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Abstract
In the field of query optimization, a tremendous amount of research has been delivered into fixing and adjusting existing
optimizer solutions. Moreover, recent work has also shown that substantial performance gain can be achieved by setting
query optimizer instructions appropriately. However, the sets of beneficial instructions may vary greatly for each query.
In this contribution, we provide a state-of-the-art review on optimizer hinting and present some experimental evaluations
showing hints should not be neglected during evaluation based on preliminary assumptions.
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1. Introduction
In the vast field of database management system (DBMS)
design, query optimization has proven to be one of the
backbone components of query performance. Modern
query optimizers consist of the following three compo-
nents [1, 2, 3]: (i) plan enumerator, (ii) cost model, and
(iii) cardinality estimator. These components are hierar-
chically dependent. This means that the plan enumerator
relies on the calculations of the cost model, which in turn
relies on the cardinality estimators’ results. Since tra-
ditional optimizers have shown to produce error prone
estimates [4, 5], current research establishes various ap-
proaches of refining plan enumerators [6, 7], cost models
[8, 9], and also cardinality estimation [10, 11, 12]. These
approaches all aim at adding, correcting, or substituting
existing optimizer components to obtain faster query
executions.

One of the long established [13], yet only recently pop-
ular approaches [14, 15, 5], has been the targeted steer-
ing of optimizer behavior through configuration options
called hints. These hints can generally be categorized in
the class of enumerator approaches. However, instead of
substituting or correcting an existing enumerator, hints
restrict the search space of enumerators, instructing the
planner to ignore certain plans. Nevertheless, hints can
not only be used for restricting plan enumeration. Re-
cent research has shown that hinting can even be used
to indirectly learn optimizer cost models [14, 15].
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are (i) the review of the state-of-the-art research in the
field of optimizer hinting and (ii) providing experimental
evaluations of current challenges that need to be tackled
to further advance in this research field. We do so at the
example of the highly popular and open source DBMS
PostgreSQL (PSQL).

Outline: In Section 2, we explain query hinting at the
example of PSQL. We will go into intricate details about
the query optimizer hints present in PSQL and explain
which hints can be observed, how they behave, and how
the systems’ hinting has evolved over the latest versions.
Section 3 depicts the state-of-the-art systems for utilizing
these hints to harness hidden optimizer potential. We
provide insights into leveraging hinting from the pre-
sented state-of-the-art in Section 4. We will then be able
to obtain valuable information regarding the full poten-
tial of hinting in query optimization based on the popular
Join-Order-Benchmark (JOB) [3]. Lastly, we open up the
discussion in Sections 5 and 6, where we discuss possible
highly valuable research directions, hinting in general,
and our reflections.

2. Query Hinting in PostgreSQL
Modifying the PSQL optimizer can be done mainly by
setting Boolean configuration parameters called query
planner method configurations1. We restrict our contri-
bution to these Boolean hints as they allow us to steer
the optimizer plan enumeration phase rather than inter-
fering with the underlying complex cost model. In their
nature, these configurations are mostly instructions to
force the optimizer to restrict itself to certain operations
while traversing a query’s plan space. However, since
not all of these configurations can be forcefully switched

1https://www.postgresql.org/docs/, accessed: March 4th , 2024
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Figure 1: PSQL hint development starting from version 12.

off2, the term hint has established [14, 5]. Additionally,
hint set refers to multiple hints, and hinting to the act
of instructing the PSQL query optimizer with a hint set.
Notably, in PSQL, hints are global, which implies that
they act upon the optimization of a whole query. This
means, that e.g., disabling the hint "Nested Loop Join"
will disable the usage of this operator (if possible) for the
entire query plan optimization phase.

Even the oldest still supported version (i.e., version 12)
of PSQL has a plethora of these hinting options which
may be highly valuable to investigate. A rigorous set of
Boolean hints beginning from PSQL version 12 up to the
latest version of this writing (i.e., version 16) can be found
in Figure 1. We observe that the base amount of hints is
already plentiful. While the core hints3 of PSQL consist
of six traditional hints, namely index, index-only, and
sequential scan, as well as hash, merge, and nested loop
join, there are multiple other options to be considered.

Bitmap scans for example scan multiple tuple point-
ers, which are then sorted by their physical location to
allow ordered access over all locations. Especially com-
bining multiple bitmaps is easy as multiple bitmap scans
can be combined through simple logical operator combi-
nation. TID Scans provide fast access with the knowl-
edge of tuple ids (i.e., physical location) of a row. Notably,
tuple ids provide no identifying behavior like primary
keys as their value may change during the lifespan of
their respective database table.

Additional non-core hints include hints for parallel ex-
ecution, aggregation, and general miscellaneous settings.
Within parallel execution, gather merge indicates the
use of the (gather) merge node within a plan that allows
child nodes of a query plan, or in fact, the whole plan
to be executed in parallel. While the gather node solely
merges results, the gather merge node indicates that sub-
nodes output sorted tuples which are then merged in a
sort-preserving manner. The parallel append works
similarly to the regular append when combining rows

2as this may hinder the optimizer to construct a query plan at all
3https://www.postgresql.org/docs/16/planner-optimizer.html, ac-
cessed: March 4th , 2024

from multiple sources. However, instead of processing
every child node subsequently in parallel fashion, pro-
cesses are spread across multiple child nodes to process
them simultaneously to allow fully parallel execution of
child nodes rather than parallelism within operators of a
child node. For parallel hash, instead of building a hash
table for each process, a common hash table is shared
among common processes. The last parallel hint consists
of async append. This hint allows parallel append plans
on foreign data tables, supporting sharded sources. The
aggregation hints consist of hash and presorted aggrega-
tion.

Hash aggregation allows the use of hash functions
for splitting, aggregating, and merging a target column.
Presorted aggregation allows the query planner to con-
struct plans that produce rows that are already sorted for
further aggregation.

Within the miscellaneous section are five hints. Ma-
terialization allows to enable caching of intermediate
results in memory. Sort naturally allows the usage of
sort operations within a plan. Geqo decides whether
to use the genetic optimizer of PSQL. This optimizer is
by default switched on if the number of joins in a query
exceeds twelve. Incremental sort enables the usage of
an optimized multi-key sorting method that allows to
take advantage of already sorted columns. Memoize en-
courages the use of nested loop join, as memoize caches
parameterized scans for nested loop joins only.

Additionally, there are three options for usage in a par-
titioned table environment. However, as these partition-
ing hints require the building of partitioned tables, they
remain mostly unused. While the ability to prune parti-
tioned tables remains on as for most hints, the partition-
wise hints are off by default as partitioning requires ad-
ditional attention and is not part of the default behavior
of PSQL.

Moreover, there are also some hints that cannot be
completely switched off to ensure that a plan can be
created. Switching these hints off highly discourages
their use in the planning phase. These hints are marked
in red in Figure 1. Moreover, the use of parallel hashing
naturally requires hash joins to be enabled.

Now, we are able to further understand the possible
implications of the presented PSQL hints. In the follow-
ing, we dive deeper into the state-of-the-art that utilizes
the presented hints to gain advantages during the opti-
mization queries.

3. Query Optimization Using
Optimizer Hints

While modifying the core components of an optimizer
through different algorithms and machine learning mod-
els is currently investigated with great interest [8, 9, 11,



10, 12, 6, 7], the steering of optimization using optimizer
hints remains to be a topic of deeper research. However,
there are still some major contributors in this field.

BAO. The first one is the bandit optimizer (BAO) [14].
BAO is a machine learning model that uses hints to indi-
rectly learn the optimizer’s cost model. BAO builds upon
a commonly used machine learning technique derived
from the successful use in learned query optimization,
namely reinforcement learning. In its core, BAO uses a
fixed number of hint sets, which are used to obtain dif-
ferent PSQL EXPLAIN plans during optimization. There,
each of the resulting plans is used as an input for a Tree
Convolutional Neural Network (TCNN). The TCNN of
BAO is built similarly to a regular convolutional neural
network with an additional initial tree flattening layer
to transform the input tree. The output of the TCNN is
an estimated query cost value that is used to determine
which of the input explain plans to use. This allows BAO
to implicitly use the hints through PSQLs explain func-
tionality. Lastly, Thompson sampling is used to enable
the reinforcement learning character of BAO, which bal-
ances exploration and exploitation by guiding the data,
upon which BAO is trained.

However, there are some considerations to account
for when using BAO. First, BAO uses only the six main
hints of PSQL, which is merely a subset of the already
presented hints. Even inside these six hints (i.e., 26 = 64
hint set combinations), only a subset of five hint sets
are feasible enough such that optimization time does
not start to exceed the actual runtime. Moreover, BAO
uses an indirect approach that necessitates evaluating
multiple query plans before being able to decide on which
to choose. Naturally, doing so does not scale well with
increasing numbers of hint sets used. Lastly, BAOs input
plans rely on PSQL EXPLAIN plans, which have been
shown to produce notoriously error prone estimates [4,
5].

Autosteer. As a successor to BAO, the approach of
Autosteer [15] was developed. Just like BAO, Autosteer
is a learned cost model by using query hinting. In this
approach, the existing challenge of selecting hint sets,
which were solved by manually applying expert knowl-
edge in BAO, were tackled. Their hint set traversal al-
gorithm consists of iteratively combining efficient query
spans [16]. For each combination, they determine the
query’s runtime and decide whether to keep the combi-
nation or not, based on the default query execution time.
While this algorithm leverages on hint set traversal from
BAO’s fixed hint sets, there are still some challenges.

First, a rather large assumption is made by postulating
that not all hint sets are beneficial. While this may hold
true for certain workloads, in DBMSs and with specific
versions, the benefits of hints cannot be deemed static.
Additionally, a key assumption is the prior knowledge of
query spans (i.e., efficient hints) of a query. Such knowl-
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Figure 2: Evaluation of FASTgres and BAO on the real-world
workload Stack-Overflow [5].

edge is usually obtained only through rigorous analysis
of query workloads or even individual queries, depending
on their versatility. As it is infeasible to have such infor-
mation a priori, and knowledge from previous queries
do not necessarily reflect future ones, we argue that de-
termining query spans efficiently for unseen queries is a
challenging and under-investigated task.

FASTgres. Lastly, there is another approach, named
FASTgres [5] that breaks with the commonly used rein-
forcement learning approaches for learned optimizers
and optimizer steering. FASTgres settles directly at the
plan enumerator by restricting its search space through
hinting predictions. FASTgres uses a supervised clas-
sification approach to predict the most beneficial hint
set directly from incoming queries. Here, queries are
predetermined into different query classes called con-
texts. In FASTgres, contexts can be defined in multiple
granularities but are commonly distinguished by their
table join groups. Within each context, a supervised gra-
dient boosting model is used to predict a query’s best
hint set. This approach naturally differs from previous
work by using a divide-and-conquer approach to provide
locally well performing models that are robust against
data and workload drifts. This robustness is achieved
not only by using local models but also by providing an
experience-based query anomaly detection that retrains
context models once receiving abnormally performing
queries. Additionally, since a supervised approach is ap-
plied, labeled data is required. Such labeled query data is
obtained by using a grid search strategy with aggressive
timeouts determined by the currently best query-hint-set
combination.

Generally, FASTgres has shown to provide superior
results with the usage of supervised learning for hint set
prediction as observable in Figure 2.

While the performance of supervised classification for



hint set prediction shows promising results, there are
also challenges that need to be overcome. Just like BAO,
FASTgres only utilizes six hints. While they traverse the
whole search space rather than only a few combinations
of hints, there is still the huge challenge of scalability.
Even with their provided aggressive timeout-strategy,
search spaces that grow exponentially have to be evalu-
ated fully. If we observe the Boolean hint sets from PSQL
in Table 1, the hint set search space would constitute
222 ≈ 4.2 · 106 combinations, which is infeasible to be
labeled in FASTgres’ strategy. Having such scalability
restrictions naturally leaves the question open about how
much potential is neglected when labeling queries.

To depict open challenges emerging from the state-
of-the-art work on hinted optimizer steering, we now
investigate the potential of hinting at the example of
PSQL.

4. Optimization Potential of Query
Hinting

Optimizer hinting is a volatile task in its nature. There
are many different influencing aspects that need to be
considered such that they become intangible rapidly. Ex-
emplary, when considering the decision of whether to
use a hash join in a query or not, the influence factors
can depend on the collected statistics, available memory
for building hash tables, possible parallel execution, the
systems hardware4, the systems build version5, and pos-
sibly many more. As subsets of these influence factors
are subject to constant change, the proper determination
of operator choice for a single query becomes a tedious
task that is infeasible to fulfill properly during runtime.
With these factors in mind, it is only natural to assume
that, by default, every hint set can have an influence on
a query. With this general assumption, we now investi-
gate the PSQL query optimizer in further detail. For the
following experiments, we evaluated - unless otherwise
stated - on a PSQL Docker Image that has been prop-
erly configured for its hardware (i.e., using PG-Tune6)
and using an ANALYZE step to build initial database
statistics. Additionally, each run has been evaluated once
with each query-hint-set combination being run once
before measuring, ensuring properly equal pre-warming.
The used hardware consists of an Intel Xeon Gold 6216
CPU (Skylake architecture) with 12 cores, 92 GiB of main
memory, and 1.8 TiB of HDD storage.

As we observed in Figure 1, there are 22 hints in the
latest version of PSQL (i.e., v16) at the time of writing.

4i.e., Memory, SSD, HDD availability
5i.e., their efficiency in implementing the operator and underlying
cost factors

6https://pgtune.leopard.in.ua/, accessed April 25th , 2024
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Figure 3: Counts of how many times the option of switching
a hint off had a positive impact on a queries performance.

Since analyzing these hints can become increasingly
time consuming, rather than taking a large workload like
Stack-Overflow [14] with 6191 queries, we focus on JOB
that contains real world data from IMDB and a query
workload of 113 analytical queries. Since JOB does not
provide partitioned tables by default, the partition hints
for pruning, join, and aggregate will be neglected in
the further analysis.

In our first experiment, we conduct an evaluation
whether the option of turning off the usage of a hint
pertains a positive impact on the overall runtime of a
query or not. For each JOB query, the influence of each
hint was measured. The results can be observed in Fig-
ure 3 for PSQL version 16.2.

Along the x-axis, every hint is displayed. The y-axis
shows how many times in the whole workload a positive
performance impact was noted by allowing a hint to be
switched off from their default setting. Notably, every
hint has at least 20 cases out of 113 in which turning
them off is beneficial. In detail, allowing for nested loop
joins to be switched off amounts for 26 positive impacts
(i.e., 23%), while allowing bitmap scans to be switched
off even amounts for 88 positive impacts (i.e., 78%). This
implies that every hint on their own may have useful
cases in which their impact cannot be neglected.

While these insights show that considering every hint
is a sensible choice, the exact impact of these hints re-
mains ambiguous. Results of the average speedup gained
from these positive impacts can be taken from Figure 4.

Here, the y-axis displays the average speedup factor
that is obtained throughout the whole workload within
the positively impacting hints. Notably, the option to
turn off sequential scanning now provides average
speedups of factor six, while bitmap scans with the high-
est previous occurrence only provide speedup factors of
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default which is used as comparison.

IN
DEX_ONLY_SCAN

SEQ_SCAN

IN
DEX_SCAN

NESTED_LOOP_JO
IN

MERGE_JO
IN

HASH_JO
IN

TID
_SCAN

SORT

PARA_HASH

PARA_APPEND

MATERIA
LIZATIO

N

HASH_AGG

GATHER_MERGE

BITMAP_SCAN

IN
C_SORT

MEMOIZE

ASYNC_APPEND

PRESORT_AGG

GEQO

10 2

10 1

100

T
im

e 
[s

]

Average Gain per Positive Occurrence: JOB (113 Queries)

Figure 5: Workload speedup potential by total time from
allowing single hints to be turned off.

just above one. These results imply that the occurrence
of positive hints does not need to correlate with proper
speedups across the workload.

Moreover, while speedup by factor is a valuable indi-
cator of how much factor-wise gain we can obtain by
switching individual hints on or off, another valuable
insight can be achieved by looking at the absolute time
impact of these hints. Results portraying the absolute
gain can be observed in Figure 5.

Along the y-axis, we display the time savings that
can be achieved from allowing a hint to be switched off
at logarithmic scale. Again, contrary to the indications
from Figures 3 and 4, we notice that fundamental time
savings lie within the nested loop join, index scan, se-

quential scan, and merge join, which are part of the six
core hints. However, we also find fundamental potential
in the parallel hashing, Geqo, and memoize options.

Overall, we observe that within the JOB workload, all
hints may vary in occurrence, their speedup, and their
absolute time gain without indicating rules that can be
followed. Our empirical studies on other PSQL versions
show that even between versions, there are no rules to
be delineated that could lead to inferences that can be
made for future queries.

When focusing on single queries in the workload, we
obtain a more detailed view about the query variety. We
show an excerpt in Figure 6 due to space restrictions,
while noting that the varying behavior can be observed
throughout the whole workload.

We notice a variety of different behaviors. Query 1𝑎
from Figure 6a contains five joins and four filters of which
two are wildcard filters. The three major hints are se-
quential scan, nested loop join, and hash join. Having
potential speedup factors of over twelve indicates that
the default PSQL optimizer had issues correctly determin-
ing scan and join operators, favoring sequential scans
over index and index-only scans, which indicates too low
selectivity estimation for scan operations. Additionally,
the potential gain through hash joins indicates that the
default optimizer might have estimated too high selectiv-
ity join results, leading to the choice of hash joins over
nested loop or merge joins. On the other hand, disabling
nested loop joins results in catastrophic deterioration
of execution time, reinforcing the thought that nested
loop joins are the operators that should be predominantly
used in this query. Query 8𝑐 contains five joins and two
filter predicates. Figure 6b displays a scenario, where
the default optimization is already surprisingly efficient.
However, even then, small improvements are still pos-
sible on multiple hints with disabling merge joins and
sorting as the predominant ones. Query 32𝑎 contains six
joins with one filter predicate. Figure 6c shows a result
that is quite common in our analysis. There are a lot of
hints which carry speedup potential, while some hints
may lead to catastrophic execution times with respect to
the default evaluation.

With these experiments, we could show at the example
of PSQL and JOB, that there is no panacea for finding the
best hints of a query or even workload a priori of evalua-
tion. This leads us to the conclusion that query hinting is
a complex topic that necessitates further investigation to
properly infer on the usefulness of each query-hint-set
combination.

5. Future Research
The potential for future research regarding optimizer
hinting is manifold. As we have shown, every hint has to
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(a) Single hint influence on query 1a.
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Figure 6: Single query hint influences.

be considered when trying to optimize queries. However,
within each query, we have seen that some hints have
less influence than others. For example, an algorithmic
solution with efficient hint pruning methods and possi-
bly early stopping mechanisms that can be run without
prior knowledge of efficient hints may prove promising.
By radically reducing the search space, this might allow
easier scalability to traverse query-hint-set combinations.
Such an algorithm could evaluate each hint set on their
own either from a subtractive (i.e., step-wise disabling)
or additive (i.e., step-wise enabling) starting point. Ei-
ther solution would provide insight into the one-ring
neighborhood (i.e., neighboring hint sets that only differ
by one hint being switched off or on) of changing hints
from a default situation, in which either all hints are
switched on or off. Additionally, further steps could be
decided based on these initial results. Such further steps
can include the use of stopping criteria based on previ-
ous results, the current one-ring neighborhood results,
previously observed queries, and possibly many more.
Lastly, even though current learned models provide rea-
sonable speedup gains, the development of a tailored
featurization for query hinting seems lucrative, as cur-
rently, only featurization options that are tailored for
cardinality estimation are in use. Potentially, such a ded-
icated featurization method may require smaller input
vectors and generalize better, depending on the chosen
representation.

6. Conclusion
Lastly, we summarize our findings in this contribution.
We showed that there is already valuable research in the
field of query optimizer hinting that focuses on a small
set of hints that they deem feasible. Additionally, we
could show at the example of JOB and PSQL, that hint-
ing is a manifold challenge that cannot be heuristically
reduced to a mere subset of hints but must be considered

as a whole to be able to extract all possible gains. More-
over, we showed that promising hints cannot be simply
predetermined without extensive analysis and that the
impact of hint sets varies between different queries and
also across different PSQL versions.

Even though [15] provides an algorithmic solution for
their hint set traversal problem, there are aspects that
still do not suffice for a scalable traversal solution. As
shown in our evaluations, the usage of a predetermined
set of hints for initial evaluation, namely query spans, is
not derivable beforehand and, thus, impractical.

We could show that the research field for hint set
traversal offers plenty of optimization potential for future
work.
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