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Abstract 
The importance of this research lies in the growing reliance on solar energy as a key renewable energy 
source. Solar power plants offer low operational costs, ease of maintenance, and substantial reliability, 
making them an attractive option for clean energy production. However, the efficiency of these plants 
can be significantly influenced by external factors such as weather conditions and the physical 
characteristics of the solar panels. The paper elaborates on various forecasting horizons-ranging from 
very short-term to long-term-and discusses the suitability of different models like artificial neural 
networks, time-series forecasting, machine learning, and ensemble methods for these applications. 
Utilizing data from a solar power plant the study tests several regression models to identify the one with 
the best forecasting accuracy. The Gradient Boosting Regressor emerged as the most effective model, 
demonstrating its potential in accurately predicting solar power output. The methodology's success 
highlights the possibility of integrating solar power plants more efficiently into smart grid systems and 
optimizing energy management practices. The paper presents a robust method for real-time forecasting 
of solar power plant efficiency that could significantly benefit energy management and the integration 
of renewable energy sources into power systems. It opens avenues for further research into improving 
forecasting techniques and underscores the critical role of accurate prediction models in the 
advancement of renewable energy technologies. 
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1. Introduction 

With the growing popularity of clean energy, solar power plants have become one of the leading 
renewable sources [14]. Solar power plants have a fairly low cost, are easy to operate, and have 
high reliability and durability. This and a number of other economic factors have led to a 
significant increase in the number of households and communities in Ukraine equipped with solar 
power plants.  

However, due to a large number of external factors, the efficiency of solar power plants is quite 
unpredictable. Weather factors (solar radiation, air temperature, cloud cover, humidity) play a 
key role in their operation [13, 19]. The position of the solar panels themselves, their type and 
characteristics also have an impact. Therefore, an important task is to introduce systems for 
forecasting the generated electricity for more efficient energy management, as well as to simplify 
the process of integrating solar power plants into Smart Grid systems [5, 6, 21]. 
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Smart Grid systems are becoming increasingly relevant in the world of modern energy 
technologies, as they play a key role in transitioning to a sustainable and efficient energy 
infrastructure. Let's consider several aspects that highlight the importance and relevance of 
Smart Grid: 

1. Integration of renewable energy sources: Smart grids facilitate the more efficient 
integration of various renewable sources, such as solar panels and wind turbines, enabling 
quick response to changes in energy production, which is inherently variable in nature. 

2. Enhancing energy system reliability: Smart Grids ensure greater reliability of the energy 
system by early detection and automatic rectification of faults in the power grid. This 
helps minimize downtime and impacts on consumers. 

3. Efficiency in energy flow management: With the aid of modern data analysis and 
management technologies, Smart Grids allow for the optimization of energy distribution 
according to demand, time of day, and other factors, thereby reducing costs and energy 
consumption. 

4. Improvement of consumer experience: Smart meters and consumption management 
systems integrated into Smart Grids provide consumers with detailed information about 
their energy consumption, enabling them to better plan their expenses and usage. 

5. Climate change adaptation: Smart Grids play a crucial role in combating climate change by 
optimizing the use of renewable sources and reducing dependence on fossil fuels, thus 
contributing to the reduction of greenhouse gas emissions. 

6. Energy security: Smart Grids help ensure energy security at the national level by enabling 
efficient responses to energy crises and rapidly adapting resources in the face of energy 
challenges or instability. With analytical capabilities and real-time data, Smart Grids can 
redistribute energy within the grid, reducing the risk of major outages or supply 
disruptions. 

7. Engaging consumers in energy system management: Smart Grids empower consumers to 
become active participants in the energy market through home solar installations, energy 
storage systems, or participation in demand response programs. This not only improves 
energy efficiency but also promotes the decentralization of energy resources. 

Given these advantages, Smart Grids are a necessary condition for modern energy systems 
seeking stability, economic efficiency, and reduced environmental impact. These systems play a 
crucial role in shaping the future energy landscape and addressing global energy challenges. 

 

2. State of the art 

Currently, there are a large number of models and methods for predicting the efficiency of solar 
power plants [4]. Depending on the duration of forecasts, forecasting can be divided into: 

1. Very short term forecasting. This horizon focuses on immediate future predictions, 
ranging from seconds to less than 30 minutes. It's crucial for real-time energy 
management, enabling operators to respond swiftly to sudden changes in solar power 
generation. This forecasting is pivotal for maintaining grid stability, especially in systems 
with significant solar penetration, by aiding in the instantaneous balancing of supply and 
demand. Very short-term forecasts are utilized for dynamic grid operations, including 
real-time electricity dispatch, power smoothing, and PV storage control. They assist in 
optimizing the grid's responsiveness to fluctuations in solar energy production, ensuring 
efficient and reliable energy delivery. 



2. Short-Term forecasting. Short-term forecasting typically spans from 30 minutes to several 
hours or days. It's essential for day-to-day operational planning and energy market 
transactions. Accurate short-term forecasts help in scheduling power plant operations, 
managing energy storage systems, and facilitating efficient energy trading. Applications: 
This horizon supports economic load dispatch, power system operation, and the 
integration of renewable energies into power management systems. It helps utilities and 
grid operators plan for energy production, distribution, and consumption, minimizing 
operational costs and enhancing grid reliability [8]. 

3. Intra-Day Forecasting. Intra-day forecasting, covering a span of 1 to 6 hours, bridges the 
gap between short-term and medium-term horizons. It's particularly useful for managing 
energy supply and demand within the same day, offering insights into how solar power 
output will vary over several hours. This forecasting horizon is valuable for electricity 
trading, where energy prices fluctuate throughout the day, and for managing zone-specific 
electric loads. It aids in making informed decisions on energy procurement, storage, and 
distribution within daily operational cycles. 

4. Medium-Term Forecasting. Medium-term forecasting ranges from 6 to 24 hours, 
extending up to a week or month in some contexts. It provides a broader outlook on solar 
power generation, enabling strategic decisions related to maintenance scheduling, energy 
procurement, and system optimization. Utilities and energy managers use medium-term 
forecasts for maintenance planning of power systems, ensuring optimal operation of 
equipment and integration of solar power. It also supports better planning for energy 
trading and load forecasting over a week or month. 

5. Long-Term Forecasting. Long-term forecasts predict solar power generation beyond 24 
hours, often extending to months or a year. This horizon is critical for strategic planning, 
investment decisions, and policy formulation, offering a long-range view of energy 
generation trends and potential impacts on the grid. Long-term forecasting is used for 
capacity planning, investment analysis, and policy-making. It helps stakeholders 
anticipate future energy production, enabling informed decisions on infrastructure 
development, resource allocation, and renewable energy integration strategies. 

Depending on the required forecasting horizon and the available data, the required forecasting 
method will depend on the forecasting method. The methods can be divided into the following: 

• Artificial neural networks. ANNs are computational models inspired by the human brain's 
network of neurons. They consist of input, hidden, and output layers with interconnected 
nodes (neurons) that process data and can learn from it. ANNs are particularly effective 
in handling nonlinear and complex data patterns, making them ideal for forecasting tasks 
where traditional linear models fall short [3]. Typically used for short-term forecasting, 
ANNs can predict solar power output for a few hours to several days ahead, adapting to 
the dynamic nature of solar irradiance. 

• Time-series forecasting methods. This approach includes methods such as exponential 
smoothing, autoregressive moving average (ARMA), and autoregressive integrated 
moving average (ARIMA). Time series analysis aims to predict future values by analyzing 
patterns in past data [8]. It was found that the ARIMA model more accurately predicts the 
operation of a solar station for a 24-hour period compared to other models. 

• Machine learning. These methods rely on the ability of AI to learn from historical data and 
improve predictions through iterative learning [2]. The main methods in this category 
include multilayer perceptron neural networks (MLPNN), recurrent neural networks 



(RNN), and feed-forward neural networks. Machine learning is used for forecasting in 
different ranges - from 30 minutes to 24 hours. 

• Physical and statistical models. These methods, based on solar panel characteristics and 
historical data, use mathematical equations to extract patterns and correlations to reduce 
error and increase forecasting accuracy. These methods include curve fitting, moving 
average (MA), and autoregressive models (AR). Usually, these methods are used for 
forecasting from one day. The forecast can be extended for several months or years [4, 9]. 

• Ensemble methods combine multiple individual models to improve forecast accuracy and 
reliability. By leveraging the strengths and mitigating the weaknesses of each model, 
ensemble techniques often achieve better performance than any single forecasting 
method. This approach can integrate diverse models like ANNs, time-series methods, and 
other machine learning algorithms. While commonly applied to medium-term forecasting, 
ensemble techniques can be tailored for short-term and long-term forecasting, offering a 
versatile solution for various prediction needs. 

• Nowcasting (Intra-Hour Forecasting). Nowcasting focuses on predicting the immediate 
future, utilizing real-time data to make short-term predictions. This approach is crucial 
for applications where timely and accurate forecasts are essential, such as in managing 
solar power grids where sudden changes in solar irradiance can impact grid stability. Very 
short-term, concentrating on the imminent future from seconds to up to an hour, making 
it indispensable for operational decision-making in energy management and grid control. 

 

3. Statement of the Research Problem 

The primary objective of this research is to develop a robust method for real-time forecasting of 
solar power plant efficiency utilizing regression models. Given the unpredictable efficiency of 
solar power plants due to external factors like weather conditions and the physical characteristics 
of solar panels, it is crucial to enhance forecasting accuracy to support efficient energy 
management and integration into smart grid systems. The task involves testing various 
regression models, including Gradient Boosting Regressor, to determine which model provides 
the best accuracy in predicting solar power output. This research aims to provide insights into 
optimizing solar power plant operations and advancing renewable energy technologies. 

The subject of this research is the development and analysis of regression models for 
forecasting the efficiency of solar power plants. The study focuses on the impact of external 
factors, such as weather conditions and the state of solar panels, on the accuracy of predicting 
solar energy production. Particular attention is given to the adaptation and optimization of 
regression models, especially the Gradient Boosting Regressor, for real-time use within the 
context of energy management and integration of solar power plants into smart grid systems. 

The object of this research is solar power plants and their operation under various weather 
and operational conditions. The study explores the specifics and dynamics of the efficiency of 
solar panels, which are influenced by external factors such as solar radiation and temperature 
changes. The impact of these factors on energy production is analyzed, which is critically 
important for developing more accurate forecasting methods and optimizing the operation of 
solar power plants in the context of modernizing energy infrastructure. 

This research makes a significant contribution to the field of solar power plant efficiency 
forecasting by employing innovative regression models optimized for real-time operation. The 
core scientific novelty lies in the development of a methodology that integrates external factors, 
such as weather conditions and the condition of solar panels, directly into the forecasting model. 
Utilizing the Gradient Boosting method along with other regression models tailored to minimize 
forecasting errors, the study addresses key limitations of standard approaches that often fail to 



consider the complexity and dynamics of solar power plant operational characteristics. This 
approach can significantly enhance the accuracy of energy flow management in conditions of 
unstable energy production, which is crucial for the integration of solar power plants into smart 
grid systems and improving the overall efficiency of renewable energy utilization. 

4. Dataset 

The data on electricity generation and station temperature were obtained from a solar power 
plant located in Zelene village, Husiatyn district, Ternopil region (lat: 49.313965, long: 
26.098843). The station is shown in Figure 1. The rated capacity of the plant is 30kW. The 
generated energy is converted using 3 inverters. The output power data of the power plant is 
collected for each inverter separately. 

 

 
Figure 1: Photo of the solar power plant in Zelene village 

The forecasting uses data from a solar power plant obtained from January 1, 2019 to December 
31, 2022. The granularity of the data is 30 seconds. The data is available only for the period of the 
day when there was power at the inverters' output (practically equal to the duration of daylight 
hours). 

4.1. Factors affecting the forecast of solar power plant efficiency 

The Open Meteo website [10] was used to obtain historical weather indicators. Based on the 
literature analysis, a list of weather indicators that have a significant impact on the quality of 
electricity generation forecasts was identified: 

• air temperature (°C) 
• humidity (%) 
• atmospheric pressure(hPa) 
• wind speed at a height of 10 meters above the earth's surface (km/h) 
• percentage of cloudiness (%) 
• percentage of cloud transparency (%) 
• direct solar radiation (W/m²) 
• scattered solar radiation (W/m²) 

The granularity of the available data is 1 hour. To obtain historical data on the position of the 
sun in the specified coordinates (zenith, azimuth, and altitude), we used the Solcast.com website 
[17]. The following indicators were also used from this resource: 



• air temperature (°C) 
• air humidity (%) 
• atmospheric pressure (hPa) 
• radiation values obtained by the Clear Sky method (W/m²) [16] 

The granularity of the available data is 30 seconds. To check the existing dependence between 
the selected indicators and the efficiency of a solar power plant, a correlation matrix was built 
based on the Pearson correlation coefficient (Figure 2). 

 
 

Figure 2: Correlation matrix based on Pearson's correlation coefficient 

4.2. Dataset normalization 

Since the data have different granularity and duplicate indicators, the following steps were taken 
to normalize them: 

1. The total capacity of the solar power plant was calculated by summing the removal of 
individual inverters. 

2. The sun's azimuth is converted to a modulo value. Thus, a scale from 0 to 180 points was 
obtained, which corresponds to the deviation of the sun from the south (Figure 3). 

3. The average air temperature, humidity, and atmospheric pressure are calculated between 
Open Meteo and Solcast. 

4. Using the SunCalc library [18], we calculated the duration of daylight hours in minutes. 
5. All indicators are reduced to a granularity of one hour by calculating the average value. 



 
Figure 3: Scale of sun deviation from the south [15] 

As a result, we obtained a data set of 18840 records, which consists of the following data: 

• power of the solar station (W) 
• radiator temperature (°C) 
• module temperature (°C) 
• sunrise 
• sun azimuth 
• height of the sun above sea level 
• air temperature (°C) 
• air humidity (%) 
• atmospheric pressure (hPa) 
• wind speed (km/h) 
• percentage of cloud cover (%) 
• percentage of cloud transparency (%) 
• direct solar radiation (W/m²) 
• scattered solar radiation (W/m²) 
• radiation values obtained by the Clear Sky method (W/m²)  

The data granularity is 1 hour. 

5. Regression Model for Predicting the Efficiency of a Solar Power Plant 

One of the research objectives is to predict online performance, which is adjusted by updating 
weather indicators. Therefore, it was decided to use regression models for forecasting, which are 
faster than neural networks and their input data can be variable.  

To examine the regression models results quantity, Mean Squared Error (MSE), Mean Absolute 
Error (MAE), and Mean Absolute Percentage Error (MAPE) were used.  

MSE measures the average of the squares of the errors – that is, the average squared difference 
between the estimated values and the actual value. MSE is calculated as the mean of the squared 
differences between predicted and actual values. MSE is very sensitive to large errors due to 
squaring each term, which means it gives a relatively high weight to large errors. This property 
can be very useful when large errors are particularly undesirable.  

MAE measures the average magnitude of the errors in a set of predictions, without considering 
their direction (i.e., it takes the average over the absolute values of the errors). MAE is calculated 
as the mean of the absolute differences between predicted and actual values. MAE is particularly 



robust to outliers as it does not square the errors before summing them. It provides a linear score 
that reflects the average error magnitude. 

MAPE expresses the accuracy as a percentage, and it measures the average absolute percent 
error for each prediction error compared to the actual value. MAPE is calculated as the mean of 
the absolute differences between the predicted and actual values, divided by the actual values, 
typically expressed as a percentage. MAPE is easy to interpret as a percentage, which makes it 
straightforward for communicating model performance.  

The forecasting took place in several stages. 

1. The interquartile range (IQR) method was used to identify and remove outliers. 
2. The data was divided into training (January 1, 2019 - December 31, 2021) and test 

(January 1, 2022 - December 31, 2022) networks. Figure 4 shows the distribution of data 
by the training library. 

 
 

 
Figure 4: Data distribution by the educational library 

3. Additional time identifiers (hour, day, quarter) were created for the test dataset. 
4. Several regression models were used for forecasting. Each model is trained on a training 

dataset and makes predictions on a test dataset. Table 1 compares the quality metrics of 
the models used. 

5. The GridSearchCV function was used to select the model parameters with the best 
performance. 

6. Based on the best of the selected Gradient Boosting Regressor models, the forecasting was 
performed. The quality indicators were: 

Mean Squared Error: 488590.0169641469  
Mean Absolute Error: 526.9728465745633  
Mean Absolute Percentage Error: 184.08511806925392  

 
Table 1 

Comparison of quality metrics of the models used 

Model MSE MAE MAPE 
LightGBM 568934.1545839079 528.9011747899133 154.2357938049348 

XBGRegressor 650515.7686498845 567.5401797341103 186.9378575677895 

CatBoost 604615.6297283806 564.6730864737467 200.8061044696372 

Random Forest 704809.2438455686 556.3300289324546 138.8617765424779 

Gradient Boosting 497419.2943262356 519.460641187808 164.4226289699118 



AdaBoost 585418.3816034624 616.2476624437463 293.4843335358631 

SVM 1129798.3849226362 728.1819757662427 310.78685738411315 

 
Figure 5 shows a comparison of real and predicted data. Forecasting errors were calculated 

and analyzed by day. 
 
 

 
Figure 5: Comparison of real and predicted data 
 

7. Future time stamps and time features for the future period were generated, based on 
which the forecasting was performed. The forecasting results are shown in Figure 6. 

 
 

 
Figure 6: Forecasting results 

Using the Gradient Boosting Regressor regression model, we obtained fairly accurate 
forecasting results. Larger deviations in winter are explained by the shorter daylight hours when 
solar panels are in operation. Accordingly, this leads to a reduction in the amount of data on which 
to base forecasts. This is also affected by stable weather and the presence of snow on the panels, 
which reduces their efficiency. Other researchers have also noted similar deviations in their work 
[1, 7, 12]. 

 

Conclusions 

This study presents a novel method for real-time forecasting of solar power plant efficiency, 
leveraging regression models to predict performance based on historical weather data and the 
solar power plant's operational data. By examining the forecasting accuracy of various models, 
the research identifies the Gradient Boosting Regressor as the most effective, enabling more 
efficient integration of solar power into smart grid systems and optimizing energy management 
practices. 

The research emphasizes the importance of accurate and real-time efficiency predictions for 
solar power plants, which face efficiency variability due to external factors like weather 
conditions and the physical characteristics of solar panels. Through comprehensive data 



normalization and testing of several regression models, the study offers insights into the critical 
role of weather indicators and solar panel positioning in solar power generation. It highlights the 
potential of regression models, particularly the Gradient Boosting Regressor, in enhancing 
forecasting accuracy, thereby supporting better energy management and integration of 
renewable energy sources into power systems. 

The method developed in this study is a significant contribution to the field of renewable 
energy, providing a robust framework for predicting the efficiency of solar power plants in real-
time. It opens up new possibilities for research into improving forecasting techniques and 
underscores the vital importance of accurate prediction models in advancing renewable energy 
technologies. Future efforts should focus on addressing the challenges of seasonal variations and 
external factors like snow coverage to further refine predictive capabilities. 
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