
Data Processing Pipeline for Eye-Tracking Analysis
Jennifer Landes1, Sonja Köppl1 and Meike Klettke2

1Hochschule Neu-Ulm, Germany
2University of Regensburg, Germany

Abstract
The overarching topic of this research project is academic misconduct in online assessments, aiming to understand students´
behavior and methods. To gain deeper insights, an eye-tracking experiment was conducted to capture when and how students
engage in academic misconduct. Data from this experiment will reveal irregularities in cheating behavior. This paper presents
a data engineering pipeline for the preparation of the future eye-tracking data analysis implemented in Python and a reasoning
for the chosen order. Steps like Feature Selection, Data Preparation, Outlier Detection and Treatment, Filtering, Smoothing,
and Normalization are included in this pipeline. We describe the data set, the setting and conduction of the experiment, and
the data engineering pipeline. This article contributes to the current discussion of the preprocessing and analyse of eye
tracking data.

Keywords
Data Pipeline, Data Preprocessing, Machine Learning

1. Introduction
Academic misconduct still persists as a challenge to the
integrity of higher education, especially within the con-
text of digital examinations. The importance of robust
methodologies to detect and prevent such behaviors is
further underscored. While much attention is under-
standably focused on the act of cheating itself, it’s equally
critical to recognize the significance of preparing data
for subsequent analysis.

This paper aims to address this crucial intersection
between academic misconduct and data analysis, specifi-
cally focusing on the preprocessing pipeline tailored for
collected eye-tracking data during an experiment. With
the rise of digital assessments, accelerated by the COVID-
19 pandemic [1], there’s an urgent need to explore cheat-
ing behaviors through novel avenues. However, before
we can deliver insights, raw data must undergo several
preprocessing steps to ensure its quality and usability.

This study presents an approach to prepare eye-
tracking data for an upcoming analysis with machine
learning models. While the overarching project endeav-
ors to understand and mitigate academic misconduct
among students, this specific endeavor delves into the
process of data preparation and refinement—a critical
prerequisite for meaningful analysis.

The challenge inherent in eye-tracking data adds an
additional layer of complexity to the preprocessing task.
The nature of eye-tracking data, which often includes
noise, calibration errors, and variability between par-
ticipants, underscores the necessity of rigorous prepro-

35th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), May 22-24, 2024, Herdecke, Germany.
$ jennifer.landes@hnu.de (J. Landes); sonja.köppl@hnu.de
(S. Köppl); meike.klettke@ur.de (M. Klettke)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

cessing to ensure accurate and reliable analysis results.
Therefore, addressing these challenges in preparing eye-
tracking data is essential for effectively detecting patterns
indicative of academic misconduct and advancing our un-
derstanding of cheating behaviors in digital examination
settings.

The subsequent sections of this paper outline the var-
ious preprocessing steps undertaken to cleanse and en-
hance the eye-tracking dataset, laying the foundation
for subsequent analyses. Chapter 2 provides a compre-
hensive review of relevant literature, emphasizing the
significance of preprocessing. Chapter 3 delves into the
experiment design and dataset characteristics, setting the
stage for the preprocessing procedures detailed in Chap-
ter 4. Finally, Chapter 5 offers a summary of findings and
discusses potential avenues for future research, empha-
sizing the pivotal role of preprocessing in the broader
landscape of academic misconduct detection.

1.1. Prior Work and Motivation
This study is part of the broader project ii.oo (Digitales
Kompetenzorientiertes Prüfen implementieren), which
aims to address academic misconduct among students
in digital examination settings. The primary objective
is to delve into the various factors influencing cheating
behaviors and to identify the methods students employ.

The project unfolds in distinct phases. Initially, a quan-
titative survey on basis of [2] was conducted to gain
insights into students’ cheating behaviors and the con-
textual factors influencing these behaviors [3]. The sur-
vey encompassed various tasks and cheating scenarios,
probing students’ preferences and motivations. Drawing
from the survey findings, an eye-tracking experiment
was designed to gain deeper insights into cheating pat-
terns.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:jennifer.landes@hnu.de
mailto:sonja.k�ppl@hnu.de
mailto:meike.klettke@ur.de
https://creativecommons.org/licenses/by/4.0


The eye-tracking experiment involved the collection
of data from 20 participants during the examination. This
paper focuses specifically on the data preparation phase
of the project, which is integral to the subsequent analysis
and pattern detection. The preprocessing steps under-
taken ensure that the collected data is refined and ready
for analysis.

So, this project is structured to first understand the
landscape of academic misconduct through a quantitative
survey, followed by the design and implementation of
an eye-tracking experiment to delve deeper into cheat-
ing behaviors. The preprocessing of collected data is a
crucial preparatory step, paving the way for meaningful
analysis and detection of patterns indicative of academic
misconduct.

2. Related Work
The preprocessing literature discusses several steps like
detection and treatment of noise, outliers or missing val-
ues, feature selection to reduce the dimension and the
important step of normalizing. In case of sensing data
like Eye tracking, the challenge of noise needs the use
of filters in the preprocessing stage. These filters are
able to eliminate instances in the dataset, which may
lead to misclassification issues [4]. The identification
and management of outliers are categorized in statistics-
based, distance-based, and density-based. A statistics-
based method by Huang et al. [5] assumes a statistical
model for the dataset and outliers are detected using sta-
tistical tests. Other methods, such as by Buzzi-Ferraris
and Manenti [6] also evaluate mean, variance, and out-
lier values. For large datasets, Angiulli and Pizzuti [7]
introduced a distance-based outlier detection algorithm,
HilOut, to identify the top outliers in a dataset. HilOut
computes the weight of a point as the sum of distances
to its k-nearest neighbors, identifying outliers as points
with the highest weight. An approach by Ghoting et al.
[8], presents the RBRP algorithm for mining distance-
based outliers in high-dimensional datasets. Handling
missing values stands out as a critical challenge during
data preprocessing. Zhang et al. [9] proposed the NIIA
imputation approach, an iterative scheme imputing miss-
ing data using information within incomplete instances.
Luengo et al. [10] addressed the missing value problem
through various imputation methods, focusing on a classi-
fication task and demonstrating improved accuracy with
specific imputation methods. Lobato et al. [11] presented
a solution by combining evolutionary computation tech-
niques, specifically genetic algorithms (GA), for data im-
putation. Their multi-objective GA, named MOGAImp, is
designed for mixed-attribute datasets. The data normal-
ization is important for classifiers, neural networks and
SVMs and comprises methods such as Min-Max normal-

ization, Z-score normalization, and unit length scaling.
These techniques are essential for ensuring optimal clas-
sifier performance, especially when dealing with large
differences between feature values [4]. Discretization
methods are discussed by Dougherty et al. [12], include
equal size and equal frequency methods. These methods
are relevant for handling continuous attributes in the
preprocessing phase. Additionally, the significance of
feature selection in preprocessing cannot be overstated.
It is a crucial step for example for the k-NN procedure,
involves identifying and eliminating irrelevant features
by reducing data dimensionality. The selected literature
gives an insight in the current preprocessing steps and
their selected strategies, which are important for the up-
coming choice of preprocessing steps and their detailed
processing.

3. Experiment and Dataset
The following sections provide a detailed description
of the experimental design, the question types, and the
cheating methods allowed during the test.

3.1. Eye-Tracking Technology
With eye-tracking it is possible to record, measure and an-
alyze a person´s eye movements to get insights into the
visual focus and gaze patterns. It is used in psychology,
user experience, and marketing. The resulting data pro-
vides an understanding of visual interaction with stimuli,
which can be explored with analytic techniques. By em-
ploying tools such as heatmaps and saliency maps, the
data can be visualized. During the recording, data, like
fixations, saccades or their durations are captured in a
structured format for analysis [13].

3.2. Experimental Design
The experiments have been conducted in the Eye-
Tracking Laboratory at Hochschule Neu-Ulm on two data
collection sessions on May 9th and June 15th, 2023 with
20 bachelor students from Prof. Sonja Köppl’s lecture in
Industrial Engineering ranging from 1st to 5th semester.
In the laboratory are two external Tobii eye-tracking de-
vices employed. The students are organized into groups
of five, while one participant serves as a supervisor. This
arrangement is implemented to simulate a real exam-
ination scenario. During the experiment, participants
choose from three methods of cheating. First, a cheat
sheet containing information relevant to the test ques-
tions, second, a mobile phone and third, the collaboration
with the neighbor during the test. After each section of
the test, the participants mark, which cheating method
they have used. Also, they have the option to mark that



[h]
Features Description

GazeLeftx, GazeLefty, GazeRightx, GazeRighty The X and Y coordinates of the left and right eye.
PupilLeft, PupilRight The pupil size of the left and right eye.
DistanceLeft, DistanceRight The distance of the left and right eye.
CameraLeftX and Y, CameraRightX and Y The camera coordinates of the left and right eye.
ValidityLeft, ValidityRight The validity of the gaze data from the left and right eye.
Gaze X, Gaze Y The X and Y coordinates of the participant’s gaze point on the screen.
Interpolated Gaze X and Y, Interpolated Distance Interpolated X and Y coordinates and distance of the gaze point.
Gaze Velocity, Gaze Acceleration The velocity and accelaeration of the gaze point.
Fixation Duration Time interval from beginning to the end of a fixation. Longer fixation durations

indicate important or intriguing points.
Saccade Duration Saccades occur between fixations and are rapid eye movements between

points in the visual field. Saccade duration is the time it takes to move from
one point to another.

Fixation X, Fixation Y The X and Y coordinates of the participant’s fixation point on the screen.

Table 1
Excerpt of Features of Eye-Tracking Dataset, description by [13], [14]

Figure 1: Gaze Plot of Task 5 by one participant

they have not cheated. The participants complete a test
of 20 minutes of five distinct question types, from 2.5 to
4 minutes per question. The time was limited per task
controlled by the software iMotions.

• Definition Task: A definition of a given term.
• Transfer Task:: Apply knowledge to solve a

problem in a unfamiliar context.
• Multiple Choice Task: Select the correct answer

from a set of options.
• Single Choice Task: Choose a single correct

option from a list.
• Programming Task: Apply programming skills

to solve practical problems.

Figure 1 provides an exemplary gaze plot for program-
ming task of one participant. The coordinates of Gaze X
are depicted on the X-axis and the coordinates of Gaze Y
on the Y-axis.

3.3. Dataset and Feature Selection
Feature selection (FS) is an important step, especially for
k-NN, SVMs and neural network training. FS identifies
irrelevant and redundant features and reduces the di-
mensionality of the data to enhance efficiency. Features
are generally categorized into relevant, irrelevant and
redundant. An exemplary selection algorithm generates
proposed feature subsets to find an optimal subset or
an evolutionary algorithm that assesses the quality of
the proposed feature subset by providing a ’measure of
goodness’ to the selection algorithm [15].

The recording of eye movements is conducted using
the iMotions software. The original output dataset in-
cludes several features, the selected features are shown
in Table 1. The selected features are chosen with a focus
on their significance for analysis. This selection is an
iterative process. As the analysis progresses, there may
be adjustments made to the set of features. The data
set from 20 participants is divided into each task, which
results in total in a data size of 100.

4. Preprocessing Pipeline
By following a sequence of preprocessing steps, the data
will be progressively enhanced and prepared for analysis
of eye-tracking patterns. The rationale behind this order
is to eliminate errors and noise upfront, then progres-
sively refine the data to ensure accurate and meaningful
results.

Data Cleaning is the initial step to ensure that the
dataset is free of obvious errors, missing values, or incon-
sistencies. This step is crucial as it lays the foundation
for reliable analysis by removing any erroneous or in-
complete data points. The subsequent step involves out-
lier detection, aimed at identifying and handling outliers



early in the process. Outliers, which represent unusual
eye movement data points, can significantly impact the
analysis if not properly addressed. By identifying and
addressing outliers early on, the preprocessing pipeline
ensures the integrity of the dataset and enhances the
accuracy of subsequent analyses. Following outlier de-
tection, a low-pass filter is employed to reduce high-
frequency noise or rapid fluctuations in the eye-tracking
data. This step is essential for smoothing out erratic vari-
ations in the data, thereby improving its overall quality
and coherence. Additionally, data smoothing is applied
to further reduce noise, particularly in cases where minor
fluctuations in eye-tracking measurements may obscure
underlying patterns. Smoother data enhances the visibil-
ity of meaningful patterns and facilitates more accurate
analysis. Towards the end of the preprocessing pipeline,
normalization is performed to scale the data to a com-
mon range. Normalization is crucial for ensuring that
all features are on a level playing field, facilitating easier
comparison between different features or datasets. This
step enhances the effectiveness of subsequent analyses
by standardizing the data and mitigating the impact of
varying scales.

Figure 2: Pipeline for Data Preprocessing

Furthermore, it’s important to note that this prepro-
cessing pipeline represents an initial draft and serves
as a starting point for experimentation and refinement.
In future research, various alternative methods for han-
dling missing values, outliers, and other preprocessing
tasks will be explored. By experimenting with different
approaches, such as various imputation techniques for
missing values and outlier detection methods, the impact
of these preprocessing variations on machine learning
analyses with classifiers will be investigated. This iter-
ative approach aims to refine and optimize the prepro-
cessing pipeline for more robust and accurate analysis of
eye-tracking data. The steps are visualized in Figure 2
[16].

4.1. Data Cleaning
In the data cleaning process, several steps are followed to
ensure the dataset’s integrity. The initial step standard-
izes column names by removing any leading or trailing
whitespaces. The values of several columns with de-
tails of technical specification are deleted or converted
to a numeric format, with non-numeric values being co-
erced into NaN (Not-a-Number) values. Rows containing
NaN values are eliminated from the dataset. Data is fil-
tered based on the 𝑉 𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐿𝑒𝑓𝑡 and 𝑉 𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝑅𝑖𝑔ℎ𝑡
columns, retaining only the rows where data for both
eyes are valid (both columns have a value of 1). Fur-
thermore, filters are applied to the 𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
and𝑆𝑎𝑐𝑐𝑎𝑑𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 columns, preserving rows where
these durations fall within predefined minimum and max-
imum thresholds. Any duplicate columns present in the
DataFrame are eliminated. [17].

4.2. Missing Values
The issue of missing feature values is a critical challenge
during data preprocessing. Classifiers such as neural
networks and k-NN necessitate careful handling of in-
complete information [9]. Numerous methods have been
developed to handle missing data, like filling with the
most frequently occurring value in the dataset, with the
values of the same class, imputing with the mean value
of the feature, developing regression or classification
models to predict missing values based on other known
features or considering unknown elements as complete
new values for features containing missing values [4].

To identify and treat missing values in this dataset, a
report revealed a high number of missing values in the
’Duration’ column, which resulted in the removal of this
column. Furthermore, the gaze-related columns (Gaze X,
Gaze Y, Interpolated Gaze X, Interpolated Gaze Y, Inter-
polated Distance, Gaze Velocity, Gaze Acceleration) had
missing values ranging from 32% to 49%. Therefore, an
imputation by the mean was done for the further anal-
ysis. Third, the fixation data columns (with 55% to 56%
missing values) require a closer examination of the cause
of missing values. Therefore, they will not be removed,
as they may only appear on single events.

1 # Treatment of Missing Values
2 # Duration
3 df = df.drop(columns=[’Duration’])
4 # Gaze-Data
5 gaze_columns = [’Gaze X’, ’Gaze Y’, ’Interpolated

Gaze X’, ’Interpolated Gaze Y’, ’Interpolated
Distance’, ’Gaze Velocity’, ’Gaze Acceleration’]

6 df[gaze_columns] = df[gaze_columns].fillna(df[
gaze_columns].mean())



4.3. Outlier
Outliers also impact dataset integrity. With an outlier
detection it is possible to identify and treat data points
that deviate significantly from the majority of observa-
tions. These outliers can arise due to various factors,
including measurement errors, participant distractions,
or genuine deviations in gaze behavior. The methods for
identifying outliers are categorized into statistics-based,
distance-based, and density-based methods [18].

For this data set, the method used for identifying out-
liers is the "Z-score" of a data point, which measures the
number of standard deviations by which the data point
deviates from the mean. A high Z-score suggests that the
data point may be a potential outlier. 𝑧 = 𝑋−𝜇

𝜎

• 𝑍 - Z-score.
• 𝑋 - individual data point.
• 𝜇 - mean of the data.
• 𝜎 - standard deviation of the data.

1 # Identification of outliers using Z-scores
2 z_scores = np.abs((df[col] - df[col].mean()) / df[col

].std())
3 outliers_mask = z_scores > zscore_threshold
4 df[col][outliers_mask] = np.nan

In the current data set, a set of gaze target columns
(𝑐𝑜𝑙𝑢𝑚𝑛𝑠_𝑡𝑜_𝑐ℎ𝑒𝑐𝑘) is created for outlier detection,
which include 𝐺𝑎𝑧𝑒_𝑋 , 𝐺𝑎𝑧𝑒_𝑌 , 𝐺𝑎𝑧𝑒_𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦, and
𝐺𝑎𝑧𝑒_𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛. The Z-score is determined for
each data point in the columns and therefore, the means
(𝜇 ) and standard deviations (𝜎) are calculated and
a threshold value (𝑧𝑠𝑐𝑜𝑟𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is established
for identifying outliers. The values in each column
are converted into floating-point numbers (float) using
pd.to_numeric(). In cases where this conversion fails,
these values are substituted with NaN (Not-a-Number).
Any identified outliers are replaced with NaN values, in-
dicating their removal from the dataset. Figure 3 depicts
a visualisation of the outlier detection in the case of Gaze
acceleration by one student completing the task type
"Multiple Choice" [19].

4.4. Low-pass Filter
Eye-tracking data is affected by noise, which can impact
the accuracy of results. Filtering with a low-pass filter
provides a method to reduce noise and enhance fixation
stability. In the case of eye-tracking data, a low-pass
filter attenuates high-frequency components while pre-
serving low-frequency components to identify fixations
and reduce noise. A commonly used low-pass filter is
the Butterworth filter, an IIR (infinite impulse response)
filter used in signal processing [20].

Figure 3: Outlier Detection for Gaze Acceleration

𝐻(Ω) =
1

1 +
(︁

Ω
Ω𝑐

)︁2𝑛

• 𝐻(Ω) - filter function in Laplace domain.
• Ω - frequency in the Laplace domain.
• Ω𝑐 - cut-off frequency of the filter, the attenuation

is 3 dB below the maximum level in the passband.
• 𝑛 - filter order, which determines the steepness

of the filter’s roll-off.

The Butterworth low-pass filter works on discretizing
the filter equation and applying convolution to the gaze
data. The filtering process is performed in Python using
SciPy. The coordinates of gaze points for the left and right
eyes are filtered separately to reduce unwanted rapid
eye movements and stabilize fixations. The low-pass
Butterworth filter is created by using the signal.butter
function. Metrics such as variance reduction and fixation
stability are calculated and compared with the original
unfiltered data [20], [21].

1 filter_type = ’lowpass’ # Low-pass filter
2 cutoff_freq = 2.0 # Cutoff frequency (Hz)
3 sampling_freq = 30.0 # Sampling frequency (Hz)
4 # Calculate normalized filter parameters
5 nyquist_freq = 0.5 * sampling_freq
6 normal_cutoff = cutoff_freq / nyquist_freq
7 # Create a low-pass filter
8 b, a = signal.butter(4, normal_cutoff, btype=’low’)

4.5. Smoothing
The smoothing is done with the Fourier Transformation
to manipulate signals in the frequency domain. Fourier
Transformation decomposes the original signal into si-
nusoidal components, each characterized by a specific
frequency 𝜔. It is defined by the following formula for
continuous signals:

𝐹 (𝜔) =

∫︁
𝑓(𝑡) · 𝑒−𝑖𝜔𝑡 𝑑𝑡



• 𝐹 (𝜔) - frequency-domain representation.
• 𝑓(𝑡) - time-domain signal.
• 𝜔 - angular frequency (2𝜋 times the frequency).

When applied to eye-tracking data, it converts temporal
gaze coordinates into the frequency domain by selecting
the cutoff frequency. Unwanted frequency components
are identified by their frequency characteristics and re-
duced in influence, preserving fixation-related compo-
nents. The filtered data is then transformed back to the
time domain for further analysis. This method is cho-
sen for eye-tracking data due to its ability to analyze
both periodic and non-periodic signals, making it suit-
able for data containing a mix of fixations and noise. The
𝐺𝑎𝑧𝑒_𝑋 and 𝐺𝑎𝑧𝑒_𝑌 columns are cleaned by removing
date entries and rows with NaN values. Fourier transfor-
mation is applied to both columns to smooth the data,
reducing high-frequency noise [22], [21].

1 # Smoothing using Fourier transformation
2 x = df[’Gaze X’].to_numpy()
3 y = df[’Gaze Y’].to_numpy()
4 x_smoothed = ifft(fft(x))
5 y_smoothed = ifft(fft(y))
6 df[’Gaze X Smoothed’] = x_smoothed.real
7 df[’Gaze Y Smoothed’] = y_smoothed.real

4.6. Normalization
Disparities between feature values need careful treatment
to ensure that all attribute values become appropriate.
Data normalization is crucial for various classifiers, in-
cluding neural networks, SVMs, k-NN algorithms, and
fuzzy classifiers. The primary normalization methods
for addressing this issue are Min–Max normalization or
feature scaling in [0, 1] or [a, b], Z-score normalization
or standardization or Unit length scaling. By normal-
izing eye-tracking data, different stimulus presentation
durations are accounted for, allowing gaze data to exist
within a uniform coordinate system [4].

Here, the normalization is employed by the MinMaxS-
caler from scikit-learn. Min-Max scaling was chosen for
normalizing eye-tracking data due to its simplicity, in-
terpretability, robustness to outliers, and preservation of
data distribution. The resulting normalized gaze coordi-
nates are represented as values between 0 and 1. For each
gaze coordinate (X or Y) in the dataset: X_normalized =
(X - X_min) / (X_max - X_min), where:

• X - original gaze coordinate.
• X_min - minimum value of coordinate.
• X_max - maximum value of coordinate.
• X_normalized - normalized gaze coordinate.

1 # Normalize the selected numeric columns
2 scaler = MinMaxScaler()
3 data[numeric_columns] = scaler.fit_transform(data

[numeric_columns])

5. Conclusion
In this paper, a data preparation process is designed and
described using Python in preparation for the upcoming
analysis of eye tracking data. The process consists of
several steps. Subsequently, a feature selection is per-
formed to identify the most relevant ones for analysis.
The data cleaning phase comprises data preparation to
handle any missing values and to ensure data quality.
One of the characteristics of eye-tracking data is its in-
herent noise and the presence of outliers. To address
these issues, an outlier detection and treatment step is
conducted, which helps in mitigating the effects of ex-
treme data points. Additionally, filtering and smoothing
techniques are applied, such as lowpass filtering and data
smoothing, to enhance the interpretability of the gaze
data. As eye-tracking data often contains high-frequency
fluctuations, effective filtering helps extract meaningful
insights. Normalization is an essential step to ensure that
the data is on a consistent scale for comparisons. The
resulting clean and processed dataset are then ready for
the upcoming in-depth analysis.

5.1. Future Research
The next phase of the research is to evaluate and optimize
the preprocessing steps applied to the eye-tracking data.
That means, to experiment with different sequences of
these steps to ensure that the resulting cleansed data is
primed for analysis. This iterative process will require
further investigation and refinement, with the goal of
achieving optimal data quality. In this case, it is also
aimed to generalize the results of the ordering of the
steps of a data preprocessing pipeline also suitable for
other eye-tracking data to make them ready for analy-
sis. Te first observations reveal, that the filtering and
smoothing process need to be refined, so that no data
will be lost. Furthermore, the handling of missing data is
still a detailed process, so that different strategies will be
applied to different features.

Looking ahead to the future analyses, the choice of
analytical techniques and the research questions at hand
will reveal about patterns and predictions of cheating
behaviour. Subsequently, the focus will now shift towards
the analysis phase, where K-Means and classifiers like
random forest or SVM will be employed and compared.

The study is limited by the current survey size, the data
set comprises sensor data from 20 participants with a split
for each task, in total 100. In the next time, more data
will be collected through the conduction of upcoming
experiments. Furthermore, the pipeline will be tested on
other data sets, so that an review on a generalization will
be possible.



References
[1] S. Janke, S. C. Rudert, A. Petersen, T. M. Fritz,

M. Daumiller, Cheating in the wake of COVID-19:
How dangerous is ad-hoc online testing for aca-
demic integrity?, Computers and Education Open
2 (2021) 100055. URL: https://www.sciencedirect.
com/science/article/pii/S2666557321000264. doi:10.
1016/j.caeo.2021.100055.

[2] L. Hillebrecht, Einflussfaktoren des Studienerfolgs
im Vollzeit-Studium, in: Studienerfolg von berufs-
begleitend Studierenden, Springer Fachmedien
Wiesbaden, Wiesbaden, 2019, pp. 77–124. URL: http:
//link.springer.com/10.1007/978-3-658-26164-1_3.
doi:10.1007/978-3-658-26164-1_3.

[3] Jennifer Landes, Influence factors on
academic integrity revealed by machine
learning methods (2023). URL: https:
//gvdb23.informatik.uni-stuttgart.de/wp-content/
uploads/2023/06/GvDB2023_Landes.pdf.

[4] S.-A. N. Alexandropoulos, S. B. Kotsiantis,
M. N. Vrahatis, Data preprocessing in pre-
dictive data mining, The Knowledge En-
gineering Review 34 (2019) e1. URL: https:
//www.cambridge.org/core/product/identifier/
S026988891800036X/type/journal_article.
doi:10.1017/S026988891800036X.

[5] Huang, Lin, Chen, Fan, Review of outlier detection,
Application Research of Computers 8 (2006).

[6] G. Ferraris, F. Manenti, Outlier detection in large
data sets, Computers & Chemical Engineering
35 (2011) 388–390. doi:10.1016/j.compchemeng.
2010.11.004.

[7] F. Angiulli, C. Pizzuti, Outlier Mining in Large
High-Dimensional Data Sets, Knowledge and Data
Engineering, IEEE Transactions on 17 (2005) 203–
215. doi:10.1109/TKDE.2005.31.

[8] A. Ghoting, S. Parthasarathy, M. Otey, Fast
mining of distance-based outliers in high-
dimensional datasets, Data Mining and
Knowledge Discovery 16 (2008) 349–364.
doi:10.1007/s10618-008-0093-2.

[9] S. Zhang, Z. Jin, X. Zhu, Missing data imputation by
utilizing information within incomplete instances,
Journal of Systems and Software 84 (2011) 452–459.
URL: https://linkinghub.elsevier.com/retrieve/pii/
S0164121210003092. doi:10.1016/j.jss.2010.
11.887.

[10] J. Luengo, S. García, F. Herrera, On the
choice of the best imputation methods for miss-
ing values considering three groups of classi-
fication methods, Knowledge and Informa-
tion Systems 32 (2012) 77–108. URL: https://
doi.org/10.1007/s10115-011-0424-2. doi:10.1007/
s10115-011-0424-2.

[11] F. Lobato, C. Sales, I. Araujo, V. Tadaiesky,
L. Dias, L. Ramos, A. Santana, Multi-objective
genetic algorithm for missing data imputa-
tion, Pattern Recognition Letters 68 (2015)
126–131. URL: https://www.sciencedirect.
com/science/article/pii/S0167865515002883.
doi:10.1016/j.patrec.2015.08.023.

[12] J. Dougherty, R. Kohavi, M. Sahami, Super-
vised and Unsupervised Discretization of Con-
tinuous Features, in: A. Prieditis, S. Russell
(Eds.), Machine Learning Proceedings 1995, Mor-
gan Kaufmann, San Francisco (CA), 1995, pp. 194–
202. URL: https://www.sciencedirect.com/science/
article/pii/B9781558603776500323. doi:10.1016/
B978-1-55860-377-6.50032-3.

[13] J. Z. Lim, J. Mountstephens, J. Teo, Eye-
Tracking Feature Extraction for Biometric Machine
Learning, Frontiers in Neurorobotics 15 (2022).
URL: https://www.frontiersin.org/articles/10.3389/
fnbot.2021.796895.

[14] U. Ghose, A. A. Srinivasan, W. P. Boyce, H. Xu,
E. S. Chng, PyTrack: An end-to-end anal-
ysis toolkit for eye tracking, Behavior re-
search methods 52 (2020) 2588–2603. doi:10.3758/
s13428-020-01392-6.

[15] J. Hua, Z. Xiong, J. Lowey, E. Suh, E. R. Dougherty,
Optimal number of features as a function of sam-
ple size for various classification rules, Bioin-
formatics (Oxford, England) 21 (2005) 1509–1515.
doi:10.1093/bioinformatics/bti171.

[16] A. Famili, W.-M. Shen, R. Weber, E. Simoudis, Data
Preprocessing and Intelligent Data Analysis, Intel-
ligent Data Analysis 1 (1997) 3–23. doi:10.3233/
IDA-1997-1102.

[17] J. Brownlee, Data Preparation for Machine Learn-
ing: Data Cleaning, Feature Selection, and Data
Transforms in Python, Machine Learning Mastery,
2020.

[18] S. Chen, W. Wang, H. van Zuylen, A com-
parison of outlier detection algorithms for ITS
data, Expert Systems with Applications 37
(2010) 1169–1178. URL: https://www.sciencedirect.
com/science/article/pii/S0957417409005843. doi:10.
1016/j.eswa.2009.06.008.

[19] R. Domingues, M. Filippone, P. Michiardi,
J. Zouaoui, A comparative evaluation of
outlier detection algorithms: Experiments
and analyses, Pattern Recognition 74 (2018)
406–421. URL: https://www.sciencedirect.
com/science/article/pii/S0031320317303916.
doi:10.1016/j.patcog.2017.09.037.

[20] S. Butterworth, others, On the theory of filter am-
plifiers, Wireless Engineer 7 (1930) 536–541.

[21] J. G. Proakis, D. G. Manolakis, Digital Signal Pro-
cessing (3rd Ed.): Principles, Algorithms, and Ap-

https://www.sciencedirect.com/science/article/pii/S2666557321000264
https://www.sciencedirect.com/science/article/pii/S2666557321000264
http://dx.doi.org/10.1016/j.caeo.2021.100055
http://dx.doi.org/10.1016/j.caeo.2021.100055
http://link.springer.com/10.1007/978-3-658-26164-1_3
http://link.springer.com/10.1007/978-3-658-26164-1_3
http://dx.doi.org/10.1007/978-3-658-26164-1_3
https://gvdb23.informatik.uni-stuttgart.de/wp-content/uploads/2023/06/GvDB2023_Landes.pdf
https://gvdb23.informatik.uni-stuttgart.de/wp-content/uploads/2023/06/GvDB2023_Landes.pdf
https://gvdb23.informatik.uni-stuttgart.de/wp-content/uploads/2023/06/GvDB2023_Landes.pdf
https://www.cambridge.org/core/product/identifier/S026988891800036X/type/journal_article
https://www.cambridge.org/core/product/identifier/S026988891800036X/type/journal_article
https://www.cambridge.org/core/product/identifier/S026988891800036X/type/journal_article
http://dx.doi.org/10.1017/S026988891800036X
http://dx.doi.org/10.1016/j.compchemeng.2010.11.004
http://dx.doi.org/10.1016/j.compchemeng.2010.11.004
http://dx.doi.org/10.1109/TKDE.2005.31
http://dx.doi.org/10.1007/s10618-008-0093-2
https://linkinghub.elsevier.com/retrieve/pii/S0164121210003092
https://linkinghub.elsevier.com/retrieve/pii/S0164121210003092
http://dx.doi.org/10.1016/j.jss.2010.11.887
http://dx.doi.org/10.1016/j.jss.2010.11.887
https://doi.org/10.1007/s10115-011-0424-2
https://doi.org/10.1007/s10115-011-0424-2
http://dx.doi.org/10.1007/s10115-011-0424-2
http://dx.doi.org/10.1007/s10115-011-0424-2
https://www.sciencedirect.com/science/article/pii/S0167865515002883
https://www.sciencedirect.com/science/article/pii/S0167865515002883
http://dx.doi.org/10.1016/j.patrec.2015.08.023
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
http://dx.doi.org/10.1016/B978-1-55860-377-6.50032-3
http://dx.doi.org/10.1016/B978-1-55860-377-6.50032-3
https://www.frontiersin.org/articles/10.3389/fnbot.2021.796895
https://www.frontiersin.org/articles/10.3389/fnbot.2021.796895
http://dx.doi.org/10.3758/s13428-020-01392-6
http://dx.doi.org/10.3758/s13428-020-01392-6
http://dx.doi.org/10.1093/bioinformatics/bti171
http://dx.doi.org/10.3233/IDA-1997-1102
http://dx.doi.org/10.3233/IDA-1997-1102
https://www.sciencedirect.com/science/article/pii/S0957417409005843
https://www.sciencedirect.com/science/article/pii/S0957417409005843
http://dx.doi.org/10.1016/j.eswa.2009.06.008
http://dx.doi.org/10.1016/j.eswa.2009.06.008
https://www.sciencedirect.com/science/article/pii/S0031320317303916
https://www.sciencedirect.com/science/article/pii/S0031320317303916
http://dx.doi.org/10.1016/j.patcog.2017.09.037


plications, Prentice-Hall, Inc, USA, 1996.
[22] J. Makhoul, A fast cosine transform in one and

two dimensions, IEEE Transactions on Acous-
tics, Speech, and Signal Processing 28 (1980) 27–34.
URL: http://ieeexplore.ieee.org/document/1163351/.
doi:10.1109/TASSP.1980.1163351.

http://ieeexplore.ieee.org/document/1163351/
http://dx.doi.org/10.1109/TASSP.1980.1163351

	1 Introduction
	1.1 Prior Work and Motivation

	2 Related Work
	3 Experiment and Dataset
	3.1 Eye-Tracking Technology
	3.2 Experimental Design
	3.3 Dataset and Feature Selection

	4 Preprocessing Pipeline
	4.1 Data Cleaning
	4.2 Missing Values
	4.3 Outlier
	4.4 Low-pass Filter
	4.5 Smoothing
	4.6 Normalization

	5 Conclusion
	5.1 Future Research


