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Abstract
dCache is a distributed storage system developed at Deutsches Elektronen-Synchrotron (DESY) in collaboration with Fermi
National Accelerator Laboratory and the Nordic eInfrastructure Collaboration (NeIC) to manage large numbers of disk servers
and ensure transparent data migration to and from archival storage. Its multifaceted approach provides an integrated solution
to support various scientific use cases using the same storage infrastructure, including high throughput data ingest, data
sharing over wide area networks, efficient access from High-Performance Computing (HPC) clusters, and long-term data
persistence on tertiary storage. The namespace/metadata component of dCache, known as Chimera, is built on top of a
relational database and heavily relies on ACID (atomicity, consistency, isolation, durability) semantics to maintain filesystem
consistency and integrity.

This paper offers an overview of Chimera’s current capabilities and design. Additionally, it emphasizes the necessity for
future enhancements to ensure scalability and meet the evolving demands of scientific research.
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1. Introduction
The ever-increasing amount of data that is produced
by modern scientific facilities like EuXFEL, PETRA III
or LHC puts high pressure on the data management
infrastructure at the laboratories. The challenges that
have to be addressed span over the full data life-cycle:
from ingest and efficient data analysis, up to long-term
preservation. Even though object stores, like Amazon
S3[1], become more popular, typically data is stored in
POSIX-compliant[2] filesystems, e.g. stored as a large
number of files organized in a hierarchical directory
structure. To achieve the desired performance, durability,
and parallelism, such filesystems are implemented as
distributed storage clusters, that almost linearly scale the
capacity and the aggregated bandwidth with the number
of installed data servers in the systems. One such storage
system is dCache[3], which is developed by Deutsches
Elektronen-Synchrotron (DESY) in collaboration with
Fermi National Accelerator Laboratory and Nordic
eInfrastructure Collaboration (NeIC).
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dCache provides a system for storing and retrieving
huge amounts of data, distributed among a large number
of heterogeneous server nodes, under a single virtual
filesystem tree with a variety of standard access methods.
It strictly separates the file namespace of its data reposi-
tory from the actual physical location of the datasets. The
file names, attributes, and filesystem tree are managed
in an internal database and exposed through a names-
pace component. By splitting a file’s metadata and data,
dCache uses a unique identifier for each file which is
independent of the file’s name and location. By using
this level of indirection, dCache can store multiple copies
of a file, dynamically add or remove new locations and
make use of external storage like S3 or tape. The system
horizontally scales with the number of data servers. By
adding new nodes into the system both storage capacity
and aggregated data bandwidth grow.

Figure 1: dCache overview
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A simplified dCache architecture is demonstrated in
Figure 1. There are four main components: doors, the user
entry points, that speak one of the supported access pro-
tocols; pools, the data servers that store the data and talk
all supported protocols; pool manager, the component
which is responsible for the data placement, e.g, selects
which pool should be used the a given transfer; and the
name space, a component that stores files metadata, hier-
archical file system view and enforces POSIX semantics
on file system operations. All components talk to each
other by sending or receiving messages over a TCP/IP net-
work. For high availability and load balancing, multiple
copies of dCache components can be started in a single
deployment. The topology auto-discovery and coordina-
tion between multiple instances of dCache services are
based on Apache Zookeeper[4] - an open-source server
for highly reliable coordination of distributed applica-
tions. The resilience of data is provided by redundant file
replicas or a tape copy.

The namespace/metadata component of dCache[3] is
built out of several layers (Figure 2 ). The top one called
PnfsManager1, is responsible for interactions between
the rest of the dCache and under laying filesystem back-
end. The second one is a filesystem abstraction layer
that might have multiple implementations. Nowadays
only one implementation is used, called Chimera[6]2,
which is built on top of a relational database. On a start,
chimera detects the database flavor and enables database-
specific optimizations. A generic SQL driver is used if
such a database flavor-specific driver is missing. In pro-
duction deployments, the PostgreSQL[7] database is used.
The development and unit testing relies on embedded
HSQLDB[8]. Such architecture allows small evolutionary
changes, known as strangler tree pattern[9], to evolve the
namespace component to respond to new requirements
or technology changes.

1The name comes from Pretty Normal File System[5], the original
backend for file metadata in dCache

2The name comes from an animal from ancient Greek mythology
with a lion’s head and fore parts, a goat’s body, a dragon’s rear, and
a tail in the form of a snake.

Figure 2: dCache’s namespace implementation diagram.

The filesystem operations are available as a Java-API
layer that utilizes database transactions to guarantee the
filesystem consistency. dCache’s namespace highly re-
lies on database’s ACID (atomicity, consistency, isolation,
durability)[10] semantics for filesystem consistency and
integrity: any file system change is performed atomically
in a single transaction; transaction isolation guarantees,
that end users and applications always see a consistent
file system state; concurrent updates to the same filesys-
tem object are synchronized. For example, by concurrent
creation of a file ’foo’ in a single directory, only one client
will succeed, all others will fail with ’file exists’ error;
and finally, all committed file system modifications will
remain committed even in the case of a system failure.

The operational experience over the latest decade has
proven that the existing design easily handles the cur-
rent metadata access requirements ( 10kHz), including
high availability (HA) provided by underlying database
technology.

2. Chimera Design
The namespace component of dCache is designed to ad-
dress the following requirements:

Unique filesystem object IDs independent from name
File names are not persistent, while data is. Users
can rename files, but still be able to access the
original data;

Metadata associated with files and directories An
arbitrary metadata can be associated with files,
in particular, storage system-specific information
like tape name, offset and so on;

Name-to-ID and vice versa mapping By referenc-
ing files in the storage system by ID we need



a possibility to find the file ID while users will
operate by file names;

Filesystem consistency In a highly concurrent dis-
tributed system all clients should see a consistent
view of the namespace;

Ability to bypass POSIX interface Though end-
users typically use the POSIX interface to access
the data, the system itself, as well as system
administrators need an alternative path for
maintenance operations or functionality beyond
the POSIX standard.

The database schema contains several tables that have
foreign key constrain to a main table with a list of all
filesystem objects, known as inodes (Listing 1). Note,
that filesystem objects are represented by two unique
IDs. One is the database auto-generated ID, which is
used for reference from other tables, and one externally
provided UUID-based identity, which is used by the rest
of the systems to identify files on data servers. Such
internal+external combination reduces the storage re-
quirements of the database engine (int vs. char(36)) and
allows the merging of multiple instances into a single
one, if needed. The filesystem hierarchical view, the file
system tree, is implemented as adjacency list, see Listing
2, which is well suited for single path element lookups,
havely used by UNIX virtual filesystem layer[11]. An ex-
ample of file the creation SQL procedure is demonstrated
in Listing 3.

CREATE TABLE t _ i n o d e s (
ino s e r i a l PRIMARY KEY , −− o b j i d
i d char ( 3 6 ) UNIQUE , −− UUID us ed

by s t o r a g e s y s t em s
type integer NOT NULL , −− o b j e c t

t y p e
mode integer NOT NULL , −− POSIX

p e rm i s s i o n s
n l i n k integer NOT NULL , −−

number o f r e f e r e n c e s
u id integer NOT NULL , −− owner

numer i c i d
g i d integer NOT NULL , −− owner

group numer i c i d
s i z e b i g i n t NOT NULL , −− o b j e c t

s i z e i n b y t e s
c r t i m e timestamp NOT NULL , −−

o b j e c t c r e a t i o n t ime
c t ime timestamp NOT NULL , −−

o b j e c t ’ s l a s t a t t r i b u t e
change t ime

a t ime timestamp NOT NULL , −−
o b j e c t l a s t a c c e s s t ime

mtime timestamp NOT NULL , −−
o b j e c t l a s t m o d i f i c a t i o n t ime

) ;

Listing 1: Inodes table

CREATE TABLE t _ d i r s (
p a r e n t b i g i n t NOT NULL , −−

p a r e n t o b j e c t i d
c h i l d b i g i n t NOT NULL , −− c h i l d

o b j e c t i d
name varchar ( 2 5 5 ) NOT NULL , −−

c h i l d ’ s name in p a r e n t
d i r e c t o r y
FOREIGN KEY ( p a r e n t )

REFERENCES t _ i n o d e s ( ino ) ,
FOREIGN KEY ( c h i l d )

REFERENCES t _ i n o d e s ( ino ) ,
PRIMARY KEY ( parent , name )

) ;

Listing 2: Directory hierarchy table

Other tables are used to represent extended file at-
tributes, checksums, user-defined tags, pointers to the
physical location of the file, data placement policies and
other information used by dCache.

BEGIN
−− c r e a t e a new i n o d e r e c o r d
INSERT INTO t _ i n o d e s ( ino ,

. . . ) VALUES ( ino , . . . )

−− c r e a t e an e n t r y wi th a
g i v e n name in t h e p a r e n t
d i r e c t o r y

INSERT INTO t _ d i r s ( parent ,
c h i l d , name ) VALUES
( p a r e n t _ i n o , ino ,
’ obj_name ’ )

COMMIT

Listing 3: Create entry example

If the parent directory does not exist or already con-
tains an object with the given name, then the database
transaction will fail to guarantee the filesystem consis-
tency. With such a directory structure renaming a file or
directory performed by an update of a single record, and
moving the whole directory subtree into a new location
is independent of the number of filesystem objects and
the depth of that subtree.

The database schema of Chimera allows very efficient
so-called singleton queries, which are queries that return
a single row, for example, when querying file attributes
or checking an object’s existence in a directory, as well
as a directory listing. Moreover, by exposing filesystem
internals via DB query interface, some filesystem mainte-
nance operations can be performed bypassing the POSIX



interface, thereby not being limited by it. An example of
such operations is the calculation of storage usage per
user, finding directories with an abnormally large number
of child objects (files or directories), or data deduplica-
tion based on checksums stored in one of the auxiliary
tables. Nevertheless, there are downsides to such a design
as well. Though Chimera is very effective for lookups
in a single directory, accessing the files by full path re-
quires multiple sequential lookups per file path element.
Such accesses are typical for URL-based protocols, like
HTTP. Though nested sets based representation of the
filesystem hierarchy is more efficient for fullpath-based
access, it comes with a high performance penalty when
a new tree nodes, e.g. new directories, are created. For
that reason, even though the majority of remote data
transfers are performed by the HTTP protocol, the con-
stantly changing large directory trees and the dominance
of POSIX-like access from the local compute clusters (the
direct file system mounts through NFSv4.1[12]) define
the optimization priorities.

3. Transactional requirements
As mentioned above, Chimera highly relies on ACID capa-
bility of the underlying database. Moreover, some filesys-
tem operations operate on multiple objects (records) at
the same time and therefore require atomic operations
on multiple records in a single transaction. For exam-
ple, moving a file from one directory to another should
delete the entry in the source directory, if exists, delete
the file with the same name in the destination directory
(this already includes updates on a directory structure
and list of all inodes), and, finally, create a new record in
the destination directory. To ensure consistency, all four
updates must be performed as an atomic operation and,
thus should be executed as a single transaction. How-
ever, strong consistency guarantees provided by rela-
tional databases introduce scalability limitations:

• Database transaction serialization in workloads,
where a large number of concurrent clients up-
date a single directory.

• Huge tables require large disk storage, memory
and additional CPU resources on database servers.
In HA clusters, all nodes must fulfil such require-
ments.

• Clients that are querying different sets of meta-
data can’t be dynamically served by multiple
servers after the connection to a database has
been established, thus dynamic workload distri-
bution is not possible, which results in overloaded
servers on one side, and underutilized servers on
the other.

The popular NoSQL solution doesn’t have the limita-
tions of traditional RDMS but has weaker consistency
guarantees.

There are several attempts to make scalable and con-
sistent ACID-compliant databases, so-called NewSQL
databases, for example CockroachDB[13]. By supporting
the PostgreSQL wire protocol CockroachDB is almost a
drop-in replacement for dCache’s namespace database.
Unfortunately, basic performance tests have shown the
poor performance of CockroachDB in comparison to a
stand-alone PostgreSQL server.

4. Future work
Though the system’s scalability satisfies today’s require-
ments, it might become a bottleneck for upcoming de-
tector and accelerator upgrades, which are expected by
PETRA-IV in 2028, or the High Luminosity phase of the
LHC starting in 2029. According to the ATLAS Software
and Computing HL-LHC Roadmap[14], in the High-Lumi
LHC mode, the ATLAS experiment will record 7-10 times
more data than today, thus putting higher demand on the
storage system, including the metadata component. The
same data rate growth is expected by other experiments
at LHC as well. To handle the amount of generated events,
it is common practice for experiments to write data in
multiple parallel streams, often into a single directory.

For the metadata service (as well as for storage and
database systems), there are two important metrics: la-
tency and throughput, which measure different aspects
of system performance. Latency refers to the time it
takes for a single request to be completed. Low latency
is desirable because it means operations are completed
quickly, resulting in faster response times for applica-
tions. Throughput, on the other hand, measures the rate
at which multiple requests are executed simultaneously.
Though ideally, we want to improve both, throughput
plays a major role, as it directly affects the system’s scal-
ability.

With the current design, a large number of concurrent
writes end up in database update serialization, as demon-
strated with a synthetic load test in Figure 3, where all
processes are waiting for an exclusive lock on the same
database entry, resulting in low overall throughput, even
if the rest of the system scales horizontally or vertically,
i.e. scales with a number of nodes in the system or more
powerful machines, respectively.



Figure 3: Database write starvation

The POSIX I/O interface was defined in the late 80’s
for single-node systems with a single disk and, thus, was
not designed for the highly concurrent computing envi-
ronments we have today. To reduce the load on the meta-
data server some distributed storage systems don’t follow
POSIX semantics and provide a special application-level
library that provides access to the stored data. Google’s
File System (GFS) [15] doesn’t have a concept of a parent
directory and stores the files by full name, thus file cre-
ation does not require a write lock on a parent directory3.
Such systems might provide a high update rate of file
metadata, however, they require application modification
and can not be used as a general-purpose storage solution
in multi-science environments.

The dCache’s namespace is not the only attempt to
implement the filesystem’s metadata part in a relational
database. The TableFS[16] follows a similar approach,
though it uses a single table for the list of all inodes
and the directory tree structure. However, by providing a
strong consistency through back-end DB implementation
the concurrent updates in the single directory TableFS
are serialized as well.

To address those data management challenges, the
dCache developers are investigating metadata catalogue
scalability requirements to propose a solution that will
have the potential to replace or significantly improve the
existing namespace component of dCache, in particular:

• Estimate the typical workload on the metadata
services and identify the scalability limitations of
the existing solution.

• Identify workflows that require strict POSIX and
near-POSIX compliance.

• Propose a design of a new metadata catalogue,
that is at least a factor of 10 more scalable in the
number of filesystem objects and overall through-
put, i.e. operation per second, without compro-
mising the filesystem integrity.

3Colossus, the successor to the Google File System might have a
different architecture. The information about Colossus’s design is
publicly not available

Tough POSIX compliance is typically expected by the
storage systems, in many cases, it is not required by all
the applications. Even though there are some studies
to understand the requirements of the scientific applica-
tion, they are typically focused on the I/O path and pay
very little attention to metadata-related operations[17].
Thus, a detailed analysis of scientific applications might
provide opportunities to soften the POSIX compliance
requirements and improve metadata scalability by im-
plementing eventual consistency for some operations
without compromising the filesystem integrity.

The R&D activity by the dCache team aims to utilize
existing database technologies and widely available tech-
niques to implement a new scalable metadata service for
scientific data repositories.
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