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Abstract
Recent extensive research in the field of bioinformatics aimed at predicting the 3D structure of proteins from
their amino acid sequence using LLMs has generated large datasets of numerical data on the relative positioning
of amino acids in sequences, known as embeddings. These data banks are publicly accessible, enabling their
analysis and utilization, particularly for tasks such as identifying sets of typical elements of protein structures.
Recognizing typical substructures could significantly simplify the protein analysis process, which involves more
than 240 millions of proteins.

This work explores the main statistical characteristics of amino acid sequence embeddings of protein pairs,
both significantly similar and distinctly different in composition and structure, in order to identify patterns in their
behavior parameters: linearity, stationarity, probability distribution laws, and others, ensuring the correctness of
applying corresponding models and methods in the future.
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1. Introduction

The use of Large Language Models (LLMs) has revolutionized various fields of study, extending their
impact to the domain of protein amino acid sequence analysis [1]. Recent innovations have leveraged
LLMs to decode protein sequences, significantly advancing our understanding and capabilities in
constructing detailed spatial structure databases. Among these innovations, the ESM-2 database [2]
stands out as a pivotal development. ESM-2, an open-access database, encapsulates an extensive array
of protein spatial structures, thus providing a valuable resource for biochemists and bioinformatics
researchers. This enables an in-depth exploration of the functional attributes of proteins in correlation
with their three-dimensional conformations.

Utilizing LLMs for these purposes transforms the representation of proteins into a multidimensional
vector space where each amino acid’s embedding reflects its potential spatial relationships within the
protein’s folded structure. This approach not only enhances the precision of structural predictions
but also introduces a quantitative method to assess the likelihood of proximal interactions among
the amino acids in a given protein. The effectiveness and accuracy of these models are rigorously
evaluated through the Critical Assessment of protein Structure Prediction (CASP) project [3], where
computational predictions are juxtaposed with experimentally determined structures, validating the
reliability of the models.

Central to the effectiveness of LLMs is the preliminary processing and statistical analysis of data.
The architecture of the system and the specific algorithms employed, particularly the deep learning
components of LLMs, critically influence the characteristics of the resulting embedding arrays. This
initial data processing phase is crucial as it ensures that subsequent analyses and applications of the
data are based on robust and reliable foundation.
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2. Analysis of recent research

Protein language models (pLMs) have significantly advanced our understanding of the relationships
within protein sequences, providing a numerical representation of their structural and evolutionary
features. Recent developments, such as the Embedding-based Alignment (EBA), specifically an approach
introduced in [4], highlights the potential of using high-dimensional sequence embeddings from pLMs
in protein structure analysis. This approach was effectively used to detect distant homologies in the
so-called ’twilight zone’ [5] where sequence similarities are not readily apparent.

The authors demonstrate that EBA surpasses both traditional sequence alignment methods and other
pLM-based approaches in detecting structural similarities, without the need for training or parameter
optimization. The use of embeddings allows EBA to capture deeper evolutionary relationships, offering
a significant improvement in identifying structural similarities in proteins with low sequence identity.

We utilize similar approach, where our research aims to expand on these results by exploring a
variation of the EBA method, focusing specifically on the statistical characterization of sequence
embeddings through autocorrelation and correlation analysis. Our methodology differs from the
proposed EBA in [4] by analysing the spatial relationships within protein sequences, which are encoded
in the embeddings generated by models like ESM-2.

Findings from [6], demonstrated that the statistical distribution of amino acid sequences supports
Darwinian evolution. Their research showed that certain peptide combinations occur rarely, suggesting
evolutionary constraints. These constraints may be reflected in the distribution of embeddings, which
could indicate evolutionary pressure shaping protein structures. The confirmation of the statistical
nature of amino acid distributions complements the statistical analysis of sequence embeddings.

3. Research purpose

This study conducts a preliminary analysis of protein sequence embeddings using autocorrelation
functions. The goal is to detect repetitive patterns within these embeddings that may indicate underlying
structural or functional elements in the proteins. By employing a sliding window across the sequence
embedding dimensions, we assess the local repetitiveness of these patterns to identify motifs suggestive
of structural features.

Additionally, this analysis evaluates the similarity between protein pairs by correlating their auto-
correlation outcomes, providing a detailed view of how similarities are distributed across the entire
sequence. This work sets the foundation for developing a variation of the Embedding-based Alignment
(EBA) method.

4. Problem formulation

Given a language model, denoted as 𝐿, for predicting the three-dimensional structure of a protein
from the sequence 𝑆. The input data for the model is the sequence of amino acids in the protein 𝑆 =
{𝑠1, 𝑠2, . . . , 𝑠𝑁} , where 𝑠𝑖 represents an individual element of the sequence (the letter corresponding
to the amino acid), and 𝑁 indicates the number of amino acids in the sequence. The model 𝐿 is defined
by a set of pre-learned parameters 𝜃.

After processing the sequence 𝑆, the model outputs a set of parameters. The mapping of 𝑆 to 𝑌 can
be formally described as the function 𝑓𝜃(𝑆) = 𝑌 , where 𝑓𝜃 summarizes the computational logic of
model 𝐿 with parameters 𝜃.

Among the set of output parameters 𝑌 , we focus on one specific parameter 𝑆𝑠, which is the subjects
of this study. This parameter provides an internal protein’s sequence representation in a form of vectors,
also called embeddings. The parameter 𝑆𝑠 is a matrix that represents the mapping of the input sequence
into a higher-dimensional space (𝑁, 1024), where 𝑁 is a length of the sequence. Hence, 𝑆𝑠∈𝑅𝑁×1024 ,
where each row in 𝑆𝑠 corresponds to an element from 𝑆 transformed into a 1024-dimensional vector



(embedding), which encodes contextual information about the given element, its properties, and its
interaction with other elements in the sequence.

5. Statistical Analysis of Sequence Embeddings

5.0.1. Sequence Alignment and Similarity Metrics

The proteins selected for this analysis are 1𝑅0𝑅1 and 1𝑀𝐸𝐸1, which have been identified as similar,
as well as 1𝐿𝑄𝑇1 and 1𝐴6𝐶1, which are considered dissimilar. The criteria for this categorization are
based on structural features and evolutionary relationships inferred from sequence homology.

Figure 1: MSA alignment of a pair of similar proteins 1𝑅0𝑅1 and 1𝑀𝐸𝐸1 and a pair of dissimilar proteins
1𝐿𝑄𝑇1 and 1𝐴6𝐶1

Multiple sequence alignment (MSA), is a crucial tool in bioinformatics and has been employed to
align the amino acid sequences of the chosen proteins. The quality of alignment is quantified by an
MSA score, which assesses the degree of conservation and similarity between sequences. A higher
score denotes a greater level of similarity. Alignments were generated using the T-Coffee program [7].

The alignment results (Figure 1) for the similar proteins, 1𝑅0𝑅1 and 1𝑀𝐸𝐸1, show a high degree of
conservation, as indicated by a score of 986. The corresponding MSA visual (left side of the attached
figure) shows a significant number of residues are identical (marked by an asterisk ’*’) or have strong
similarities (marked by a colon ’:’ or a period ’.’). This suggests these proteins may share functional and
structural properties.

In contrast, the MSA for dissimilar proteins, 1𝐿𝑄𝑇1 and 1𝐴6𝐶1, yields a score of 358, reflecting a low
level of similarity. The alignment (right side of the attached figure) has fewer conserved residues and
indicates considerable variation between these sequences, which means they have different functions
or structures.

These MSA results provide a baseline for the subsequent statistical analysis. By establishing the
degree of similarity through MSA scores and visual inspection, we can set expectations for how these
similarities or differences might manifest in various statistical measures such as embeddings’ magnitude
distributions, distance, angles etc.

5.1. Outlier Normalization

Prior to the application of statistical methods to analyze protein sequence embeddings, initial view of
the embeddings showed the presence of extreme outlier values. These outlier values are significantly



higher/lower than the general dataset, observed consistently at identical indices across all sequence
embeddings. Due to their magnitude, these outliers have the potential to influence subsequent statistical
computations, thereby skewing the analysis results.

Figure 2: Embedding values before normalization showing outliers

The visualization of the embeddings is depicted in the first set of plots, illustrating spikes (Figure 2).
These peaks are consistent across all embeddings of different proteins, suggesting a systematic anomaly
of the ESM-2 model rather than random or natural variation within the protein structure representation.

To address this anomaly, a normalization method was applied, where the top five maximum and the
bottom five minimum values were adjusted by taking the average value of two adjacent values. This
threshold of first five values was chosen based on empirical observations and analysis to effectively
remove the outliers without affecting the informational content of the embeddings.

Figure 3: Embedding values after normalization with outliers adjusted

The second set of plots (Figure 3) displays the embeddings after normalization, where the previously
visible spikes have been truncated. The consistency across different embeddings indicates that the
removing top and bottom five values is addressing the issue. This normalization step is critical as
it ensures that the subsequent analytical methods are reflective of structural properties rather than
artifacts introduced by outlier data points.



5.2. Distribution Analysis of Embedding Dimensions

The visualization presented in the Figure 4 demonstrates the distribution of normalized embedding values
across selected dimensions of protein sequences. Histograms are utilized to compare the distributions
between protein pairs that are considered similar and dissimilar, respectively.

For similar proteins (1𝑅0𝑅1 and 1𝑀𝐸𝐸1), the first two histograms in the top row represent the
distribution of values at specific dimensions (index 10 and index 100). The distributions are noticeably
overlapping, meaning a high degree of similarity in these embedding dimensions. This suggests that
the embeddings capture similar structural or functional features within this dimension.

Figure 4: Comparative histograms of embedding dimensions for two protein sequence pairs.

The third histogram in the top row depicts the mean value distribution across all dimensions. The
concentration of values around the center and the bell-shaped distribution is indicative of the embeddings
capturing a consistent pattern across dimensions.

Conversely, the bottom row compares the dimension value distributions for proteins 1𝐿𝑄𝑇1 and
1𝐴6𝐶1, which are dissimilar. Here, the first two histograms (index 10 and index 230) show a shift in the
frequency of values, suggesting a difference in the structural or functional properties encoded by these
dimensions, though it’s not always the case, as some

The mean value histogram for these dissimilar proteins shows a distribution is overlapping with
the one observed in similar proteins. This indicates that while there is a commonality in the overall
embedding pattern (as shown by the shape of the distribution), the distribution across specific dimensions
may differ.

The central, bell-shaped distributions seen across the mean histograms shows the consistency and
validity of using distribution analyses in protein structure comparison studies. This consistency also
suggests that the embeddings may follow an underlying statistical distribution.

5.3. Embedding Magnitude Analysis and Statistical Measures

The computation of embedding magnitudes serves to quantify the strength or intensity of the protein
sequence embeddings. We assess the stationarity of this magnitude distribution, as stationary processes
allow for the reliable application of statistical measures such as mean, median, and variance over time,
yielding consistent and interpretable results across different segments of the sequence.

The histograms in the Figure 5 provide the frequency distribution of embedding magnitudes for both
similar and dissimilar proteins. Contrary to initial expectations, the magnitude distributions between
similar (1𝑅0𝑅1 and 1𝑀𝐸𝐸1) and dissimilar (1𝐿𝑄𝑇1 and 1𝐴6𝐶1) protein pairs are analogous, which



means that the magnitude alone does not distinguish between the similarities or differences in protein
structures.

Figure 5: Distribution of embedding magnitudes and running mean.

For the similar proteins, the running mean over magnitudes show a considerable overlap and the
local fluctuations are largely aligned, indicating that the embedding magnitudes change similarly over
the course of the sequences. This alignment in local fluctuations suggests that the similar proteins have
analogous dynamic behaviors in their structure over time.

In contrast, the running mean plots for dissimilar proteins do not show the same degree of overlap or
alignment. While the overall trend lines appear to be stationary for both similar and dissimilar proteins,
the patterns of local fluctuation provide evidence that the embeddings are sensitive to differences in
protein structures.

The trend lines in the running mean plots remain relatively flat and parallel to the x-axis for all
protein pairs, supporting the stationarity of the process. This confirms that the embedding magnitudes
do not display long-term trends or drifts, ensuring that subsequent statistical analyses like mean and
variance calculations are meaningful.

Table 1
Statistical descriptors of embedding profiles for analyzed proteins.

Protein Mean Median Variance STD

1𝑅0𝑅1 -0.064 0.119 603.573 24.567
1𝑀𝐸𝐸1 -0.098 0.082 595.101 24.395
1𝐿𝑄𝑇1 -0.404 -0.283 528.686 22.993
1𝐴6𝐶1 0.094 0.182 502.625 22.419

Table 1 encapsulates key statistical descriptors derived from the embeddings. The mean value varies
near zero for both similar and dissimilar proteins, the median also indicate a central tendency that
aligns with the means. Variance and standard deviation, as measures of data spread, reinforce these
findings, with both similar and dissimilar proteins exhibiting a comparable dispersion.

5.4. Probability Distribution

As the last step of an embeddings analysis, we attempt to evaluate the probability distributions of
embedding features. We focus on two aspects: the distribution of dimension cuts and the magnitudes of
embeddings.

Our findings (Figure 6) reveal that the distribution of both embedding dimension cuts at a fixed index
and mean value across all the dimensions, adheres to a normal distribution. For biological data, where



Figure 6: Density distributions for key aspects of protein sequence embeddings’: dimension cuts at a specific
index, mean values across all dimensions, and magnitudes.

a multitude of factors contribute to the final observation, such distribution is indicative of a robust
underlying model that produces a stable, predictable pattern.

In contrast, the magnitudes of the embeddings follow a lognormal distribution, characteristic of
processes governed by multiplicative factors. The lognormal nature of the magnitudes could reflect the
exponential growth processes that underlie protein folding and development, where factors multiply,
leading to the right-skewed distribution observed in our results.

6. Methodology

6.1. Autocorrelation Function

We define the autocorrelation function for a vector 𝑉 ∈𝑅𝑁 , where 𝑁 is the length of the vector, using
a sliding window of size 𝑤, and denote it as 𝐴𝐶𝐹𝑒(𝑉,𝑤). By applying the autocorrelation function
to each window 𝑤 sliding over the input vector 𝑉 , we obtain a matrix of autocorrelation functions
𝐴∈𝑅𝑁−𝑤−1×𝑤. We then normalize the matrix 𝐴 using the normalization function 𝑁(𝐴).

𝐴𝐶𝐹𝑒(𝑉,𝑤) = 𝑅𝑋𝑋(𝑉𝑖:𝑗+𝑤) (1)

where 𝑅𝑋𝑋 is the autocorrelation function, 𝑖∈{1, . . . , 𝑁}, 𝑗∈{1, . . . , 𝑁 − 𝑤 − 1}.

6.2. Normalization Function

We define the normalization function 𝑁(𝑋) for the autocorrelation function that takes as input a matrix
𝑋 and normalizes it by the maximum value of the corresponding row, resulting in a matrix 𝑋 ′, where
each row is divided by its maximum value:

𝑁(𝑋) =
𝑋

𝑚𝑎𝑥(𝑋𝑖)
(2)

where 𝑖∈{1, . . . , 𝑁}.

6.3. Self-Similarity of Embeddings

Given the matrix 𝑆𝑠∈𝑅𝑁×1024 that represents the embeddings of the protein sequence, we transpose
this matrix (𝑆𝑠)𝑇∈𝑅1024∈𝑁 , to compute autocorrelation. Thus, computing self-similarity between



corresponding dimensions of embeddings across the entire sequence. We define the self-similarity
function for the sequence 𝐴𝐶𝐹𝑝(𝑃,𝑤):

𝐴𝐶𝐹𝑝(𝑃,𝑤) = 𝐴𝐶𝐹𝑒((𝑆
𝑠
𝑖 )

𝑇 , 𝑤) = 𝐴1024×𝑁−𝑤−1×𝑤 (3)

where 𝑖∈{1, . . . , 1024}.

6.4. Similarity of Two Sequences

For the first sequence, we compute 𝐴𝐶𝐹𝑝(𝑆
𝑠
1, 𝑤) = 𝐴1024×𝑁−𝑤−1×𝑤

1 , and for the second sequence,
accordingly 𝐴𝐶𝐹𝑝(𝑆

𝑠
2, 𝑤) = 𝐴1024×𝑀−𝑤−1×𝑤

2 . We then calculate the Pearson correlation coefficient
between each fragment of 𝐴𝐶𝐹 of length 𝑤 from the first sequence relative to all fragments of 𝐴𝐶𝐹
from the second sequence in the given dimension. Let 𝑣𝑛 be the set of 𝐴𝐶𝐹 fragments from 𝐴1 of
length 𝑤 where 𝑛 = {1, . . . , 𝑁 − 𝑤 − 1}, and 𝑣𝑚 be the set of fragments of length 𝑤 from 𝐴2, where
𝑚 = {1, . . . ,𝑀 − 𝑤 − 1}. For each fragment of 𝑣𝑛, we compute the Pearson correlation coefficient
with each fragment of 𝑣𝑚. The result is a correlation matrix 𝐶𝑜𝑟𝑟∈𝑅𝑁−𝑤−1×𝑀−𝑤−1 , where each
element 𝐶𝑜𝑟𝑟𝑛𝑚 represents the correlation coefficient between fragments of 𝑣𝑛 and fragments of 𝑣𝑚.

𝐶𝑜𝑟𝑟 =
𝑐𝑜𝑣(𝑣𝑛, 𝑣𝑚)

𝜎(𝑣𝑛)×𝜎(𝑣𝑚)
(4)

By applying this function to all dimensions, we calculate a correlation matrix of two sequences
𝐶𝑜𝑟𝑟∈𝑅1024×𝑁−𝑤−1×𝑀−𝑤−1. The resulting matrix will contain information about the mutual similar-
ity between the 𝐴𝐶𝐹 of the sequences, describing the local similarity of the two protein sequences.

6.5. Algorithm

The algorithm described below provides a methodology for computing the correlation between two
sets of protein sequence embeddings. It is designed to be invariant to outliers described in the previous
section, since it operates on dimensions of embeddings.

1 function Autocorrelate(vector V, integer window_size)
2 length = size of V
3 Initialize array results with size (length - window_size + 1)
4 for i from 0 to (length - window_size) do
5 segment = slice of V from i to i + window_size
6 autocorrelation = correlate segment with itself
7 autocorrelation = normalize(autocorrelation)
8 results[i] = autocorrelation
9 end for

10 return results
11 end function

Listing 1: Autocorrelation Computation

The 𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒 function computes the autocorrelation of a given vector, segment by segment,
within a defined window size. Normalization can be applied to each autocorrelation result to further
ensure that the analysis is not skewed by extreme values.

1 function EmbeddingsCorrelation(matrix S1, matrix S2, integer window_size)
2 smaller, larger = order matrices S1 and S2 by size
3 autocorr_smaller = Autocorrelate(smaller, window_size)
4 autocorr_larger = Autocorrelate(larger, window_size)
5 Initialize correlation matrix
6 for i from 0 to size of autocorr_smaller do
7 for j from 0 to size of autocorr_larger do
8 correlation[i, j] = Pearson correlation of autocorr_smaller[i] and autocorr_larger[j]
9 end for

10 end for
11 return correlation



12 end function

Listing 2: Embedding Correlation Computation

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 uses the autocorrelated data to compute the Pearson correlation coeffi-
cients across all pairs of autocorrelated segments between the two input matrices. The process accounts
for the relative nature of the data, which is why the presence of outliers in specific indices does not
distort the analysis.

1 function ProteinCorrelation(matrix A, matrix B, integer window_size)
2 A = transpose A
3 B = transpose B
4 Initialize corr matrix
5 for each dimension d in A and B do
6 corr[d] = EmbeddingsCorrelation(A[d], B[d], window_size)
7 end for
8 return corr
9 end function

Listing 3: Protein Correlation Analysis

Finally, 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 iterates over each embedding dimension, applying
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 to build a correlation matrix for the entire set of embeddings. This
matrix contains a detailed view of the similarities between the two protein sequences across all
embedding dimensions, reflecting both local and global patterns in the data.

7. Experimental Results

We analyze several pairs of protein sequences by evaluating the correlation between their embeddings
using the established methodology. We experimentally verify the ability of the ESM-2 model to learn
the dependencies and evolutionary context of sequences and encode this informantion in seuquence
embeddings. The resulting correlation matrix was visualized as a heatmap and compared with an MSA
alignment. We present three cases of protein sequence comparison:

Figure 7: Comparison of the correlation heatmap of the 1R0R_1 and 1MEE_1 protein sequence embeddings
with the MSA alignment of these sequences

The left section of Figure 7 presents a heatmap generated by applying formula 4, which computes
the correlation between two protein sequences. The heatmap’s axes correspond to the sequences of
two proteins 1𝑅0𝑅1 and 1𝑀𝐸𝐸1, where diagonally aligned signal indicates similarity or identity,
suggesting functional and structural parallels between the proteins, which corresponds to these proteins’
MSA alignment.



The right section of Figure 1 displays the sequence alignment for 1𝑅0𝑅1 and 1𝑀𝐸𝐸1. Each block’s
alignment includes a conservation score, where an asterisk ’*’ denotes identical amino acids at that
position, suggesting a perfect match. A colon ’:’ marks positions with chemically similar, yet different,
amino acids—indicative of conservative substitutions. A space ’ ’ represents positions where the amino
acids significantly differ, termed non-conservative substitutions. A period ’.’ denotes semi-conservative
substitutions where the amino acids are moderately similar. The color gradient from green to red across
the panel reflects the alignment’s varying quality, from low to high.

Figure 8: Comparison of the correlation heatmap of the 1R0R_1 and 1V6C_1 protein sequence embeddings
with the MSA alignment of these sequences

In Figure 8, we observe a correlation heatmap for a pair of protein sequences with more complicated
alignment patterns. The heatmap’s primary diagonal shows areas where the sequences align, indicating
similarity. Notably, in the center, the alignment shifts and later realigns, suggesting a gap followed by a
return to similarity. This observation is reflected in the MSA on the right, where asterisks and colons
mark similar regions, and dashes ’-’ indicate sequence gaps, mirroring the heatmap’s diagonal shifts.

Figure 9: Comparison of the correlation heatmap of the 1𝐴6𝐶1 and 1𝐿𝑄𝑇1 protein sequence embeddings with
the MSA alignment of these sequences

Figure 9 showcases a scenario where protein sequences 1𝐴6𝐶1 and 1𝐿𝑄𝑇1 exhibit minimal similarity.
The heatmap lacks distinct patterns, aligning with the infrequent and scattered matches in the MSA,
suggesting that the sequences share only isolated regions of structural or functional commonality.



8. Conclusions

Preliminary statistical analysis of the embedding arrays from selected protein amino acid sequences has
been conducted. It was found that there are individual characteristic outliers in the numerical values of
certain embeddings projections, namely the 247 and 37 dimensions always represent extreme maximum
and minimum outlier values respectively. Normalizing these by replacing them with the average value
of two adjacent readings allows for further processing and analysis of the data.

In the statistical analysis of protein sequence embeddings, histograms were employed to examine the
distribution across various dimensions for both similar and dissimilar protein pairs. The results revealed
that similar proteins exhibited overlapping distribution patterns in specific dimensions, suggesting
shared structural or functional features through spatial proximity, while dissimilar proteins showed
shifted distribution indicating varying structural characteristics. Further, the magnitude of these em-
beddings was analyzed and confirmed the stationarity of the process using running mean method,
which allowed to compute statistical measures such as mean, median, and variance. Both similar and
dissimilar protein pairs displayed analogous statistical and magnitude characteristics. Additionally,
the probability distribution analysis showed that embedding dimensions generally follow a normal
distribution, whereas embedding magnitudes adhered to a log-normal distribution, that may reflect the
multiplicative biological processes inherent in protein folding. These findings enhance our understand-
ing of protein folding process and support the initiative to use correlation and autocorrelation analysis
to develop a Embedding-based Alignment (EBA) method.

The application of covariance and autocorrelation analysis to ESM-2 sequence embeddings showed
that the model can learn the evolutionary character of sequence development and sequence interrela-
tionships. By evaluating the correlation between embeddings of different protein pairs, we observed
clear patterns, and experimentally verified the results with MSA alignment of these sequences, which
further confirmed the proposed analysis method.
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