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Abstract 
We introduce a novel approach to defining the correlation coefficient based on local dispersion, 
which reflects the degree of non-linear relationship between two random variables. Utilizing the 
theory of random processes, we adapted computations of random function characteristics to 
address the correlation problem. Throughout our research, we identified and implemented a new 
correlation coefficient that allows analyzing non-linear relationships between random variables. 
Our results confirmed that this new approach is effective for processing large volumes of data. 
Additionally, we explored the relationship between our new correlation coefficient and the 
popular machine learning model evaluation metric, R2. This simplifies the interpretation of 
correlation analysis results and makes it more informative for analysis. We also analyzed the 
satisfaction of Renyi's properties and other useful for practice properties of our new coefficient 
to understand its behavior under different conditions. We compared it with other approaches 
and demonstrated the advantages and disadvantages of our method. To demonstrate the 
effectiveness of our coefficient, we utilized both simulated and real data. Our results on both 
types of data show the potential of our method and its possible application in practical tasks. 

Keywords  
correlation analysis, non-linear dependence measure, coefficient of determination1 

1. Introduction 

Correlation plays a key role in the fields of statistics, data analysis, and machine learning. It 

is a fundamental tool for measuring and establishing relationships between variables. In 

doing so, it provides valuable information about patterns, the type of relationship, its 

strength, potential predictive capabilities of future models, and more. Among other metrics 

and statistics, correlation stands out as a widely used and versatile indicator. It is applied in 

research across various fields—from finance and economics to psychology and 

epidemiology[1-10]. 

The history of correlation analysis spans over 100 years—starting with Pearson's 

correlation coefficient and other methods from the late 19th to the early 20th century and 

continuing to the present day. Even today, articles continue to emerge about new methods 
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of defining correlation or improving existing ones [11-19]. Currently, there are dozens of 

different coefficients: classical coefficients, coefficients of maximum correlation, 

coefficients based on joint cumulative distribution functions, coefficients based on 

information theory, coefficients based on copulas, coefficients based on distance, and so on. 

The reason why there are so many correlation coefficients is evident—they all have their 

advantages and disadvantages. A coefficient that may be applicable in one scenario, with 

certain objectives, may be less effective or even unsuitable for use in other conditions and 

for other purposes.  

The reasons why preference is given to certain coefficients over others can be quite 

diverse-lack of independence test or presence of such a test but inability to indicate the 

strength of the relationship; inability of the coefficient to establish a non-linear relationship 

or complexity of the algorithm, making its application on large datasets impractical, and so 

on. 

Thus, there is still room in science for new correlation coefficients, and we aim to present 

our developments and research. The article discusses our journey to this coefficient. 

Additionally, we will examine and compare the methods of other researchers who had 

similar ideas and/or implementations. We will show the connection of our coefficient with 

the coefficient of determination and the Pearson coefficient. We will discuss the properties, 

advantages, and disadvantages of our coefficient and compare it with others. We will also 

demonstrate its performance on simulated and real data. 

2. Related Works 

Modifying the template — including but not limited to: adjusting margins, typeface sizes, 

line spacing, paragraph and list definitions — is not allowed. The development of a new 

correlation coefficient based on random processes and the coefficient of determination is 

situated within the context of extensive scientific research on correlation coefficients and 

their applications. This section aims to provide an expanded reflection on the relevant 

literature, which serves as the foundation for our research and the innovative development 

of the proposed coefficient. 

Considering the regression problem as a random function, I utilized the theory of random 

processes to analyze the characteristics of this function. Foundational texts[20] on random 

processes aided me in unraveling the nature of this random function and understanding its 

properties. Their high-quality information provided the groundwork for my research, 

allowing me to apply mathematical concepts of random processes to study regression 

models. Such an approach enabled me to develop a new coefficient that takes into account 

all the significant characteristics of this random function to provide a more precise and 

adequate model for analyzing dependencies between variables. 

The works of Fisher and Pearson[21, 22], particularly their seminal works, have 

immense significance for contemporary research on correlation and statistical analysis. In 

their works, they introduced the concept of correlation for the first time and developed 

mathematical methods for its measurement. They demonstrated the importance of 

establishing robust measures of correlation for adequately studying relationships between 

different variables in datasets. The works of Fisher and Pearson have played a pivotal role 



in the development of statistical theory and methodology, and their influence can still be 

felt in modern research. 

Rényi's article[23] opens up new perspectives for understanding the essence of 

correlation and defining its key characteristics. It provides a systematic approach to 

analyzing the properties of correlation coefficients and identifies seven fundamental 

criteria that effective measures of correlation should satisfy. These properties described by 

Rényi are crucial for developing new methods of correlation analysis and evaluating their 

effectiveness. 

The RDC article[24], which investigates the correlation coefficient, provides important 

context for comparison with other correlation coefficients. In particular, this work 

establishes that the properties of marginal invariance, i.e., remaining unchanged when 

scaling or shifting data, are extremely important for the correlation coefficient. This is an 

important characteristic that ensures the stability of analysis results regardless of the 

chosen unit of measurement. 

Furthermore, important aspects of the work include the use of vector input data and 

compliance with Rényi's criteria. The use of vector input data allows for considering the 

multidimensionality of input data, which can be useful in analyzing complex systems. 

Meeting Rényi's criteria underscores the importance of defined criteria for the effectiveness 

and robustness of the correlation coefficient. 

Additionally, the article explores aspects of algorithm complexity and efficiency, which 

are key factors in assessing its effectiveness. The ability to capture nonlinear dependencies 

between variables is also an important aspect that reflects the potential of the correlation 

coefficient in detecting complex relationships in data. Thus, this article demonstrates the 

characteristics by which we can compare correlation coefficients. 

Moreover, the comparative analysis of different correlation coefficients, as described in 

[24, 25], provided us with important context for critically evaluating the strengths and 

weaknesses of existing methodologies. 

Contemporary research continues to actively seek correlation coefficients that 

adequately reflect complex relationships in diverse datasets. Many articles illustrate this 

search[11-19], exploring new coefficients and their applications in various fields. These 

studies reflect the ongoing evolution of correlation analysis and the need to develop 

informative methodologies to meet the demands of modern data analysis. 

Moreover, it is worth noting that there is a large body of scientific literature that utilizes 

various correlation coefficients and conducts correlation analysis[1-10]. This indicates the 

widespread use of these methods across various fields of science and practical applications. 

Knowledge and skills in this area are highly valuable and consequently in high demand in 

both scientific and professional environments. 

3. Methods and Materials 

In this section, we will delve into the mathematical aspect of our study, focusing on the 

analysis of regression models in the context of random processes. We will consider the 

regression problem as a random function, which will open up new perspectives for us in 

understanding this phenomenon. Following this, we will examine the process of finding the 



grid for approximating the random function, which is a key stage in our research. Finally, 

we will analyze the approach to deriving the correlation coefficient, which will help us 

uncover the relationship between different variables in the regression model. 

3.1. The use of random process theory for regression and correlation tasks. 

We were interested in the properties of random function characteristics. Although random 

functions fall within the realm of random processes rather than regression or correlation 

tasks, there is an apparent similarity. The advantage of random function characteristics, 

such as mean and variance, is also evident [20]. When considering them as characteristics 

of a random variable, we see only scalar quantities characterizing the distribution of the 

random function. However, the properties of random function characteristics are much 

more interesting. They transform random features in functions into scalar form while 

preserving non-random dependencies. Clearly, such properties of these characteristics 

would be interesting for regression and correlation tasks. Therefore, we decided to explore 

the possibilities of applying them to these tasks. 

The main obstacle is the inability to find functions of these same characteristics. 

Theoretical formulas work only in theory. In practice, they are found by conducting n 

experiments, with a series of sections corresponding to specific moments in time (typically 

considering problems where the argument is time) – 𝑡1, 𝑡2 … 𝑡𝑚 [20]. And already at this 

stage, there arises a discrepancy in tasks. When it comes to random processes, especially 

when we consider processes related to time, it is easy to conduct experiments by measuring 

the value of the random function at certain moments in time. However, when we talk about 

a more general regression or correlation task, where we cannot control the sample, such 

measurements are impossible. 

For example, let`s take the iris dataset created by Fisher. Suppose we have two tasks: 1) 

we are trying to understand the dependence of flower petal length on other indicators 

(regression task); 2) we are trying to understand the dependence of petal length on time 

(random process task). In the second case, we can grow n flowers and measure, for example, 

the length of petals daily. In the first case, we cannot fix certain values of any of the features. 

For almost any typical regression task, this is impossible. For example, we can take any of 

the classical datasets: Boston Housing (to find the dependence of house price on its 

characteristics), Wine (contains results of chemical analysis of wines), Titanic (contains 

some data of Titanic passengers and whether they survived), Diamonds (to find the 

dependence of diamond price on its characteristics), Diabetes (to find the dependence 

between human indicators and whether they have diabetes). Trying to fix diamonds, 

people's health, house characteristics, etc., is either physically impossible or unethical. 

Moreover, it contradicts the fact that the sample must be random. Therefore, we need a 

different method. 

Before we continue to search for a way to construct characteristic functions, we would 

like to pause for a moment and still consider the typical regression task as a random 

function. In this article, we will consider a simple case with one dependent and one 

independent variable, as well as one other variable that will correspond to noise or 

randomness. 



Let x be the known independent random variable, z be the unknown independent 

random variable, y be the dependent variable, which is also the target feature. There is a 

functional dependence between y and x characterized by the function - 𝜑(𝑥). The feature z 

also affects y, but we do not know what this feature is, or perhaps it is a combination of 

several features and cannot be measured. We will consider this dependence as: 

𝑦 = 𝜑(𝑥) + 𝑧, (1) 

Now, everything looks quite typical, but it is from this moment that differences arise in 

regression and random process tasks. Random processes suggest that each function is a 

realization of a random variable z, and accordingly, for measurements of functions 

𝑥1, 𝑥2, … 𝑥𝑚, it is the same. However, in regression tasks, a realization is one value of x, and 

the experiment measurement is not measurements of the function at m points x, but one 

pair (𝑥𝑖 , 𝑦𝑖),  for each of which z will be different. Such a dependence (1) can be considered 

as a random function, although for regression tasks, there is a problem with measurements 

to estimate characteristics. 

We propose to bypass this problem by discretizing x. We can divide our pairs of points 

(𝑥𝑖, 𝑦𝑖) by x, obtaining intervals, and then calculate characteristics within them. Although it 

is evident that the accuracy of such a method will depend on the division and the intervals 

themselves, it will allow for different estimates. 

Let`s introduce the concept of a grid: 

𝜔ℎ = {𝑀𝑥∈[𝑥𝑖;𝑥𝑖+1](𝑦), 𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0, … 𝑁̅̅ ̅̅ ̅̅ ̅̅ , ℎ =
𝑏 − 𝑎

𝑁
}, 

(2) 

This grid defines an equidistant partitioning of y based on x. Although this grid roughly 

approximates the function of the mathematical expectation and, in general, the function 

itself, as we will show later. To illustrate this, let's consider a quantity called the average 

value of the function [26]. 

𝑎𝑣𝑓(𝑦) =  
1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥,

𝑏

𝑎

 

where a and b are the limits of the interval on which we are looking for the mean value. 

This quantity is an analog of the simple mean for a continuous function. This formula 

directly follows from the simple mean: 

1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

=
(𝑏 − 𝑎)

𝑛(𝑏 − 𝑎)
∑ 𝑦𝑖

𝑛

𝑖=1

=
1

𝑏 − 𝑎
∑ 𝑦𝑖

𝑛

𝑖=1

 ∆𝑥. 

The obtained sum as 𝑛 → ∞ can be considered as an interval: 

lim
𝑛→∞

1

𝑏 − 𝑎
∑ 𝑦𝑖

𝑛

𝑖=1

∆𝑥  =  
1

𝑏 − 𝑎
∫ 𝜑(𝑥)𝑑𝑥

𝑏

𝑎

 

Avf is bounded below and above. This follows from the mean value theorem for integrals: 

if f(x) is a continuous function on [a,b], then there exists a c such that: 

𝑓(𝑐) =  
1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥,

𝑏

𝑎

 

and from here follows the following: 

inf𝑥𝜖[𝑎,𝑏] 𝑓(𝑥) < 𝑓(𝑐) < s𝑢𝑝𝑥𝜖[𝑎,𝑏] 𝑓(𝑥). 



Therefore, our function is bounded both above and below, and the accuracy of the 

estimate by simple averaging over the interval depends on the number of points, the size of 

the interval, and the rate of change of the function. 

It is evident that for (1), simple averaging yields the following estimate: 

𝑀𝑥∈[𝑎,𝑏] = 𝑎𝑣𝑓𝑥∈[𝑎,𝑏](𝜑(𝑥)) + 𝑀(𝑧). 

Next, we will demonstrate how well this model approximates the random function. We 

generated 10,000 points and set y as a certain function of x plus the addition of noise alpha 

(see Figure 1). 

 

 

Figure 1: Demonstration of a grid for random functions: a)linear dependency, b) no 

dependency, c) quadratic, d) cubic, e) exponential, f) sinusoidal. Blue dots represent 

generated points, orange denotes grid intervals, red indicates the real function. 

 

From the graphs, it can be seen that while the edges of the interval deviate significantly 

from the true values, the centers of the intervals approximate the function excellently. 
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Moreover, if instead of intervals (which our grid currently represents), we display a line 

plot, the approximation will be even more apparent(see Figure 2). 

 

 

Figure 2. Demonstration of a grid via a line plot for random functions: a) linear dependency, 

b) no dependency, c) quadratic, d) cubic, e) exponential, f) sinusoidal. Blue dots represent 

generated points, orange denotes interval centers and lines between them, red indicates the 

real function. 

From these graphs, it can be observed that if the points - the centers of the intervals - are 

connected, these lines almost overlay the curves of the real function, indicating the potential 

of the function. 

3.2. Derivation of the correlation coefficient 

In the previous section, we concluded that our grid (2) effectively approximates the random 

function. However, the aim of this article is different: based on this grid, we aim to construct 

the correlation coefficient. 
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Before defining the measure characterizing the strength of the relationship, it is 

necessary to establish the concept of absence of correlation. 

Definition. We consider the absence of correlation of y from x when 𝜑(𝑥) = 𝑐𝑜𝑛𝑠𝑡, or in 

other words, when x does not influence y. Then (1) takes the form: 

𝑦 = 𝑐𝑜𝑛𝑠𝑡 + 𝑧 = 𝑧, 

We equated const + z to z because in the case of adding a constant to a random variable, 

only its mean changes, while the variance and distribution remain unchanged, making it the 

same random variable. 

From here, we initially formed the following quantity for comparing the relationship: 

1

𝑘
∑[𝑀𝑥𝑖

(𝑦) − 𝑀(𝑦)]
2

𝑘

𝑖=0

, 

where 𝑀𝑥𝑖
(𝑦) is the local mean, and 𝑀(𝑦) is the overall mean. This indicator shows the 

presence and strength of the relationship. If there is no relationship, then by definition all 

local means tend towards the overall mean. If a relationship exists, then the local means 

significantly differ from the overall mean. However, this indicator has a significant 

drawback - we could not normalize it to the interval [0, 1]. We tried to normalize it by 

variance, the range of the x and y samples, the interval size, and so on, but none of the 

normalization attempts were successful. 

Upon analyzing the previous quantity, we noticed a relationship of this indicator divided 

by the variance with the machine learning metric - 𝑅2. The relationship was close to linear. 

And we decided to change the approach by using local unaveraged variances, resulting in 

the following coefficient: 

𝜂2 = 1 −
∑ [𝑦𝑖 − 𝑀𝑥(𝑦𝑖)]2𝑛

𝑖=0

∑ [𝑦𝑖 − 𝑀(𝑦)]2𝑛
𝑖=0

, 
(3) 

where 𝑀𝑥(𝑦𝑖)  is the value of the grid for 𝑦𝑖 ,  and 𝑀(𝑦) is the overall mean. Thus, the 

numerator essentially represents the local unaveraged variance, while the denominator is 

the unaveraged overall variance. This fraction tends towards one when there is no 

relationship, as the local mean tends towards the overall mean. Also, this fraction tends 

towards zero when there is a strong relationship because the stronger the relationship 

between y and x, the less other noise, and therefore, the smaller the local variance. The unit 

is needed to invert the fraction for the traditional representation of the relationship's 

presence: 0 means no relationship, 1 means y is fully described by x. 

It is also worth noting that the resemblance of the coefficient of determination allows 

transferring its interpretation to this correlation coefficient. Before we move on to the 

interpretation and properties of our coefficient, we must recall those similar to it. 

3.3. Analysis of Similar Correlation Coefficients 

In searching for literature for the article, we came across a similar coefficient that had 

already been described. Fisher and Pearson [21, 22, 23] mentioned the correlation ratio in 

their works. This coefficient is defined as the sum of the unaveraged variances in individual 

categories relative to the total variance. It is obvious that our coefficient differs only by the 

inversion through unity. 



In defense of our approach, it can be noted that the correlation ratio was primarily used 

for between-class comparison of numerical characteristics, or in other words, for tasks of 

variance analysis. However, Fisher provides an example of using such a coefficient in a 

problem similar to regression [21], with the difference that the independent feature is 

temperature, and its values were discretized into intervals with a step of 0.5 degrees. 

However, we did not find the application of the correlation ratio for analyzing the 

relationship between two continuous features. 

At the same time, the connection with this coefficient, in our opinion, only strengthens 

ours because although we used a different approach to arrive at it, and its purpose was 

slightly different, we can use the achievements made before us. Such achievements will be 

mentioned further in this article. 

Also, in another article, we noticed that the author, using a different idea and approach, 

arrives at a rank correlation coefficient [25]. It is a rank coefficient, but the author indicates 

that with an infinite amount of data, their coefficient tends to be very similar to ours. The 

fact that other scientists arrive at the same or similar coefficients may indicate that the idea 

of such a coefficient is indeed justified. Moreover, our and their achievements can 

complement each other since each uses a different approach and consequently obtains 

different estimates, advantages, and disadvantages. 

3.4. Criteria for the presence of a relationship 

It's very useful if the presence of a relationship by the correlation coefficient can be 

confirmed through a statistical criterion. And here we are far from the first, so we decided 

to turn to Fisher's book [21]. However, Fisher himself wrote in his book that it is not so easy 

to do this for the correlation ratio, although the task is to assess whether the variances 

within classes differ significantly from the overall one. He describes the following ways to 

statistically evaluate the significance of the relationship: 

• Analysis through the z-table, but this criterion is not inclined to normality if the 

number of arrays does not tend to infinity; 

• For large samples - 𝑁𝜂2 - distributed by chi-square. 

• Blakeman’s Criterion 

So there are methods for testing the statistical significance of the coefficient, although 

they are not ideal, they are available. We did not conduct a more in-depth analysis in the 

literature, but we are confident that more works on this topic can be found in the search. 

Moreover, other articles can be found describing other methods of assessing the 

coefficient. For example, the next article aims to find a confidence interval for the 

correlation ratio [27]. In another article, the author tries to reduce the effect of small 

grouping, thereby improving the estimation of the coefficient itself [28]. 



3.5. Interpretation 

This coefficient can currently have at least two interpretations: the first one is associated 

with the coefficient of determination, and the second one is associated with the correlation 

ratio. 

The coefficient of determination is interpreted as the proportion of explained variance 

by the model. That is, if the coefficient of determination is 0.7, then the regression model 

explains, and accordingly takes into account in its forecasts, 70% of the variance of y. Thus, 

such a model can be considered quite good. 

Therefore, considering that our coefficient essentially follows the formula of the 

coefficient of determination, we can interpret it as the proportion of explained variance of 

y through x, that is, the proportion of the variance of y explained by x. 

The interpretation of the correlation ratio is different, namely - how the variances within 

the classes differ from the overall variance and from each other. In our case, we are 

considering a discretized independent variable, and accordingly our coefficient can be 

interpreted as: how much the variance within the intervals differs from the overall variance, 

and therefore how close or far the relationship between x and y is from no correlation. 

3.6. Possible Implementations and Modifications 

Given that our grid and coefficient are based on simple partitioning and simple averages, it 

raises a natural question: can these parameters be modified to obtain new algorithms? 

One of the first modifications we can consider is partitioning by quantiles. The difference 

with this partitioning lies in the uniform number of observations in each interval, rather 

than a constant step size of the grid. Formally, it can be presented as follows: 

𝜔ℎ = {𝑀𝑥∈[𝑥ℎ𝑖; 𝑥ℎ(𝑖+1)](𝑦),  𝑥𝑖  =  𝑄𝑖(𝑥),  𝑖 = 0,   … 𝑁 − 1,  ℎ  =  
1

𝑁
} ,  

where 𝑄𝑖(𝑥) represents the quantile for 𝑥𝑖, and N is the number of observations in the 

interval. 

Another relatively simple modification could be replacing the mean in the grid with the 

median. The idea is that we cannot guarantee either the normality or symmetry of the 

distribution law of the random part. If it is skewed, the mean may show a worse or even 

inadequate result. Formally, it can be presented as follows: 

𝜔ℎ = {𝑀𝑥∈[𝑥ℎ𝑖; 𝑥ℎ(𝑖+1)](𝑦),  𝑥𝑖  =  𝑎 + 𝑖ℎ,  𝑖 = 0,   … 𝑁,  ℎ  =  
𝑏 − 𝑎

𝑁
}. 

Another modification could be replacing the mean with a weighted average distance. The 

logic is as follows: in the original version, we cannot be sure that the mean M(y)  calculated 

over the interval [xi; xi+1] corresponds to the mean M(y)  on this interval. Introducing a 

weighted average distance, where the mean is computed over y and weighted by x, we can 

obtain an average that approximates f(c), where c is the point relative to which we calculate 

the weights. Formally, it can be presented as follows: 

𝜔ℎ = {𝑀𝑥∈[𝑥𝑖; 𝑥𝑖+1](𝑦),  𝑀𝑥∈[𝑥𝑖; 𝑥𝑖+1](𝑦) =
∑ 𝜔𝑖

𝑛
𝑖=1 𝑦𝑖

∑ 𝜔𝑖
𝑛
𝑖=1

, 

𝜔𝑖 =
1

∑ 𝑑𝑖, 𝑗
𝑛
𝑗=1, 𝑗 ≠𝑖

,  𝑥𝑖  =  𝑎 + 𝑖ℎ,  𝑖 = 0,   … 𝑁,  ℎ  =  
𝑏 − 𝑎

𝑁
} 



Another modification of the partitioning could be the introduction of overlapping 

intervals, i.e., intervals that have some overlap with neighboring intervals. Although such 

an extension may seem counterproductive for the initial algorithm, as expanding the 

interval can shift f(c), which is approximated by the mean, it could work for the 

implementation with the weighted mean distance. In this case, less weight is given to the 

points at the ends of the intervals and more to the center. This implementation is planned 

as a way to deal with a small amount of data. To do this, we introduce the concept of a 

window w, which specifies the width of the subinterval relative to the step between nodes. 

Thus, if the step between nodes 𝑥𝑖 and 𝑥𝑖+1 is h, then 𝑥𝑖 is the center of the interval 

[𝑥𝑖 – 
𝑤ℎ

2
;  𝑥𝑖  +  

𝑤ℎ

2
]. It should be noted that we only consider the case when 𝑤 > 1, because 

for w=1, we get partitioning without overlapping intervals, and for 𝑤 < 1, we get intervals 

that do not cover all points. Obviously, b-a-wh is the free width for nodes, so based on this, 

we can find the interval as ℎ =
𝑏−𝑎

𝑛+𝑤
, where n is the number of nodes. From here, we can 

define the grid as: 

𝜔ℎ = {𝑀
𝑥∈[𝑥𝑖−

𝑤
2

; 𝑥𝑖+1+
𝑤
2

]
(𝑦),  𝑥𝑖  =  𝑎 +

𝑤ℎ

2
+ 𝑖ℎ,  𝑖 = 0,   … 𝑛,  ℎ  =  

𝑏 − 𝑎

𝑛 + 𝑤
} 

where n is the number of nodes, and w is the window size. Here, 𝑀𝑥(𝑦) represents any 

method of calculating the mean. 

3.7. Comparison with Other Correlation Coefficients 

In this section, we will discuss the advantages and disadvantages of our coefficient 

compared to others. We based our comparison on the article about RDC[24], as they 

compared their coefficient with most others. 

3.7.1. Renyi’s Properties 

A. Renyi in his work [22] outlined a set of properties that correlation coefficients 𝜌∗ should 

possess: 

1. 𝜌∗ is defined for any pair of non-constant X and Y. 

2. 𝜌∗(𝑋, 𝑌) =  𝜌∗(𝑌, 𝑋) 

3. 0 ≤ 𝜌∗ ≤ 1 

4. 𝜌∗ = 0, if there is no relationship between X and Y. 

5. For bijective Borel-measurable functions: 𝑓, 𝑔: ℝ → ℝ, 𝜌∗(𝑋, 𝑌) =  𝜌∗(𝑓(𝑋), 𝑔(𝑌)). 

6. 𝜌∗ = 1, if 𝑌 = 𝑓(𝑋), or 𝑋 = 𝑓(𝑌). 

7. If (𝑋, 𝑌)~𝒩(𝜇, 𝜎), then 𝜌∗ =  |𝜌(𝑋, 𝑌)|, where 𝜌 is the correlation coefficient. 

 

We'll refer to the source, as A. Renyi himself discussed these properties for the correlation 

ratio in his work and indicates that it does not satisfy properties 1), 4), and 5). Property 2) 

was not explicitly mentioned, but it can be easily addressed by taking: 

𝜌∗(𝑋, 𝑌) = max (𝜌∗(𝑋, 𝑌); 𝜌∗(𝑌, 𝑋)) 



Property 7 is not obvious, but Fisher's book mentions that the square root of the 

correlation ratio corresponds to the correlation coefficient if the relationship is linear. A. 

Renyi also mentions this. 

Property five is partially fulfilled since: 

𝜂2 = 𝑠𝑢𝑝𝑓 𝑅(𝑓(𝑥), 𝑦) 

However, here we can try to apply the same approach as for maximal correlation. 

Although this is more akin to a hypothesis, articles attempting similar endeavors can be 

found[20].  

Property 4 is rejected because for multivalued functions, such as a circle equation, our 

coefficient will give a falsely zero value. However, such cases are unlikely to occur 

frequently in practice. In the real world, there are no cases where there can be many target 

values for one independent feature value. Here, there should be a third feature that will 

precisely determine (for example, for a circle, this could be a categorical feature indicating 

which semicircle the point belongs to). 

Property one is rejected because x and y must have finite variances. However, again, for 

practical use, it is very doubtful that any real data are prone to infinite variances. 

3.7.2. Other properties of the coefficient 

For the correlation coefficient, many other coefficients are important, such as marginal 

invariance, vector inputs, and so on. Let's consider them. 

Marginal Invariance. Our coefficient does not depend on the scaling or shifting of x or 

y. When x changes, the grid changes with it. When y changes, according to the properties of 

variance, shifting has no effect, and scaling is factored out of the numerator and 

denominator. 

Vector Inputs. Although in this article we do not discuss coefficients for multiple 

features, it is easy to modify the grid so that the segmentation is not based on a single 

feature. We have even conducted preliminary experiments that yielded positive results, but 

we do not discuss them in this article. 

Algorithm Complexity. Let's first consider the complexity of computing the variance, as 

our coefficient is almost entirely composed of them. The complexity of computing the 

variance is O(n). We have K computations of variances in the numerator and one in the 

denominator. It is worth noting that the variances in the numerator are local because they 

are calculated not for n observations, but for ki. Therefore, the sum of variances in the 

numerator will have a complexity of O(k1 + k2 + ... + ki) = O(n). Accordingly, the total 

complexity of the algorithm is O(2n), but for large data, the factor of two can be disregarded, 

so the complexity is O(n). 

3.7.3. Comparison with other coefficients 

The article on the RDC coefficient[24] compares it with several other coefficients, namely: 

Pearson, Spearman, Kendall, CCA, KCCA, ACE, MIC, dCor, HSIC, CHSIC. They were compared 

based on the following characteristics: ability to recognize nonlinear dependencies, vector 

input, marginal invariants, satisfaction of all Renyi's Properties, coefficient lying in [0, 1] 

range, and algorithm complexity. 



Of all these properties, our coefficient satisfies: marginal invariant, vector inputs 

(although its effectiveness has not been proven yet), it lies within [0, 1], and it outperforms 

all previously mentioned algorithms in algorithm complexity, except for Pearson, CCA, and 

ACE. However, our coefficient does not satisfy all Renyi's properties. Although we have 

disputed their practical significance for our coefficient earlier. 

However, there is an advantage of our coefficient over others, namely its interpretation. 

While other coefficients typically indicate the strength of the relationship, our coefficient 

can be interpreted as the proportion of explained variance of y by x. 

This is extremely important in regression tasks in machine learning. In practice, you 

cannot be sure that any actions to improve the model will bring significant results. You can 

rely on the difference between training and test sample metrics, have experience, or 

understand algorithms, but there is no exact tool for analyzing how well the model can learn 

from certain data, just as there are no tools to understand how much it can be improved. 

Our coefficient can provide such a tool. Because the proportion of explained variance of 

y by x directly estimates how much variance the model can explain using the x feature. 

Similarly, if our coefficient is applied to the residuals of the model, it can show whether a 

certain feature still has a connection, and if so, our coefficient will quantitatively show how 

much more the model can be improved. 

4. Experiment 

In this section, we embark on a journey of experimentation aimed at validating and 

enhancing our approach. Our experiments are divided into three parts, each focusing on 

distinct aspects of our research. Implementation can be found on the GitHub repository[29]. 

The first part of our experiments revolves around assessing the efficiency of the 

correlation coefficient calculation algorithm. Here, we analyze the computational 

performance of the algorithm, aiming to optimize its speed and accuracy. 

Moving forward, the second part of our experiments is dedicated to the selection of the 

parameter N. We explore the impact of varying N on the overall performance of our method, 

seeking to identify the optimal value that maximizes the effectiveness of our approach. 

Lastly, in the third part of our experiments, we delve into investigating the relationship 

between the correlation coefficient, the coefficient of determination, and Pearson's 

coefficient. Through comprehensive analysis, we aim to elucidate the interplay between 

these key metrics and gain deeper insights into their significance within the context of our 

study. 

4.1. Comparison of the coefficient efficiency 

For practical use of the coefficient, it should scale well for large datasets, as they are most 

likely to be used with it. We compared our implementation in R with the Pearson coefficient 

and RDC (as implemented in their article[5]). The results of these experiments were 

sufficient to give us an idea of how well our coefficient performs on large datasets. For each 

dataset size, we conducted a total of 250 measurements of algorithm execution time with 

feature regeneration to eliminate the influence of the sample. The results are presented in 

Table 1. 



Table 1 

Time running results in R environment 

Coef. / n 1000 10.000 100.000 1.000.000 

Person’s 𝜌, avg 2.069187e-05 7.849789e-05 0.0005257692 0.005731739 

Person’s 𝜌, std 5.063336e-05 2.112877e-05 0.0001095381 0.0008129202 

RDC, avg 0.002380476 0.0243814 0.2436182 3.285504 

RDC, std 0.0003120181 0.004626209 0.01469011 0.2986529 

𝜂2, avg 0.0004041605 0.002601263 0.01333642 0.1807116 

𝜂2, std 0.0003125966 0.005066414 0.006118725 0.03149566 

 

As seen from the table, the results of our experiments indicate that our coefficient is 

slower than the Pearson correlation coefficient but still outperforms RDC. Furthermore, the 

experiments showed that the coefficient scales well with a large amount of data. 

We also conducted experiments in the Python environment, using the pandas and numpy 

libraries. Our algorithm implementation was compared with the implementation of the 

Pearson correlation coefficient for the pandas.DataFrame object. Similar to the first 

experiment, we had 250 iterations of experiments with data generation on each iteration. 

In this set of experiments, we only compared the Pearson coefficient with ours. The results 

are presented in Table 2. 

Table 2 

Time running results in Python environment 

Coef. / n 1.000 10.000 100.000 1.000.000 10.000.000 

Person’s 𝜌, avg 0.000073 0.000188 0.001217 0.012289 0.122185 

Person’s 𝜌, std 0.000258 0.000392 0.000413 0.000500 0.001821 

𝜂2, avg 0.003401 0.004186 0.012494 0.122029 1.425318 

𝜂2, std 0.000484 0.000392 0.000694 0.007234 0.042040 

 

Based on the experimental results, we can confirm that our coefficient is fast. Although 

it is slower than the Pearson correlation coefficient, it performs well with a large amount of 

data. Even when the amount of data reaches 10 million, it is computed in less than 1.5 

seconds, indicating that it can be applied to large datasets. 

4.2. Selection of Parameter N 

Unfortunately, our coefficient has a parameter - N. In this implementation of the coefficient 

(3), more specifically, the grid on which we compute it (2), N strongly influences the 

coefficient itself. N is responsible for the average number of observations within the interval 

and the width of the interval itself. 

As we have discussed, reducing the interval should better approximate the random 

function, but with too small N, a simple average may not provide an adequate estimate. 

Therefore, in this section, we will conduct a series of experiments to determine the optimal 

N. 



Let`s start with a data size of 10,000. We generated data - an independent feature and 

noise (both following a normal distribution). We compared our coefficient with the 

coefficient of determination, as our coefficient is its estimate and we can calculate it 

accurately because we know its function. For each experiment, we varied the noise from 

zero to complete noise to account for random noise. We also conducted 50 experiments in 

each case(see Figure 3). 

 

 

 

Figure 3: Error from N. a) linear, b) quadratic, c) exponential dependencies. 
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From the graphs, several conclusions can be drawn: 

1. As discussed earlier, the error strongly depends on the rate of change of the function 

- linear dependence does not exceed an error of 0.12, quadratic exceeded 0.2, and 

exponential reached 0.6; 

2. The optimal N for a data size of 10,000 is 250 and does not depend on the function, 

as reducing N may not necessarily result in a smaller error. 

3. With N = 250 and a data size of at least 10,000, the error will not exceed 0.05. 

Further verification may not be necessary, but we decided to perform it. We conducted 

a similar experiment for a data size of 100,000, for the quadratic dependency(see Figure 4). 

 

Figure 4: Coefficient error for the case of 100,000. 

We see that for any N, the error does not exceed 0.03. Next, we conducted a similar 

experiment but for small datasets (from 100 to 5000). First, let`s consider the linear 

dependency. The following graphs display the number of data points in the synthetic sample 

on the x-axis, and the error of our coefficient (the absolute difference between our 

coefficient and the coefficient of determination) for different N on the y-axis(see Figure 5). 



 

 

 

Figure 5: Error from the number of data points for linear dependency. N = a) 50, b) 75, c) 

100, d) 150, e) 200, f) 250. 

As a result of this experiment, it is evident that the accuracy of the method increases with 

the increase in the number of data points. Furthermore, starting from 750-1000 data points, 

the error ceases to change significantly. Interestingly, for small samples (relative to 

previous experiments), the optimal N is no longer 250 (although only cases up to 200 are 

shown in the graphs, but beyond this point, the error only increases. 

At the same time, empirically we have established that the maximum error 

approximately follows the following law: 

max (|𝑟2 − 𝜂2|) =
𝑁

𝐾
− 0.1, 

where N is the grid parameter and K is the amount of data. And the obvious fact that as 

N decreases and K increases, the error decreases. However, N cannot be reduced infinitely, 

as for very small N, a simple average will be a terrible estimate. Along with this, the graphs 

a b 

c d 

e f 



show that for linear dependency, N=30 is sufficient. And although for a sample of 100 

observations, the coefficient has too high an error, for 250, the maximum error does not 

exceed 0.1, which is still rough, but it can already be applied in practice. 

However, the accuracy of our grid depends on how quickly the function changes, so we 

propose considering cases with quadratic and exponential functions. The first case 

represents a function that changes quite rapidly, while the second one represents a function 

that changes very quickly(see Figure 6). 

 

 

 

 

Figure 6: Error from the number of data points for quadratic dependency. N = a) 50, b) 75, 

c) 100, d) 150, e) 200, f) 250. 

From these graphs, even for rapidly growing functions, the error stabilizes around 1500-

2500. It is also evident that the empirical law of decreasing error with the amount of data 

will be approximately the same, with the difference being that for the quadratic function, 

the constant will no longer be -0.1 but +0.1. Let's move on to the exponential function(see 

Figure 7). 
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Figure 7: Error from the number of data points for exponential dependency. N = a) 50, b) 

75, c) 100, d) 150, e) 200, d) 250. 

From the graphs, it can be seen that the maximum error has increased even further. 

Moreover, the estimation, even with a data quantity of 5000, is very rough for almost all N 

values. Here lies the same regularity – the error is proportional to N and inversely 

proportional to the amount of data. 

Therefore, in this section, we examined the absolute error of our coefficient compared to 

the real coefficient of determination. We observed that on average, for a data quantity of 

10,000 or more, we can use N = 250, because with smaller N values, the result may be 

unstable and less reliable. In such cases, the error does not exceed 0.05-0.1. For data 

quantities up to 5,000, the best value was N = 50. Furthermore, it was found that the error 

is distributed proportionally to the N parameter and inversely proportional to the data 

quantity. With smaller data, the error did not exceed 0.1. 
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It became evident that the rate of change of the function plays an extremely significant 

role. We could observe how the transition from linear to quadratic, and from quadratic to 

exponential dependencies affects the error, which needs to be taken into account in 

research. 

4.3. The relationship between the coefficient and 𝒓𝟐 and 𝝆 

One of the methods for estimating the correlation coefficient is to compare it with other 

coefficients while varying the noise for different bijective relationships. We decided to 

conduct this experiment slightly differently: we compared our coefficient with the actual 

value of the determination coefficient and compared the square root of our coefficient with 

the Pearson coefficient. The first comparison was made due to the explicit similarity 

between η2 and r2. The second comparison was done because we have often encountered 

references in the literature that in the case of linear dependence, √η2 = 𝜌 [3, 4]. We decided 

to verify this relationship as follows: we calculated the Pearson coefficient not between x 

and y, but between f(x) and y, where f(x) is the specified relationship function. 

On the graph, each point corresponds to normally distributed noise (with a mean of zero, 

and the variable changing the standard deviation of the noise from 0 to 3), the independent 

feature x was generated from a normal distribution with a mean of 0, and a standard 

deviation of 2. We constructed a loop for noise values from 0 to 1 with a step of 0.01 (100 

points in total), on each of which we regenerated points to exclude the sampling factor. The 

graphs depict our coefficient, its square root, the determination coefficient, and the Pearson 

coefficient. The latter was calculated not between x and y, but between f(x) and y (Figures 

9-14).

Figure 8: The relationship between 𝜂2, 𝑟2, and ρ for a linear function. 



 
Figure 9: The relationship between 𝜂2, 𝑟2, and ρ for a quadratic function.

Figure 10: The relationship between 𝜂2, 𝑟2, and ρ for a polynomial function. 



 

Figure 11: The relationship between 𝜂2, 𝑟2, and ρ for a exponent function. 

 

Figure 12: The relationship between 𝜂2, 𝑟2, and ρ for a sinusoidal function. 



 

Figure 13: The relationship between 𝜂2, 𝑟2, and ρ for a step function. 

From the graphs, it is evident that our coefficient and its square root approximate the 

determination coefficient, which is the maximum Pearson correlation coefficient. Therefore, 

η2 can be used as 𝑟2, and η as ρ. 

5. Results 

Overall, we conducted three experiments. The first aimed to demonstrate the algorithm's 

speed and scalability for large datasets. The second sought to find the optimal value of 

parameter N for both small and large samples. In the third experiment, we explored the 

relationship of our coefficient with the coefficient of determination and the Pearson 

correlation coefficient. Additionally, we highlighted our coefficient's capability to capture 

nonlinear dependencies. 

In the first experiment, we evaluated the speed of our coefficient. We implemented two 

versions: in Python and R. We compared the first version only to the Pearson correlation 

coefficient and the second one additionally to RDC (as described in their paper). We decided 

not to compare it to other coefficients, as RDC had already been compared with most 

popular coefficients. Since our coefficient was theoretically supposed to be faster, we 

limited our comparison to this. 

The experiment was conducted with varying amounts of data: 1,000, 10,000, 100,000, 

and 1,000,000 (with an additional 10,000,000 in Python environment) randomly generated 

pairs of (𝑥𝑖 , 𝑦𝑖) Moreover, for each amount of data, we ran 250 iterations to obtain a better 

averaged estimate. Points were regenerated at each iteration to eliminate sample bias. 

The results of this experiment showed that our coefficient outperforms RDC in terms of 

speed and accordingly outperforms the other coefficients compared in their paper. On the 

other hand, our coefficient significantly lagged behind the Pearson correlation coefficient. 



Despite this, it is highly scalable and suitable for large datasets. For 10,000,000 data points 

in the Python environment, the average computation time of the algorithm did not exceed 

1.5 seconds, which we consider a remarkable result. 

Regarding the second experiment, we endeavored to experimentally determine the 

parameter N on which the accuracy of our coefficient estimation depends. Given that our 

coefficient approximates the coefficient of determination, we calculated the error (absolute 

difference between our coefficient and the coefficient of determination) experimentally 

since the coefficient of determination is known in our simulated data (the considered 

function is seen as the model). We split this overall experiment into three smaller ones: for 

small data (up to 5,000 inclusive), for medium data (10,000 points), and large data 

(100,000). 

The results on 10,000 points showed that with N = 250, the error remained below 0.05, 

which is generally acceptable. Furthermore, increasing N led to less accurate results, while 

decreasing N resulted in less reliable outcomes. 

The results on 100,000 points revealed that N started to play a significantly smaller role, 

and even with N = 1000, the error did not exceed 0.03. 

When it comes to small data, the experiment indicated that having 1,000 data points is 

sufficient to ensure that the error is less than 0.1, assuming the function grows slower than 

an exponent. For small data, the error decreases inversely proportional to N, where 

choosing an overly small N is not advisable, as the simple average estimate in this scenario 

would be inadequate. Experimentally, we concluded that the optimal N is approximately 50. 

In the following experiment, we examined our coefficient's ability to capture nonlinear 

dependencies excluding multivalued functions, as discussed earlier, as our coefficient 

cannot work with them. Instead of comparing to other coefficients, we chose to compare it 

to the coefficient of determination and the Pearson correlation coefficient. Given that our 

coefficient approximates the former and according to the works of Fisher and Renyi, the 

square root of our coefficient should approximate the supremum of the Pearson correlation 

coefficient. We calculated the latter not between x and y, as in that case, we wouldn't gain 

much information, but between the value of f(x) and y, where f(x) is the specified function. 

This allowed us to compare the value of our coefficient with the real correlation value and 

thereby confirm the connection of our coefficient with the Pearson correlation coefficient. 

We generated x as normally distributed with a mean of zero and a standard deviation of 

two. The noise followed a normal distribution with a mean of zero and a standard deviation 

varying from 0 to 3 (scaled to 0-1 in the graphs). The noise increment was 0.01, and the 

dataset consisted of 10,000 data points. 

From the graphs, it is evident that our coefficient and its square root well approximate 

the coefficient of determination and the Pearson correlation coefficient, respectively. This 

experiment demonstrated that we can use our coefficient as a nonlinear analogue to the 

Pearson correlation coefficient. Moreover, approximating the coefficient of determination 

offers a new tool for analysis, particularly useful for model construction. The coefficient of 

determination is a machine learning metric; it requires a model. It does not show data 

properties; it indicates how well a model can predict this data. With the correlation 

coefficient based on determination, we can evaluate the proportion of explained variance of 

the dependent feature through the independent one. Therefore, before model construction, 



we can assess how well we can train the model on this data and how well it will predict the 

target feature. 

6. Conclusions 

Using the theory of random processes, a grid was derived to approximate the random 

function of dependence between the independent and target features. Based on this grid 

and our definition of absence of correlation, a correlation coefficient was derived. Similar 

coefficients found before us were analyzed, as well as differences in approaches. 

The relationship between our coefficient and the determination coefficient was 

demonstrated, based on which a useful interpretation of our coefficient was shown. The 

connection of our coefficient with the determination coefficient and the Pearson coefficient 

was also demonstrated. An optimal parameter N, which affects the accuracy of the method, 

was selected. 

The properties of our coefficient were also investigated. These properties were used to 

compare our coefficient with others. The drawbacks of our coefficient can be identified as: 

not satisfying all of the Renyi's properties. The algorithm's speed and scalability on large 

data were also investigated. The coefficient performed very well. 

Its potential for use in machine learning tasks was also discussed. Considering its 

relationship with the determination coefficient, it becomes possible to assess the potential 

of the model and the data in general, namely the proportion of variance of the target feature 

that can be explained using the investigated independent feature. 
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