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Abstract
An important task when operating machine learning applications is model monitoring. Teams operating machine learning
pipelines monitor the model performance based on common machine learning metrics like accuracy. However, in many
real-world applications, monitoring model performance is difficult as ground truth is required to evaluate the performance.
One possible way to draw conclusions about the current state of the pipeline is to observe drifting data, i.e., serving data
deviating from the training data. However, approaches which give alerts on changing data are often too sensitive, leading to
many false alarms. We propose an approach which provides more actionable data validation for machine learning monitoring.
It is based on building so-called data assertions from initial training data. These assertions are then used as constraints to
detect unexpected changes and data errors.
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1. Introduction
In the last decades, the field of machine learning has gone
through tremendous progress which led to a wide adop-
tion in numerous applications in academia and industry.
Significant effort is spent on developing and optimizing
algorithms. Another important factor in machine learn-
ing applications is the utilized data. The research field
of data-centric AI – which can be seen as complemen-
tary to model-centric AI – thus addresses data aspects in
machine learning applications [1]. One important factor
is data maintenance for machine learning pipelines, in-
cluding both training and serving data. Figure 1 shows a
high-level representation of a machine learning pipeline:
Training data is preprocessed and used for training. The
output of this process is a model. In the serving environ-
ment, predictions are made for unseen data after a data
preprocessing. When operating such machine learning
pipelines, a major challenge is training-serving-skew [2],
i.e., a deviation of the training to the serving environ-
ment. In particular, serving data which differs signifi-
cantly from training data can cause numerous problems.
When considering learning on tabular data, structural
changes can cause errors in the serving pipeline, hence
heavily influencing the model outcome or even breaking
pipelines. But also differences in data characteristics can
have significant impact on the downstream model. One
frequently researched challenge in this context is concept
drift. This term refers to a change of relationship between
input and output data over time. Concept drift can have
massive impact on model performance. Detecting such
changes is therefore an important task which we plan to
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address in our approach.
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Figure 1: Schematic illustration of a machine learning
pipeline (straight arrows indicate data flow, dashed arrows
indicate a deployment of artifacts)

A comprehensive data monitoring is needed to detect
aforementioned deviations in serving data. This process
can be seen as a special type of data validation which is
not only an important topic in machine learning, but in
all applications where data is processed. Data science
teams can choose from a vast amount of different tools
for this task, e.g., TFX Data Validation [3], Deequ [4], or
great expectations1. These tools can be effectively used
to validate incoming data according to user-defined con-
straints or a baseline dataset. However, as models and
processed data in production machine learning applica-
tions are often updated continuously [5], a comparison of
serving data with a static baseline is not sufficient. There
is a need for data validation tools for machine learning
applications where this dynamic nature is considered.

Another limitation of many data validation tools used
for machine learning is that their output does not lead
to a quick and easy diagnosis of the underlying problem.
Thus, Polyzotis and Zaharia [5] identifies outputs to be

1https://greatexpectations.io/
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actionable as one core requirement of monitoring tools
for data-centric AI. False alarms can be a problem, too.
When a systems outputs too many alerts, users tend to
ignore or silence them entirely. One way to implement
a more helpful diagnosis and to prevent alert fatigue is
to alert only on changes which are probably going to
have an impact on the downstream model. Here, the
challenge lies in finding types of deviations which are
likely to impact the model outcome.

Thus, we propose an approach for a system which
monitors data throughout the machine learning lifecycle.
It aims at validating new incoming data which is used
as serving and/or training data. We focus especially on
actionable outputs. This requires a deep analysis of the
data and the impact of specific data characteristics on the
pipeline. As successful machine learning deployments
are operated for long time periods and are updated con-
tinuously, information used for data validation is also
updated continuously. Metadata necessary for building
useful constraints and actionable alerts is collected dur-
ing the training phase.

This paper first reviews literature and tools which are
aimed at monitoring and validating data for machine
learning pipelines. Subsequently, we present our ap-
proach in more detail. We also exemplify identified re-
search challenges and ideas on how to solve these chal-
lenges.

2. Related work
Multiple fields of research are relevant for our envisioned
machine learning monitoring system focusing on data
aspects. Firstly, we take a look at tools for metadata
management in machine learning experiments. Secondly,
approaches for validating data in general are discussed.
Afterwards, existing ML monitoring tools are presented.

2.1. Metadata management
In our approach, mining metadata from the training pro-
cess is an important first step. Numerous tools enabling
metadata tracking from training pipelines exist. The
goal of such tools is to guarantee the reproducibility of
machine learning experiments. They also support com-
parison between different machine learning pipelines in
regards to model performance or other metrics.

Schelter et al. [6] suggest a declarative approach to
metadata tracking for machine learning pipelines. This
refers to a decoupling of the actual artifacts produced in
the machine learning process (i.e., code, models, datasets,
etc.) with metadata describing these artifacts. Metadata
is extracted from internal data structures of machine
learning frameworks, e.g., from Spark DataFrames or

MXNet computation graphs. This allows a fine-grained
tracking and thus good replicability.

MLFlow [7] is a widely used tool which provides a
tracking API to log metrics and artifacts of machine learn-
ing experiments. API calls are inserted into training code
by the users which initiate the logging of metadata to
a file or database. MLFlow then provides an API and UI
to display metadata collected during an experiment, en-
abling comparison between different experiment runs.
There are integrations for a lot of machine learning frame-
works, thus supporting metadata tracking for numerous
use cases.

TFX ML Metadata2 is another library which retrieves
metadata from data science workflows. It also allows user
to track metadata about artifacts and outputs which are
produced during an experiment. This metadata is then
stored into a metadata store which data scientists can use
for debugging models in production. For instance, they
can trace the dataset a model is trained with or compare
results of two experiments.

As metadata collection from machine learning scripts
is an essential step in our approach, we plan on using
concepts from these tools. Similar as it is proprosed by
TFX ML Metadata, we also use the retrieved metadata for
debugging in production. However, our focus is to collect
and store metadata about the processed data rather than
about the model.

2.2. Data validation
The main goal of our approach is to ensure that incom-
ing serving data does not break the prediction pipeline
or induces other problems like concept drift. Thus, we
effectively validate serving data, i.e., check if it fits pre-
defined criteria. Obviously, data validation is required
in countless applications over multiple fields. Therefore,
lots of development and research went into designing
systems which validate data.

Deequ [4] is an example for such a system. It enables
the validation of large-scale data in respect to the data
quality. Users can set constraints or choose from sugges-
tions generated by the system. The main focus of this
system is to ensure a performant processing even for
very large datasets. Redyuk et al. [8] suggest a system
where data quality is monitored by computing descriptive
statistics and detecting deviations with novelty detection
methods. This is a contrast to other approaches where
constraints are set manually or semi-automatically by
the user.

There are also data validation systems designed specif-
ically for machine learning applications. TFX Data Val-
idation [3] is a part of the platform TFX implemented
by Google. It enables the validation of both training and

2https://www.tensorflow.org/tfx/guide/mlmd



serving data. The authors make a differentation between
single-batch and inter-batch validation. Single-batch vali-
dation is supposed to detect anomalies in a single batch
of data while inter-batch validation is targeted at finding
significant changes between training and serving data
or batches of training data. mlinspect [9] is a tool which
enables users to inspect training pipelines. It mainly fo-
cuses on debugging data distribution changes induced by
pipeline steps. This can be used to detect technical bias,
i.e., bias which is introduced by data preprocessing or
other automated tasks.

Static data validation, as provided by most presented
applications, is not sufficient for the problem of contin-
uously monitoring input data for machine learning ap-
plications. Also, to the best of our knowledge, there are
no systems which validate data based on the impact it is
expected to have on a downstream model which is one
of the core ideas of our approach.

2.3. Monitoring machine learning
applications

Kreuzberger et al. [10] identified continuous monitoring as
one of the main principles of MLOps which is a paradigm
describing the effective development and operation of
production machine learning applications. The moni-
toring component is needed to detect errors or changes
influencing model quality. Various artifacts like data,
model outputs, serving infrastructure, etc. are observed.
Machine learning teams use various tools for this task. A
popular choice are general-purpose monitoring systems
like Prometheus3 or the ELK stack4.

There are also tools specifically designed for the mon-
itoring of machine learning applications. EvidentlyAI 5

provides multiple modules to monitor data quality, data
drift, and model performance. Test suites perform data
and model quality checks based on conditions that are
either manually set or generated from a reference dataset.
Reports provide general metrics and interactive visualiza-
tions for analysis and debugging purposes. A continuous
monitoring can be achieved by storing snapshots of test
suites and reports and displaying it in a dashboard. Simi-
lar tools exist for various cloud services which provide
tooling for machine learning, e.g., Amazon SageMaker
Model Monitor6. In constrast to our approach, these tools
incorporate ground truth into the model performance
evaluation. We plan to evaluate models under the as-
sumption that ground truth is not available.

A concept which can used for monitoring models is
the abstraction of model assertions [11] which adapt soft-

3https://www.prometheus.io/
4https://www.elastic.co/elastic-stack
5https://www.evidentlyai.com/
6https://docs.aws.amazon.com/sagemaker/latest/dg/model-
monitor.html

ware assertions to machine learning models. They allow
domain experts to specify constraints over model input
and output. This enables the detection of wrong model
outputs in cases where confidence is high. Our approach
also includes assertions, but focuses on the validation of
data, not model optimization.

Shankar and Parameswaran [12] present a vision of
a so-called observability system for machine learning
pipelines. One primary goal is to detect and diagnose
bugs in machine learning pipelines. The authors also
emphasize the importance of measuring model perfor-
mance with incomplete information, i.e., when no ground
truth is available to evaluate model outputs. A prototype
for such an observability system was also presented7.
Our proposed system also tackles challenges that ap-
pear in machine learning applications where no ground
truth is available. However, while the authors of [12]
presented concepts of using partial or delayed labels for
performance measurement, we keep the labels out of the
equation and focus on detecting data with unexpected
characteristics. Thus, our approach can be seen as com-
plementary to the envisioned system presented in [12].

3. Concept
An architecture of our proposed system is depicted in
Figure 2. It consists of two main components: (i) metadata
collection and (ii) data assertion generation. The first
component collects metadata from the initial training
pipeline. This includes machine learning metrics and
the training data. We use this metadata as a baseline.
The next step is to infer expected data characteristics
from the metadata. We refer to these expectations as
data assertions. By collecting machine learning metrics
additionally to the data, it is possible to measure how
specific data characteristics affect the outcome of the
model. By incorporating the effect on model outcome,
more actionable alerts are possible. Teams operating
machine learning pipelines are interested in data errors
which are likely to impact model results. In the following,
we present a general outline for those two components.
We also exemplify research challenges and ideas on how
to solve these.

3.1. Collection and storage of metadata in
machine learning pipelines

Firstly, we identify a set of metadata to collect from
the machine learning process. We differentiate between
two types of metadata: (i) experimentation metadata and
(ii) metadata about the training data. To track metadata
about the experimentation, we intend to use a tracking
tool like mlflow. Here, we are mostly interested in how

7https://github.com/loglabs/mltrace
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Figure 2: High-level overview of the proposed monitoring system

well a model performed on which datasets. Thus, we
track ML metrics in combination with pointers to the
training datasets.

More importantly, we collect comprehensive metadata
about the actual data a model is trained with. For this, we
create a data profile for each training dataset. For now,
we focus on profiling tabular data. When considering
tabular data, one could utilize comprehensive work on
the profiling of relational data [13]. Various tools were
developed specifically to profile data used in machine
learning applications [14, 15]. However, an extensive
profiling is not always feasible for the application of
creating data profiles for machine learning datasets, as it
would be too expensive for many use cases. Thus, a trade-
off between getting insightful information about the data
and performance has to be made. A first design of a data
profile which considers these requirements is shown in
Figure 3. The data profile contains general information
and descriptive statistics describing the dataset. We track
statistics about numeric and categorical features, as well
as relationships between columns. The design of this
data profile is not meant to be final, but rather serves as a
suggestion which can be adjusted based on the use case.

There are also different possibilities to collect data
from training scripts and other machine learning code.
One possibility is to provide an API which enables the
user to log data from variables or files, similar to imple-
mentations in mlflow [7] or other experiment tracking
tools. Other approaches where data is captured directly
from Python scripts [9, 16] could also be used.

An additional research challenge we identified is to fig-
ure out an efficient storage method for the metadata. This
is especially important for machine learning applications
which are operated over a long period of time, as the
training data is updated every time models are retrained.

An idea here is to save the data profiles in data structures
that allow incremental updates. A similar approach is
implemented in Deequ [4] where data quality metrics are
incrementally updated for large-scale datasets.

3.2. Data assertions
In model serving, we differentiate between two cases:
online and batch inference. Online inference means that
the input is immediately passed to the model which then
outputs a prediction. Thus, the serving data can be seen
as unbounded. In batch inference, on the other hand,
input data is accumulated into batches. Those batches
are then passed to a model and inference is performed
on all the collected data. This differentiation is important
as these types can require highly different processing
techniques.

We tackle challenges regarding the training-serving-
skew which is an issue in production ML. Thus, detecting
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Figure 3: Components of a data profile



such differences between training and serving data is cru-
cial to avoid performance decreases. In batch settings,
one way to address this problem could be to compare
data from the training phase with the serving dataset.
Assuming data profiles as described in Section 3.1 are
available, this comparison can be done by finding differ-
ences between the baseline data profile (i.e., data profile
of the training data) and the serving data profile.

For unbounded data, the approach of building data
profiles for input data is not feasible. As data profiles are
meant to be summaries of datasets, they do not serve as
a good means to describe unbounded data. Therefore,
for this case, our approach to detect changes is to derive
so-called data assertions from the data profiles that were
collected in the training process. These data assertions
are thought to ensure that incoming serving data does
not lead to errors in the inference pipeline. Thus, they
are meant to identify data which is significantly differ-
ent from training data. If an assertion is violated, the
monitoring system gives a warning.

Consider an application where the goal is to predict
whether there will be a storm on the next day based on
weather data from the current day. One column in this
example would be the temperature. A data assertion for
this column could look like depicted in Listing 1. In this
example, the temperature is guaranteed to be a float and
to have a value between -5.2 and 36.7.

{
"column_assertion": {
"name": "temperature",
"dtype": float,
"lower_bound": -5.2,
"upper_bound": 36.7

}
}

Listing 1: Example for a data assertion (planned)

In the context of data assertions, we identified two
research challenges. The first one is the design of data as-
sertions. Listing 1 only shows a rough idea for the design
of a specific example. Data assertions can be thought
of as a kind of constraint. Our goal is to define these
constraints in a way that data violating them is likely
to cause problems in the pipeline, ranging from pipeline
breaking errors to deviations in data distribution which
often lead to worse model outputs. For this, we first have
to define which errors can occur in the pipeline. Then
we can classify which errors are affecting the pipeline
and which are not.

We start with “simple” assertions, i.e., data assertions
based on simple data statistics like the min and the max.
An example for such a data assertion was introduced

Metadata
collection

Data assertion
generation Refinement

Feedback

Deployment

Figure 4: Process for generating data assertions

prior in Listing 1. These data assertions are similiar to
constraints like implemented in Deequ [4] or other data
validation tools. We then create a taxonomy of those
data assertions, i.e., find suitable assertion types. For in-
stance, on a high level, assertion types could be divided
into structural and semantical. Also, assertions can be
on feature- or table-level. Table-level assertions include
constraints which model relationships between features.
In the next step, we plan to cluster those constraints
according to what error types are produced when data
violates them. Here, we differentiate between changes
breaking the preprocessing pipeline and changes influ-
encing model outcome (also over time). Therefore, we
also incorporate the model into the evaluation. This way
we can also measure if specific data assertion violations
tend to have similar impact on the downstream model.
A research question in this context is to find approaches
on how to evaluate effects of assertion violations on the
model. An idea is to use metrics which measure the
feature importance [17].

The outcome of this process are rules which model the
relationship of data assertion violation to impact on the
pipeline. These can be used to build a classification model.
The independent variables are attributes describing the
data assertion and the dependent variable is the impact on
the pipeline. This model in turn can be used to improve
the assertions by prioritizing assertions with a higher
predicted impact and neglecting constraints with low
estimated impact.

An important part of the concept of data assertions is
that users do not have to define them all by hand. Rather,
we plan to use a semi-automatic approach which is il-
lustrated in Figure 4. The monitoring system suggests
assertions based on the data profiles of the training pro-
cess to the data scientist. Then the data scientist can
accept or reject the assertion. They can also edit the
assertion. For the example in which a constraint is gen-
erated for the column temperature, they could change
the upper bound to 40 – if they know such temperatures
are realistic in the observed area. This user feedback can
also be incorporated into the data assertion generation
process, enabling better constraints which produce less
false alarms.

In a last step, the data assertions created before have
to be evaluated. Several datasets used for benchmarking
in machine learning research can be used. However, we
will also allow a parametrization of various attributes of
the data, e.g. schema or column contents. Variance in



data can therefore be controlled and data with different
properties can be tested. In the evaluation, the input data
is firstly split into “training” data with which the data as-
sertion generation is executed and “test data” with which
the accuracy of these data assertions is then evaluated.
The evaluation is separated into two steps: (i) verifica-
tion of the semantical correctness, i.e., does the generated
data assertion hold for the test data, and (ii) comparison
of the predicted impact with the actual impact on the
model.

4. Conclusion
Validating data for machine learning applications is a
task with many challenges yet to solve. We focus on the
validation of data which is updated continuously and
the minimization of false positives. Therefore, this paper
proposes a data monitoring system which incorporates a
comprehensive collection of metadata in machine learn-
ing pipelines and a creation of data constraints we call
data assertions. The assertion building process is aware
of the downstream model and measures the influence of
data variance on model outcome. In our next steps, we
implement the metadata collection component to collect
comprehensive metadata not only on data, but also on
the model. This metadata serves as input for the data
assertion generation process. We presented research chal-
lenges we identified both in metadata collection and data
assertion generation. We also made considerations on
how to evaluate the generated data assertions.
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