avenues for research in econometrics and related fields.
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1. Introduction
The estimation of autoregressive (AR) coefficients is criti-
cal in analyzing time series data, often used in economics.
Researchers frequently utilize Newey-West heteroscedas-
ticity and autocorrelation consistent (HAC) standard er-
rors to address issues associated with consecutive errors.
However, a more advanced option involves modeling
error terms using an AR process, usually an AR(1) pro-
cess, which presents specific benefits over the traditional
Newey-West approach, particularly in terms of efficiency
of the parameter estimation.

A less recognized issue arises regarding the bias
present in frequently used AR coefficient estimators.
This bias becomes notably more pronounced when uti-
lized on short time series containing fewer than 50 data
points, particularly as the autocorrelation parameter 𝜌
approaches 1, a common phenomenon in macroeconomic
research. In these scenarios, the estimator typically un-
derestimates the autocorrelation. Consequently, when
researchers choose to model error terms using AR(1) in
the presence of serially correlated error terms, there is
a significant risk of underestimating autocorrelation. Fi-
nally, this results in an increased risk of committing a
Type-I error.
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This paper addresses the issue of unbiased estimation
for AR(1) processes, with a primary emphasis on mini-
mizing bias in parameter estimation while maintaining a
reasonable variance.

To address this issue, the first part of this paper offers
a comprehensive comparative analysis of bias-reduced
AR(1) estimation techniques using an innovative machine
learning approach to assess variable importance from
random forest models. This contribution fills a notable
gap in the existing literature by providing a clear and
accessible comparison of these methods.

The main objective of this chapter is to equip re-
searchers with the necessary resources to make well-
informed decisions when selecting an appropriate esti-
mation method. The research evaluates three primary
approaches commonly used to estimate unbiased AR(1)
parameters: simulation, analytical methods, and boot-
strapping.

Furthermore, this paper proposes a solution to mitigate
overfitting by modifying the simulation-based approach
previously introduced by Sørbye et al.[1]

2. Related Work
While there is a significant body of literature on new
bias correction techniques for autoregressive (AR) pro-
cesses [2, 3, 4], a notable gap exists in the evaluation
and comparison of the effectiveness of these methods.
Some studies have focused on the comparative analy-
sis of bias and empirical standard error estimation in
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AR(1) models, primarily examining three estimation tech-
niques: Maximum Likelihood Estimation (MLE), Ordi-
nary Least Squares (OLS), and Bayesian methods. Pre-
vious research [5, 6] indicated that MLE and Bayesian
techniques perform similarly well. However, these stud-
ies did not consider the impact of bias correction on these
estimators, highlighting a critical gap in our understand-
ing of how bias-reduced estimation techniques compare
to traditional approaches.

There also is investigation into strategies for reducing
bias in autoregressive model estimation, exploring three
techniques: first-order bias correction, bootstrapping,
and recursive mean reduction [7]. The paper revealed
that bootstrapping was particularly effective in reduc-
ing bias, while recursive mean adjustment excelled in
reducing mean squared error.

In a related paper the effectiveness of analytical bias
correction and bootstrapping in the context of Vector
Autoregressive (VAR) models is examined [8]. Their find-
ings showed that for stationary processes, analytical bias
correction outperformed bootstrapping, whereas for non-
stationary processes, bootstrapping exhibited superior
performance over analytical correction. Engsted’s re-
search underscores the importance of tailoring bias cor-
rection techniques to the specific characteristics of the
analyzed data, emphasizing the need for context-aware
bias correction methods.

3. Theoretical Background
This section begins with a brief introduction to Autore-
gressive processes and then explores various methodolo-
gies for accurately estimating unbiased autoregressive
coefficients of order 1. It offers detailed explanations of
the three main approaches commonly used in the field:
analytical techniques, simulation-based methods, and
bootstrapping. Additionally, it presents a solution to en-
hance the simulation-based approach proposed by Sørbye
et al.

3.1. Autoregressive Processes (AR)
Autoregressive processes are often used as stochastic
models to model temporal correlations in economic time
series data. These models assume that the current value
of a variable is a linear combination of its past values, plus
a random error term. AR processes can be represented as
AR(p), where p indicates the order of the process, or the
number of lagged terms that are included in the model.

Autoregressive (AR) models, especially those of first-
order, are common in economics because of their sim-
plicity and effectiveness in capturing persistent patterns.
With an order of 1, these models primarily model the cur-
rent period based solely on the preceding period. Such

an AR(1) process can be expressed as follows:

𝑦𝑡 = 𝛼+ 𝜌𝑦𝑡−1 + 𝜖𝑡 (1)

where 𝑦𝑡 represents the variable of interest at time 𝑡, 𝛼
denotes the intercept term, 𝜌 represents the autoregres-
sive coefficient, 𝑦𝑡−1 is the lagged value of the variable,
and 𝜖𝑡 represents the error term.

While AR(1) models provide valuable insights into the
dynamics of economic variables, the estimated param-
eter �̂� can be subject to bias in certain circumstances
when calculated through Yule-Walker, OLS, or Maximum
Likelihood methods. This bias is especially present for
short time series with less than 50 periods and remains
noticeable for up to 100 periods.

Numerous methods exist to achieve less biased results,
but the main challenge is navigating the bias-variance
trade-off, which the mean squared error (MSE) quantifies
as a metric.

𝑀𝑆𝐸(�̂�) = 𝐵𝑖𝑎𝑠(̂︀𝜌, 𝜌)2 + 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒(�̂�) (2)

When evaluating estimators of the same size based on
mean squared error (MSE), it is commonly preferred to
opt for an estimator with reduced bias. Nevertheless, it
is crucial to account for variance since lower bias does
not invariably ensure superior performance. This section
explores three primary strategies for attaining unbiased
outcomes: analytical methods, simulation-based tech-
niques, and bootstrapping procedures. Furthermore, an
enhancement to the most recent simulation-based ap-
proach by [1] will be discussed.

3.2. Analytical Approaches
Analytical methods for correcting bias in short-order
AR(1) processes have been proposed and studied in the
literature. Notable approaches in this area include the
work of [9], and the contributions of [10] and [11]. Addi-
tionally, [12] demonstrated that the bias of least squares
estimators for models of known, finite order is a linear
function of the unknown model coefficients, up to order
1/𝑇 .

The analytical approaches aim to develop an expres-
sion for the bias in the autoregressive coefficient pa-
rameter estimate (̂︀𝜌). The unbiased estimate ( ˆ︂𝜌biascorr)
is computed by deducting the estimated bias from ̂︀𝜌. Roy
Fuller’s approach focuses on addressing unit roots close
to 1, making it appropriate for both short-order AR(1)
processes and higher-order AR processes.

[11] implements an exact median-unbiased estima-
tor for AR(1) processes, while [10] offer an approxi-
mate median-unbiased estimator for higher-order AR
processes. Although the latter applies to higher order
processes, it may face computational challenges when
dealing with high AR orders.



3.3. Bootstrapping Approaches
Bootstrapping approaches have gained popularity as an
alternative method for obtaining unbiased estimates in
autoregressive processes. Introduced by [13], bootstrap-
ping involves resampling the original dataset with re-
placement to generate multiple bootstrap samples. These
samples allow for the empirical distribution of the es-
timator to be characterized, providing insights into its
variability and bias.

The application of bootstrapping to autoregressive pro-
cesses was pioneered by [14], who demonstrated the po-
tential of bootstrapping for bias correction in AR models.
This method estimates the autocorrelation coefficient 𝜌
from the observed time series and uses this estimate to
generate bootstrap replications, effectively simulating
the "true" autoregressive process.

Further developments in bootstrapping approaches,
such as those proposed by [15] and [16], have focused
on improving the accuracy of bias-corrected estimates
through innovative techniques like backward AR mod-
eling and residual-based bootstrap methods. These ad-
vancements underscore the versatility and effectiveness
of bootstrapping in addressing the challenges of bias cor-
rection in autoregressive modeling.

3.4. Simulation-Based Approaches
Simulation-based methods represent a powerful tool for
correcting bias in autoregressive coefficient estimation,
especially for AR(1) processes. These approaches, as
detailed by the recent research of Sørbye et. al [1], employ
computational simulations to model the true parameter
𝜌 as a function of the originally biased estimate ̂︀𝜌. The
essence of these methods lies in their ability to utilize
a vast array of simulated time series, where the true
parameter 𝜌 is known, allowing for the direct modeling
and understanding of bias in the estimated coefficients.

A notable technique within simulation-based ap-
proaches is the use of Hermite polynomials of order 3
to model the relationship between the biased estimatê︀𝜌 and the true parameter 𝜌. This method involves nor-
malizing the 𝜌 coefficients within the stationary interval
(−1, 1) to [0, 1] and applying a logit transformation to
ensure that the corrected coefficients remain within the
stationary range:

𝑔(𝜌) = logit
(︂
𝜌+ 1

2

)︂
(3)

The corrected estimate ˆ︂𝜌biascorr is then obtained
through a function 𝑓 , parameterized by a vector 𝛽 =
(𝛽0, 𝛽1, 𝛽2, 𝛽3), representing the coefficients of the Her-
mite polynomials:

Figure 1: Correction Curve for a time series with 10 time
periods showing severe overfitting for the Sørbye approach.
Solved by our modified version.

ˆ︂𝜌biascorr = 𝑓(̂︀𝜌) = 𝛽0+𝛽1̂︀𝜌+𝛽2(̂︀𝜌2−1)+𝛽3(̂︀𝜌3−3̂︀𝜌)
(4)

The optimization of 𝛽 values is achieved through min-
imizing the weighted squared error between the bias-
corrected estimate and the true parameter across a finely
spaced grid of 𝜌 values. This process ensures that the
corrected estimates are as close as possible to the true
parameter values, thereby reducing bias.

4. Modified Sørbye Approach
Despite the effectiveness of the Sørbye et al. approach,
challenges such as overfitting become apparent when
applied to short time series (10-15 periods). This overfit-
ting is particularly noticeable in the correction curves,
where the adjusted values deviate significantly from the
expected outcomes, suggesting a misalignment in the
bias correction process. To address this issue, we propose
a modification to the Sørbye et al. approach. Instead
of calculating the mean, we propose recalculating the
median during the optimization process of the Hermite
polynomial parameters:

̂︁𝛽𝑇 = argmin
𝛽

𝑙∑︁
𝑟=1

|median𝑚
𝑗=1 (𝑓(̂︀𝜌𝑟𝑗 , 𝛽)− 𝜌𝑟) | (5)

This adjustment aims to mitigate overfitting by lever-
aging the robustness of the median to outliers, thereby



providing a more accurate correction curve for short
time series. The modified approach extends the appli-
cability of the simulation-based bias correction to time
series ranging from 5 to 100 periods, offering a compre-
hensive solution for bias correction across various time
series lengths. We present an adapted version of the Sør-
bye et al. approach available through the R package
provided at https://github.com/michael-mueller-uibk/
ar1MedianBiascorrection.

5. Analysis and Results
Simulations for the comparative analysis were conducted
following a systematic procedure. To simulate the pro-
cess, a precise grid of parameter values for 𝜌 were used,
ranging from -0.99 to 0.99 in increments of 0.01. In ad-
dition, these simulations were performed across various
time periods denoted as T. To ensure reliable results, 1000
simulated time series were undertaken for each specified
𝜌 value. Table 1 shows the estimation techniques that
were evaluated.

This process led to the development of a varied dataset
that comprises time series data featuring the actual pa-
rameter 𝜌 and its respective estimated values derived
from earlier mentioned estimators. We used this dataset
to carry out a comprehensive empirical analysis, which
facilitated the computation of critical statistical metrics
like empirical bias, variance, and mean squared error. We
used these metrics as important indicators to evaluate
the performance of the estimators being considered.

Estimation Technique Type

Kim [15] Bootstrapping
Roy-Fuller [9] Analytical
Shaman-Stine [12] Analytical
Modified Sørbye Simulation based

Table 1
Compared Estimation Techniques.

An alternative method for comparing various bias cor-
rection techniques is presented in this section. The dis-
tinct capabilities of bias correction when applied to short
and long time series and their unequal performance with
positive and negative 𝜌 values have led to the develop-
ment of a Random Forest ensemble estimator for 𝜌. The
objective is to capitalize on the advantages of individual
estimators and attain superior overall outcomes by gen-
erating a collection of decision trees that are trained on a
set of simulated time series where the true parameter 𝜌 is
known and the corresponding estimators �̂�. The random
forest imposes arbitrary limitations on each tree, creat-
ing a variance reduction in the forest when the forest
estimator is computed through the average, given that

Figure 2: Comparison of Estimator Performance. The figure
illustrates the importance of estimators, showing the consis-
tently high performance of our modified Sørbye approach
compared to the analytical and bootstrapping methods.

each forecast differs.
The Random Forest can be utilized to assess the overall

performance of the estimators. While Random Forests
are often perceived as complex ‘black box’ models be-
cause of their intricacy, a method exists for quantifying
the significance of the variables they employ. To do so,
a Random Forest model is trained for each time period
𝑇 using the previously generated simulations. In this
process, the true autocorrelation parameter 𝜌 is used as
the dependent variable, with the explanatory variables
comprising the estimators acquired from the different
biascorrection techniques. Variable importance is evalu-
ated by measuring how much an estimator contributes
to the predictive accuracy of the model. This assessment
is conducted by observing the change in the model’s
prediction error when the values of a specific attribute
are randomly shuffled. If shuffling an estimator’s values
leads to a discernible increase in the model’s prediction
error, it indicates that the model heavily depends on that
estimator for its predictions, categorizing the attribute
as ‘important’. Conversely, if reordering the estimator’s
values has little impact on the model’s error, it suggests
that the model does not heavily depend on that estimator,
rendering it ‘unimportant’ in the prediction process. The
concept of permutation estimator importance, originally
introduced in the context of Random Forests by [17], is
applied in this paper.

To evaluate the estimators’ performance, the permuta-
tion variable importance for each Random Forest is com-
puted. Figure 2 displays these results. It is evident that
the modified Sørbye approach consistently exhibits the
highest variable importance across all time periods (𝑇 ),
except for when 𝑇 = 15. Moreover, the two analytical
approaches demonstrate strong performance. Notably,
the Roy-Fuller [9] estimator displays higher importance
for shorter time series, while the Shaman-Stine [12] esti-
mator performs slightly better for longer time series. In
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Figure 3: Significant enhancement in mean squared error seen in a 10-period time series by tuning the Yule-Walker parameter
with a random forest

contrast, the bootstrapping approach by Kim [15] con-
sistently shows the lowest variable importance out of all
the estimators.

The variable importance plot results should not be
considered conclusive evidence of the effectiveness of
biascorrection methods. Caution must be used in inter-
preting the data because if two estimators are extremely
similar, they may have overlapping information, result-
ing in a relatively unchanged prediction error when one
is permuted. Conversely, if the estimators contain dif-
ferent information, it may result in a more significant
increase in prediction error.

[18] provides a more comprehensive view of the signif-
icance of the estimators by acknowledging that certain
estimation methods may equally fit the data. Their ap-
proach and the transfer to our problem of comparing the
estimation approaches for our data is out of scope of this
paper, but should be considered for future comparisons
of the approaches.

6. Future Work
This section examines the application of a random forest
model for bias correction. The goal is to decrease the bias
of the simple to compute Yule-Walker estimate, therefore
we simulate time series of length 𝑇 with known true
parameter 𝜌. We then compute the Yule-Walker estimate
for each of these time series. The Yule-Walker estimate
and the length of the time series 𝑇 can then be utilized
as explanatory variables in the random forest, along with
the true parameter 𝜌 as the dependent variable. Although
this approach provides initial insights into the potential

of incorporating machine learning techniques into the
bias correction of AR processes, further enhancements in
performance and reductions in bias and mean squared er-
ror are possible through the use of a more comprehensive
ensemble estimator that integrates maximum likelihood
estimation and bias-corrected estimates from different
models.

Figure 3 shows the outcomes, demonstrating the im-
pact of the random forest on the mean squared error. The
results highlight that the random forest can effectively
decrease bias of the Yule-Walker estimate for larger 𝜌 val-
ues, although there is a minor rise in bias for negative 𝜌
values. Additionally, it shows the technique’s proficiency
in reducing variance for positive 𝜌 values. These find-
ings suggest opportunities for enhancing the estimators’
performance through further investigation of advanced
ensemble techniques incorporating more bias-corrected
estimators.

7. Conclusion
This paper contributes to the field by addressing the chal-
lenge of estimating AR(1) coefficients in short time series.
The paper explores various strategies for mitigating bias
in AR(1) parameter estimation and introduces an effective
adaptation of the bias correction methodology initially
proposed by Sørbye et al. [1]. The research findings sug-
gest that analytical and simulation-based methods are
more effective for estimating stationary AR(1) processes
compared to bootstrapping, aligning with conclusions
from prior studies [8].

The newly proposed modified Sørbye approach demon-



strates promise in estimating AR(1) parameters by reduc-
ing bias while maintaining low variance. Additionally,
analytical techniques proposed by Roy et al. [9] and
Shaman et al. [12] are identified as viable alternatives
for researchers, showing comparable performance and
versatility for higher-order AR processes.

In conclusion, this paper emphasizes the significance
of bias correction in AR coefficient estimation and high-
lights the importance of tailored bias correction methods
that consider the specific characteristics of the analyzed
data.

Moreover, the paper suggests the potential benefits
of employing machine learning approaches to enhance
AR estimation, opening avenues for further research and
methodological advancements.
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