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Abstract
Non-volatile memory (NVM) represents a new class in the traditional storage hierarchy. The technologies in this class share
characteristics of both primary and secondary storage; they provide latency that approaches that of DRAM, albeit moderately
higher1 , yet significantly lower than that of secondary storage devices, are addressable from cache lines, and, most importantly,
offer persistence. NVM is often referred to as a disruptive memory technology because it has invalidated the traditional
programming paradigms used in applications such as database management systems (DBMS) and file systems (FS). Substantial
research have focused on integrating NVM into diverse DBMS and FS, specifically through optimizing data structures such
as B-trees and LSM-trees. Despite these advancements, considerable opportunities remain to further exploit NVM to boost
application performance, particularly by exploring variations of these data structures. In this work, we present a proposal to
optimize the B𝜖-tree for use with NVM. The proposed modifications aim to capitalize on the unique characteristics of NVM,
enhancing the tree’s efficiency in both read and write operations. Additionally, the suggested changes are designed to reduce
computational overhead, particularly by minimizing the need for tree rebalancing operations. The development of the tree is
in progress, and it is assumed that completion will take some time; therefore, this paper is presented as preliminary work.
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1. Introduction
One of the key challenges that applications used for data
management and analysis face is keeping the data as
close as possible to the CPU. This issue is exacerbated
by the unbounded growth of data. The volume of data
doubles approximately every two years [5]. This estimate
was made before the onset of the recent pandemic, which
has further fueled its growth as people increasingly relied
on digital services for their day-to-day chores.

The extensibility of DRAM has resolved this issue to
some extent, resulting in a new type of database sys-
tem called the main memory database system [6, 7, 8],
where all data resides in DRAM. Nevertheless, given the
exponential growth of data, DRAM will never be suffi-
cient to accommodate all the data, and more importantly,
this solution is not viable for many businesses due to its
cost impact. Moreover, its further expansion has become
another challenging task. Consequently, applications de-
vise optimized designs that logically arrange the memory
and storage in the traditional storage landscape at differ-
ent levels and incorporate different migration policies to
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move the data across the storage devices depending on
their usage and access patterns. For example, bcache and
dm-cache in the Linux kernel use solid-state drives as a
cache for hard disk drives.

Non-volatile memory, or persistent memory, is a com-
paratively new storage class in the storage hierarchy that
is considered a solution to the above-mentioned prob-
lem. It shares characteristics of primary and secondary
storage. The modules in this class are byte-addressable,
provide access latency close to DRAM1, and offer much
higher capacity than DRAM. Furthermore, they are capa-
ble of storing data persistently. NVM has not only added
further heterogeneity to the storage landscape but has
also invalidated the traditional programming paradigm
because, contrary to the traditional model where data
structures are generally categorized into memory and
storage resident data structures [9], NVM bound data
structures cover both aspects and linked intricacies [10].

Considerable research have been conducted to exploit
the characteristics of NVM, and in particular to the de-
sign proposal presented in this paper, several designs
for the index structures [11, 12, 13, 14, 15, 16] typical to
key-value storage engines are presented. However, one
key aspect not addressed in the cited literature (discussed
briefly in Section 3) is the disregard for the heterogene-
ity of the modern storage landscape. They all present
NVM-DRAM optimized B-trees and do not consider block

1There are various types of non-volatile memory, including Ferroelec-
tric RAM [1], Magnetoresistive RAM [2], Phase Change Memory [3],
and Resistive RAM [4], each offering distinct latencies.
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devices, for instance. Moreover, to the best of our knowl-
edge, no research has optimized the B𝜖-tree for NVM
despite the fact that it offers similar scan operations as
other B-tree variants yet its inserts and deletes are an
order of magnitude faster [17]. Therefore, in this work,
several changes to the B𝜖-tree are proposed that we ar-
gue will significantly benefit the index structure. These
changes primarily utilize NVM to improve key tree work-
flows, including indexing and buffering, offering several
notable benefits:

• The tree would become NVM-aware, allowing
direct reads/writes to the nodes on NVM and fur-
ther optimizing both read and write operations.

• In many instances, the design would reduce data
fragmentation, I/O, and other computation costs.

• Last but not least, the tree would be able to per-
form low-latency point queries.

The remainder of this paper is structured as follows.
Section 2 provides background on the B-tree and its vari-
ants, and it also briefly describes non-volatile memory.
Section 3 details some relevant work. The design pro-
posal is discussed in Sections 4 and 5, which are then
followed by some important use cases in Section 6. Sec-
tion 7 details a preliminary experiment supporting the
design, and Section 8 concludes with a summary.

2. Background
In this section, we discuss the B-tree and its commonly
used variants, followed by a brief discussion on NVM
and the Intel® Optane™ DC Persistent Memory.

2.1. B-tree family
B-trees are tree-based, one-dimensional, multi-level, and
widely used index structures for secondary storage.
They were first introduced by Bayer and McCreight in
1972 [18], and since then, many variants of B-trees have
been introduced. B-trees are primarily dominant across
different file systems [19, 20] and database management
systems [21, 22], and no other index structure has been
able to prove the same flexibility and generality [23].

A B-tree is a balanced m-ary search tree. It can also
be considered as a generalization of a balanced search
tree. It contains two types of nodes, internal and leaf
nodes, with all the leaf nodes at the same level as the
tree grows (logarithmically) upwards. Internal nodes,
including the root node, contain an ordered sequence of
keys and values, and they also contain pointers to the
child nodes. Whereas the leaf nodes only contain the
pair of keys and values in a sequenced order. B+-tree is
a widely known variant that was introduced to enhance
the branching factor of the internal nodes, and contrary

to the rudimental version, it does not store the values in
the internal nodes, and the values are instead stored in
the leaf nodes only [24].

B-trees perform read, insert, delete, and range query
operations in logarithmic time. Insertion is efficient when
made to a non-full node, or else it can trigger the node-
split operation. Splitting propagates upwards, and in the
worst case, it can result in an increase in the height of the
tree. The delete operation can trigger a merge operation.
B-trees have an optimal query performance, but their
write operation is not optimal [25]. Therefore, in order
to mitigate this limitation and make it write-optimized,
buffers are added to the internal nodes in B𝜖-tree [26].

B𝜖-trees are basically B+-trees with buffers in inter-
nal nodes that store messages for the child nodes. The
key difference between a B+-tree and the original B-tree
is that in a B+-tree, all data is stored in the leaves and
the internal nodes only store keys for fast searching,
whereas in a B-tree, both keys and data can be stored at
any level [21]. Additionally, B+-trees have leaves that are
linked, facilitating efficient range queries, unlike B-trees
where leaf nodes are not inherently linked [21]. On the
other hand, the primary difference between a B+-tree and
a B𝜖-tree lies in how they handle updates and buffering.
A B𝜖-tree extends the B+-tree by introducing the concept
of a "message" which is used to buffer insertions, dele-
tions, and updates. These messages are stored in separate
buffers at each node of the tree. This allows B𝜖-trees to
delay actual updates to the structure, potentially reducing
disk I/O by batching operations, and efficiently merging
these updates during searches or structural changes. This
buffering mechanism is particularly advantageous for en-
vironments with high write loads, enhancing throughput
and decreasing latency compared to B+-trees, where up-
dates directly modify nodes. Moreover, a message can be
an insert, delete, and update operation, which is normally
encoded in a single message called the upsert message.
They propagate gradually from the root node to the tar-
get leaf node, and they are flushed down to the child
node only when the buffer in the internal node is full.
The allocation of space for data and buffer is controlled
by a tuning parameter called epsilon (𝜖). The tree is a
B+-tree when it is set to ’0’, and the tree behaves like a
buffered repository tree [17, 27] when the value is set to
’1’. However, most configurations use 𝜖=1/2, and with
this value, B𝜖-trees provide asymptotically better insert
performance with the same asymptotic point query per-
formance as B-trees [17].

2.2. Non-Volatile Memory
Non-volatile memory is an emerging storage class that
effectively bridges the gap between main memory and
secondary storage. This class offers significantly higher
capacity than DRAM while maintaining reasonably com-



parable latency. Additionally, these technologies are non-
volatile and directly accessible from cache lines. Exam-
ples include Phase Change Memory [28], Spin Transfer
Torque RAM (STT-RAM) [29], Carbon NanoTube RAM
(NRAM) [30], and Memristors [31].

Currently, Intel® is the only producer of commercially
available persistent memory modules [32], developed
through an advanced NVM technology known as 3D
XPoint, often termed "cross-point." Developed in collab-
oration with Micron, 3D XPoint is thought to function
similarly to PCM [33, 34, 35], recording data by changing
the resistance of its material. However, further produc-
tion of this technology has been discontinued [36]. These
modules, designed for use with Intel® Xeon Scalable Pro-
cessors, come in various generations, offering differing
performance and capacity levels. They are available in
the DIMM form factor, compatible with standard DDR4
sockets, and can coexist with conventional DDR4 DRAM
DIMMs on the same memory channel. The modules fea-
ture an internal granularity of 256 bytes and can operate
in three modes: memory, app direct, and dual modes [32].

3. Related Work
As already discussed, NVM is byte-addressable, and its
capabilities cannot be leveraged using the traditional pro-
gramming model. Therefore, numerous research studies
have been conducted on optimizing different data struc-
tures to leverage NVM. CDDS B-Tree [11] is one of the
earliest works that presents a single-level data store using
a consistent and durable B-tree. It uses versioning instead
of logging to achieve consistency and durability, and it
uses copy-on-write to ensure the consistency of update
operations. It also leaves the entries in the nodes unsorted
to overcome the write amplification that is detrimental to
the performance of NVM. In [12], a write-atomic B-tree
(wBTree) is presented. It further reduces the overheads
in CDDS B-Tree by using an indirect slot array/bitmap
to prevent index items from moving during insertions
and deletions. It ensures consistency using redo-logging
or atomic operations. Moreover, in [13], a workload-
adaptive and cache-optimized B+-tree, NVTree, is pre-
sented where the leaf nodes are considered as the critical
data and the consistency is only enforced on them. The in-
ternal nodes are built using the leaf nodes and maintained
in a cache-optimized structure in the main memory, and
also, the sizes of the nodes adapt over time to improve
the performance of the tree.

Furthermore, in [14], FPTree, again an optimized B+-
tree is presented that follows NVTree, however, it in-
corporates a technique called "fingerprinting" to over-
come search overhead for nodes in NVM. In [15], another
DRAM-NVM B+-tree is presented that segregates the data
into cold and hot categories according to their access fre-

quency. It maintains the data in different data structures
across DRAM and NVM and ensures the consistency of
data in DRAM using logging. LB-Tree [16] is another
recently proposed optimized indexing solution. It also
uses a tailored node layout for the nodes in NVM, and it
uses three techniques to boost performance by moving
entries within nodes and performing logless node splits
to reduce write/update overheads.

Lastly, to our knowledge, the only storage engine that
uses B𝜖-tree and incorporates NVM in its storage stack
is Haura2 [37, 38]. It is a write-optimized key-value and
object storage stack and follows the layered approach
used in ZFS [39]. Its ObjectStore module facilitates basic
operations such as create, read, write, and query, using a
key-value system. It uniquely handles large objects by
breaking them into chunks with distinct identifiers. The
Database module oversees databases composed of B𝜖-
trees, managing data and metadata separately. The Tree
module implements the B𝜖-tree, while the DataManage-
ment module maintains data integrity and interacts with
other modules for functionalities like caching and com-
pression. The StoragePool module queues and dispatches
I/O operations, and the Vdev module offers various stor-
age device interfaces, including single, mirror, and parity
options for data redundancy. Although it uses DAX to
access NVM, it does not fully leverage NVM capabilities
due to the lack of support for direct reads and in-place
updates. Nodes can be distributed among various storage
devices – NVM, HDD, and SSD – according to user pref-
erences. Nevertheless, the system treats nodes on NVM
identically to those on other devices, replicating them to
DRAM for processing during operations.

4. Design Goals
One key aspect not addressed in the literature mentioned
above is the neglect of the heterogeneity of the modern
storage landscape, except in [38]. They present NVM-
DRAM optimized B-trees but do not consider block stor-
age, such as solid-state drives. Moreover, while they
optimize B+-trees for NVM, the only implementation we
found that uses B𝜖-trees with NVM is [38].

Furthermore, the optimizations presented for B+-trees
cannot be fully applied to B𝜖-trees due to the differences
discussed in Section 2.1. Additionally, the design in [38]
does not fully exploit NVM’s characteristics. Therefore,
by utilizing the optimizations discussed in the literature,
we aim to present an NVM-optimized B𝜖-tree that covers
the following aspects:

• The design should consider the heterogeneity of
the modern storage landscape and leverage the
characteristics of the storage stack.

2https://github.com/julea-io/haura
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• It should enable direct/granular reads and in-
place updates on NVM.

• There should be a single tree, with nodes that can
be stored or migrated to any storage media in the
stack.

5. Design Proposal
The core functionalities of the B𝜖-tree include managing
the index structure in the root and internal nodes, as
well as maintaining the buffers to mitigate the cost of
the writes and updates. The suggested design primarily
targets enhancing these functionalities by incorporat-
ing NVM and adding other enhancements to address the
goals mentioned in the previous section. A conceptual
diagram of a well-grown tree spread across different stor-
age media is presented in Figure 1.

SSD

DRAM

SSD

NVM

HDD

Read Buffer

Shared Buffer 

Internal node w/ BufferLeaf nodeInternal node w/o Buffer

Auxilary Hash-map

/        Hot nodes (working copy in DRAM)

Figure 1: A schematic representation of B𝜖-tree optimized to
leverage NVM.

In the figure, the tree is distributed across DRAM,
NVM, SSD, and HDD. The internal nodes are persisted
on NVM and SSD, and the leaf nodes are stored on SSD
and HDD3. The nodes are depicted using various ob-
jects and colors to highlight differences in their layouts
and structures. Nodes with a red border (in NVM and
SSD) represent hot nodes whose working copies exist in
DRAM (highlighted with a red box). When nodes are
moved from NVM to DRAM, they are transformed into
typical internal nodes with buffers. This process is dis-
cussed in Section 5.1. Next, nodes filled with white color
and a gray border (in NVM) are also frequently accessed
nodes, but they do not meet the criteria, for example [40]4,
to be moved to DRAM. Unlike typical B𝜖-tree internal

3Node placement is determined by access frequency, with node
layout (data structure) varying across different devices.

4The rule outlined in [40] serves as an illustrative example, yet
it requires adaptation to more realistically reflect contemporary
workloads and application environments.

nodes, these nodes do not contain buffers; instead, their
messages are maintained in a centralized buffer in NVM
that is shared among all nodes in NVM. This centralized
buffer and the auxiliary hash table are discussed in Sec-
tion 5.2. The nodes split into white and gray parts in
SSD represent typical B𝜖-tree internal nodes. The white
part contains keys and pivots, and the gray part holds
updates or messages. Furthermore, the nodes filled with
gray color (in SSD and HDD) are typical leaf nodes. How-
ever, these leaf nodes might include a small buffer to
mitigate minor updates, as detailed in Section 6.3. Lastly,
the design includes a buffer (hash table) in DRAM to store
recent reads, benefiting read-recent workloads.

The following sections describe the components of the
diagram and the areas where NVM can be leveraged to
improve different workflows of the tree in detail.

5.1. Indices in NVM
In the suggested design, the internal nodes are prefer-
ably5 stored on NVM. As previously discussed, the in-
ternal nodes of a B𝜖-tree typically contain keys, pivots,
and messages. In contrast, the proposed design stipulates
that internal nodes in NVM contain only keys and pivots,
while messages are maintained in a shared centralized
buffer in NVM, as discussed in Section 5.2. The internal
nodes on NVM are directly accessed for lookups and the
centralized buffer for messages. This segregation offers
the following benefits:

• Contrary to [38], which first copies the nodes
to DRAM from storage, including NVM, before
performing any processing on the nodes, direct
access in the suggested approach – on the nodes
that are located on NVM – would reduce transfer
costs and related computations.

• [38] experiences high fragmentation as it moves
nodes to and from memory for processing, and
employs copy-on-write technique to ensure the
consistency. In the suggested design, storing the
messages in a different data structure (discussed
in Section 5.2) reduces fragmentation. This is
because only the specific parts that need changes
would be updated, rather than the entire data set,
making it more efficient for small changes.

• Read queries, especially point queries, will be
faster because they will only access the needed
parts of the data on NVM, not the whole data
block.

Lastly, the design assumes the frequently accessed
nodes (or hot nodes) would be in the main memory. How-
ever, as the internal nodes on NVM follow a different

5A cold or rarely accessed node can be moved to slow storage.



structure and its data is stored across different data struc-
tures, therefore, copying an internal node between NVM
and DRAM requires transforming the nodes into the re-
spective layouts. For example, moving a node from NVM
to DRAM would require copying the keys and values
from the node, and the respective messages from the
shared buffer.

5.2. Shared Buffer for Internal Nodes in
NVM

In [38], and generally in the B𝜖-tree, updates involve first
fetching the relevant nodes into main memory and dese-
rializing them. Updates are then applied, and the nodes
are serialized and written back to the persistent media.
This process incurs significant I/O and computational
costs, even for minor updates.

In the proposed design, these costs are reduced by
using a centralized buffer, which is an NVM-optimized
hash table [41, 42]. As mentioned previously, the inter-
nal nodes on NVM share this centralized buffer to store
updates/messages. This buffer, a hash table, stores keys
and messages. Updates to a key in an internal node on
NVM are made directly in this hash table, where it retains
the most recent messages and integrates new messages
with existing ones, if necessary. Additionally, a second
hash table is maintained to link the messages with their
respective internal nodes on NVM, particularly useful
during flush operations to identify messages associated
with the donor node.

Consequently, messages are added to both the buffer
and the auxiliary hash table without incurring additional
I/O or computational costs. Furthermore, during a flush
operation among the nodes in NVM, only the pointers in
the auxiliary hash table need updating, significantly re-
ducing I/O and computational expenses. The centralized
buffer offers the following benefits:

• Updates to the nodes on NVM do not require mov-
ing the entire node to DRAM; instead, they can
be made directly onto the shared buffer. This re-
duces I/O and computations such as serialization
and deserialization.

• This would help reduce the fragmentation men-
tioned in the previous section.

• The flush operation within the nodes on NVM
only requires updating the pointers in the aux-
iliary hash table, which again saves on I/O and
computation.

The suggested change makes the tree more write-
optimized by saving I/O and computation costs, thus
allowing more time for batch updates to nodes on slow
storage. However, this might negatively affect range
queries since messages are scattered across the buffer

and must be accessed individually for each key—unlike
typical settings where messages benefit from spatial local-
ity. Nevertheless, these settings can support write-heavy
workloads, and the tree can be gradually adapted for read-
heavy workloads by storing linked messages in a separate
node (e.g., buffer node) to achieve spatial locality.

5.3. Read Buffer for Values in DRAM
This improvement is induced by the shared buffer in
NVM. A small centralized buffer in DRAM is maintained
to store recent reads. This data structure would have
a significant impact on the frequently accessed values.
The recently queried values are temporarily stored in
this buffer, and an eviction policy is used to replace them
with the recent ones.

5.4. In-place Writes
The proposition mentioned in this section is not partic-
ularly related to leveraging NVM; it could be applied to
nodes stored on NVM and other block devices.

As already mentioned in [38], and typically in the B𝜖-
tree, updates on nodes are performed in DRAM, incurring
significant I/O and computation costs. This workflow can
be simplified, and the costs can be avoided in some cases,
especially for small updates.

The proposed change enables direct in-place updates
in the buffer segment of a B𝜖-tree node on block storage
by writing update messages sequentially to available off-
sets until the buffer, which is half of the standard 4 MB
node size, is full. This method avoids the need to transfer
the entire node into DRAM for read-modify-write cycles
since updates are performed in granular block sizes of 4
KB. The updates in the buffer area are not normalized,
meaning there could be multiple update messages for a
single key. Normalization of messages occurs in DRAM
when reading the buffer’s contents, streamlining the pro-
cess and reducing I/O and computational costs associ-
ated with data serialization and deserialization. When
the buffer reaches capacity, the node is fetched into main
memory for updates and written back to storage. A con-
ceptual diagram is shown in Figure 2.

Keys/Pivots Buffer (Messages)

Batch 1 Batch 2 Batch 3 Free Buffer

Time t

Time t+1

Time t+2

Time t+3

Figure 2: A conceptual diagram to illustrate the process of
in-place update.



The image illustrates the state of a node at different
timestamps. At time ’t’, the buffer contains keys and
pivots, and its buffer part does not contain any messages
or updates. At time ’t+1’, a batch of messages in cyan is
moved from the parent node and written to the buffer.
Next, at time ’t+2’, a batch of messages in brown is again
flushed down from the parent node and written to the
next available location in the buffer. Finally, at time ’t+3’,
the batch of messages in blue is moved to the node.

On the other hand, in the typical design, each node
undergoes three read-modify-write cycles for updates,
which can lead to increased computation costs and frag-
mentation, given that the node is retrieved from persis-
tent media or storage for each update.

6. Use cases
In this section, some important workflows, along with
the impacts of the proposed design, are mentioned.

6.1. Tree building
As previously discussed, in the typical programming
model, the B𝜖-tree grows in DRAM using memory-
resident data structures and is persisted using storage-
resident data structures.

The suggested design begins with the same workflow.
However, the flow changes when the nodes are flushed to
the persistent media. In this design, the internal nodes are
by default flushed onto NVM where keys and pivots are
stored in an optimized node layout, and the messages are
moved to the centralized buffer as discussed in Section 5.2.
Later, when the tree needs to access the nodes on NVM,
their data is directly accessed from the respective data
structures, and only the nodes on other block storages are
copied into DRAM. That said, frequently accessed nodes
on NVM can be moved to DRAM to minimize latency.

6.2. Read and update on a grown tree
This use case discusses a scenario where the hot nodes
are in DRAM, the internal nodes are on NVM, and the leaf
nodes, or the least accessed nodes, are on slow storage.

The scan operations on the nodes in DRAM follow
the typical workflow. However, the flow changes when
accessing nodes on NVM. First, they can be queried with-
out being fetched into DRAM. Second, the centralized
buffer can be queried simultaneously. Only the nodes on
slow storage need to be moved into DRAM.

Moreover, the update operation on nodes on NVM
does not require moving the nodes into DRAM. Contrary
to [38], where all involved nodes must be in DRAM, in
the suggested design, when the child node is on NVM,
upon flush from the parent node, the respective messages

of the node are pushed into the centralized buffer in NVM.
This change in workflow allows the algorithm more time
and space to perform batch updates to subsequent nodes
and eventually to the leaf nodes. Furthermore, if the
descent of the messages only involves the internal nodes
on NVM, it involves merely updating the pointers in the
auxiliary hash table in NVM.

6.3. Highly random workload
This section discusses a scenario involving a highly ran-
dom workload. Consider a dense tree distributed across
various storage devices, with internal nodes on NVM and
leaf nodes on SSD and HDD. Here, small updates accu-
mulate in a central buffer in NVM. Furthermore, most
leaf nodes receive a single or few updates from their pre-
ceding internal node in NVM, necessitating occasional
flushing of updates to the leaf nodes. The primary chal-
lenge with this flushing process is the significant write
amplification it causes. For instance, flushing 1000 small
updates from NVM to 1000 leaf nodes on SSD or HDD
would result in 1000 writes of 4 MB each (the default node
size). Additionally, this process also requires reading leaf
nodes into DRAM first, which incurs additional cost.

There are two potential solutions to mitigate this is-
sue. First, a small buffer could be integrated into each
leaf node (as discussed in Section 5.4), allowing small
updates to be directly written to this buffer area without
needing to read the entire node into DRAM, deserialize,
serialize, and then write it back to storage. This approach
would still involve 1000 writes but would reduce the
data size of each write, saving on read and computation
costs. Second, instead of flushing small updates directly
to leaf nodes, messages related to the internal node in
NVM could be serialized and stored as a typical node
(e.g., buffer node). This strategy would result in a single
write. However, when accessing the internal node later,
its corresponding buffer node would need to be retrieved
from storage.

7. Preliminary Experiments
In this section, we present a small (single-threaded) exper-
iment6, in favor of the proposed design, particularly the
granular reads on NVM. The experiments are performed
in a sandbox where NVM is accessed using different ap-
proaches and access patterns. In it, multiple Objects
are used to imitate the internal node structure (partially)
where all the Objects contain 1024 Strings. However,
the sizes of the Strings vary in each Object, from 4 KB
to 2 bytes, which is done to cover primitive data types
like ints.

6https://github.com/sajadkarim/libmem_sandbox.git (dimes_23.cpp)

https://github.com/sajadkarim/libmem_sandbox.git


The experiments are conducted on a dual-socket server
featuring Intel® Xeon® Gold 5220R CPUs. Each CPU
has 24 physical cores, with each socket being equipped
with 4 PMem7 and 6 DRAM DIMMs. The experiments
are run on NUMA node ’0’ to minimize memory access
overheads, and the machine runs Ubuntu 20.04.3 LTS
(5.4.0-126-generic). The PMem module is accessed in app
direct mode using fsdax8.

The results are illustrated in Figure 3. The experiment
involves writing 1024 objects to NVM and reading them
back in different settings, either randomly or sequentially,
for instance. This process is repeated for each Object
type, as indicated on the horizontal axis, using their re-
spective String sizes. The right vertical axis shows the
data moved to DRAM from NVM, and the left one shows
the time taken in milliseconds.

The direct approach reads (pmem_memcpy) the strings
in the objects one by one from NVM. Conversely, the in-
direct-II approach first copies (pmem_memcpy) the entire
object into DRAM, then reads (memcpy) the strings in the
objects one by one. It imitates the workflow in [38]. Next,
the in-direct-I approach simply copies (pmem_memcpy)
the entire object into DRAM without performing any
other operation. Lastly, the DRAM case shows the time
taken by the individual strings to be copied to a differ-
ent location in DRAM in the aforementioned in-direct-II
approach.

The case that took the least time, unsurprisingly, in-
volves copying data within DRAM. The next expected
pattern is the in-direct-I case, which consumes the same
amount of time throughout the experiments as it copies
the same volume of data each time from NVM. The in-
direct-II case takes longer as it involves copying the data
to DRAM, then copying the strings one by one to a dif-
ferent location in DRAM. The case that is of our interest
is the direct case. It performs read operations in small
blocks (the size of the String in the respective Object
type), yet it takes less time than the in-direct cases, ex-
cept for 4096. However, the cost to serialize/deserialize
the node is not considered in the experiment. Therefore,
this case supports the design decision of keeping the
data in optimized data structures in NVM and perform-
ing direct/small reads instead of copying entire nodes to
DRAM [38].

8. Conclusion
In this work, a design proposal for an NVM-optimized
B𝜖-tree is presented. While various B-tree variants have
been developed to utilize the characteristics of NVM,
none have specifically optimized a B𝜖-tree for this pur-

7Intel® Optane™ DC Persistent Memory modules are configured in
interleaved settings, and the block size is 4 KB.

8https://docs.pmem.io/ndctl-user-guide/managing-namespaces
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Figure 3: Accessing NVM in different settings and access
patterns, and imitating the node reading behavior in [38].

pose. Additionally, the suggested designs do not account
for the heterogeneity of the modern storage landscape,
and those that do, fail to fully leverage NVM’s potential.
The observed gap likely results from uncertainty about
future NVM product availability, particularly following
Intel’s discontinuation of its Optane Persistent Memory
modules.

The insights from this study will deepen our under-
standing of storage solutions that balance the speed of
DRAM with the capacity of NVMe SSDs. Particularly
relevant is Compute Express Link (CXL), a leading in-
terconnect technology that enables rapid data transfers
and manages large, variable-speed memory pools. CXL’s
coherent memory protocol, which maintains data con-
sistency across local memory caches, positions it as a
transformative technology for future enterprise data stor-
age [43]. Therefore, the findings from this work remain
relevant as they contribute to the development of storage
heterogeneity-aware index structures like B-trees, which
are expected to benefit significantly from CXL’s capabil-
ities. The suggested design proposal primarily targets
the incorporation of NVM to enhance the indexing and
buffering of the tree, and it significantly impacts various
workflows of the tree. Nevertheless, the actual impact
can only be gauged after the tree is developed9. Lastly,
this paper is presented as preliminary work, and we con-
sider it a first step towards a heterogeneity-aware storage
engine.

9The tree is currently in the development phase, and the status can
be found at: https://github.com/sajadKarim/haldendb/

https://docs.pmem.io/ndctl-user-guide/managing-namespaces
https://github.com/sajadKarim/haldendb/
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