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Abstract 
This paper investigates the application of Long Short-Term Memory (LSTM) neural networks as 
Maximum Power Point Tracking (MPPT) controllers for solar panels. Traditional MPPT 
algorithms, including Perturb and Observe (P&O), Incremental Conductance (IncCond), and Hill 
Climbing (HC), are compared with LSTM-based approaches in terms of accuracy, efficiency, and 
adaptability. Minute-level data on voltage, current, power output, temperature, and solar 
irradiance from diverse locations are used to train and evaluate the LSTM model. Results 
demonstrate that LSTM-based MPPT controllers outperform traditional algorithms, offering 
superior tracking accuracy and adaptability to dynamic environmental conditions. The study 
highlights the significance of LSTM-based controllers in enhancing solar panel efficiency and 
maximizing energy harvesting. This research contributes to the advancement of renewable 
energy technologies and underscores the potential of artificial intelligence in optimizing solar 
energy systems. 
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1. Introduction 

The utilization of renewable energy sources has become increasingly imperative in light of 
global efforts to mitigate climate change and reduce dependency on fossil fuels. Among 
these sources, solar energy holds particular promise due to its abundance and 
sustainability. Maximizing the efficiency of solar panels plays a crucial role in harnessing 
this energy resource effectively for sustainable power generation. 

The transition towards renewable energy sources is driven by the need to mitigate 
environmental degradation caused by traditional energy production methods. Solar energy, 
in particular, offers a clean and abundant alternative to fossil fuels. However, the efficiency 
of solar panels, which directly impacts energy output, is paramount for ensuring the 
viability of solar power as a sustainable energy solution [1, 2, 3]. Thus, efforts to enhance 
solar panel efficiency are essential for advancing renewable energy utilization and reducing 
carbon emissions. 
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Maximizing the power output of solar panels is inherently challenging due to variations 
in environmental conditions such as sunlight intensity and temperature. Maximum Power 
Point Tracking (MPPT) algorithms are instrumental in optimizing solar panel performance 
by continuously adjusting the operating point to extract maximum power from the solar 
array. Traditional MPPT techniques, including Perturb and Observe (P&O) [4], Incremental 
Conductance (IncCond) [5], and Hill Climbing (HC) [6], have been widely employed for this 
purpose. However, these methods have inherent limitations in terms of accuracy, efficiency, 
and adaptability to changing environmental conditions [7]. 

In recent years, artificial intelligence (AI) techniques have emerged as promising tools for 
improving the efficiency of renewable energy systems. Long Short-Term Memory (LSTM) 
neural networks, a type of recurrent neural network (RNN), offer significant potential for 
enhancing MPPT precision and adaptability in solar panel systems. Unlike traditional MPPT 
algorithms, LSTM networks can effectively capture temporal dependencies in the input data 
and learn complex patterns, enabling more accurate and dynamic control of solar panel 
operation [8, 9]. The application of LSTM neural networks represents a novel approach to 
addressing the challenges associated with traditional MPPT techniques, thereby unlocking 
new opportunities for optimizing solar energy harvesting. 

This research paper aims to investigate the efficacy of LSTM-based MPPT controllers for 
enhancing solar panel efficiency. The paper is structured as follows: after this introduction, 
Section 2 provides a comprehensive review of related works, including traditional MPPT 
techniques and recent advancements in AI-based approaches. Section 3 outlines the 
methods and materials employed in the research, including data collection, LSTM 
architecture, and training procedures. Following this, Section 4 presents the experimental 
results, comparing the performance of LSTMbased MPPT controllers with conventional 
algorithms. Section 5 discusses the implications of the findings, including limitations, 
advantages, and potential applications of LSTM-based MPPT controllers. Finally, Section 6 
concludes the paper by summarizing key findings and emphasizing the significance of 
LSTM-based approaches for enhancing solar panel efficiency. 

2. Related Works 

Maximizing the power output of solar panels has been a subject of extensive research, 
leading to the development of various Maximum Power Point Tracking (MPPT) techniques. 
This section provides a thorough survey of both traditional MPPT algorithms and recent 
advancements in AI-based approaches. 

2.1. Survey of MPPT Techniques 

Traditional MPPT algorithms play a fundamental role in optimizing solar panel 
performance under varying environmental conditions. Perturb and Observe (P&O), 
Incremental Conductance (IncCond), and Hill Climbing (HC) are among the most commonly 
used techniques in this regard. 

Perturb and Observe (P&O) [4] is a simple yet widely employed MPPT method that 
perturbs the operating point of the solar panel and observes the resulting change in power 
output to determine the direction of adjustment (Figure 1). While P&O is straightforward 



to implement, it may suffer from oscillations around the maximum power point and slow 
convergence under rapidly changing conditions. 

Incremental Conductance (IncCond) [5] algorithm utilizes the derivative of the power-
voltage characteristic curve to dynamically adjust the operating point towards the 
maximum power point (Figure 2). Compared to P&O, IncCond offers improved tracking 
accuracy and faster convergence, especially under varying irradiance levels. However, it 
may exhibit instability issues in certain scenarios, particularly when the system operates 
near the maximum power point. 

Hill Climbing (HC) algorithm [6] iteratively adjusts the operating point in the direction of 
increasing power output until the maximum power point is reached (Figure 3). HC is known 
for its simplicity and robustness in various environmental conditions. However, it may 
suffer from slow convergence and susceptibility to local maxima, leading to suboptimal 
performance, especially under rapidly changing conditions. 

 
 

 

Figure 1: Flowchart of Perturb and Observe (P&O) method [10]. 



2.2. Advancements in AI for MPPT 

Recent advancements in artificial intelligence (AI) have revolutionized maximum power 
point tracking (MPPT) techniques for photovoltaic (PV) systems. Several studies have 
explored the application of AI algorithms, particularly Long Short-Term Memory (LSTM) 
neural networks, to enhance MPPT accuracy and efficiency, especially in challenging 
scenarios such as partial shading conditions (PSC) and dynamic environmental changes. 
In a comprehensive review, (Seyedmahmoudian et al., 2016) [13] discussed various AI-
based MPPT techniques, highlighting their robustness and reliability under diverse 
conditions. The review categorized AI methods based on their performance and 
applicability, providing valuable insights for researchers and engineers working with PV-
based power systems. Another survey by (Raj et al., 2022) [14] provided a thorough 
examination of AI-based MPPT algorithms in PV systems, categorizing them based on their 
application strategies and analyzing their merits and demerits. The study aimed to assist 
users in selecting the most suitable AI-based MPPT technique according to their specific 
project requirements and system constraints. 

 

 

Figure 2: Flowchart of Incremental Conductance (IncCond) method [11]. 

The study by (Aouchiche et al., 2018) [15] proposed a novel approach using the Moth-
Flame Optimization algorithm (MFO) for global MPPT in PV plants under partial shading. 



By combining Global MPPT (GMPPT) and Distributed MPPT (DMPPT) techniques, the 
proposed method effectively mitigated the drawbacks of PSC and improved PV system 
performance. Furthermore, (Amrouche et al., 2007) [16] proposed an AI-based Perturb and 
Observe (P&O) MPPT method for PV systems, aiming to overcome the drawbacks of 
traditional algorithms such as slow response speed and oscillations around the maximum 
power point. By utilizing Artificial Neural Networks (ANN) to approximate the perturbation 
step, the proposed method achieved improved performance and stability. 

Additionally, (Kumar et al., 2022) [8] introduced a novel MPPT controller based on a Rain 
Optimization Algorithm (ROA) and Bidirectional LSTM (Bi-LSTM) neural network for 
gridconnected hybrid solar-wind systems. The proposed controller effectively tracked the 
maximum power from solar PV and wind sources under varying climatic conditions, 
contributing to stable power flow and grid integration. Lastly, (Pengcheng et al., 2021) [9] 
conducted simulation experiments using LSTM neural networks and attention mechanisms 
for MPPT in PV systems, demonstrating the potential of AI-based approaches in improving 
power generation efficiency. 

 

Figure 3: Flowchart of Hill Climbing (HC) method [12]. 

The study highlighted the importance of addressing data nonlinearity and feature 
sparseness in real-world scenarios to enhance MPPT performance. 

Studies have demonstrated the effectiveness of LSTM-based MPPT controllers in 
improving tracking accuracy and adaptability compared to traditional methods. By 
leveraging historical data and learning from past experiences, LSTM networks can predict 
the optimal operating point of solar panels more accurately, even under rapidly changing 
environmental conditions. Additionally, LSTM-based approaches offer potential for real-



time optimization and can adapt to fluctuations in solar irradiance and temperature more 
effectively than conventional algorithms. 

3. Methods and Materials 

This section outlines the methodology employed for data collection, LSTM architecture, and 
training procedures for LSTM-based MPPT controllers in solar panel systems. 

3.1. Data Collection 

Data collection is a crucial step in training and validating LSTM-based MPPT controllers. To 
ensure comprehensive coverage of environmental conditions, data is collected from various 
solar power plants located across different regions, such as Europe, North America and 
Oceania. The collected dataset includes measurements of voltage, current, and power 
output of solar panels, recorded at regular intervals. Additionally, external factors such as 
temperature and solar irradiance are incorporated into the dataset to capture their 
influence on solar panel performance. 
By gathering data from diverse geographical locations and environmental conditions, the 
dataset provides a comprehensive basis for training and testing LSTM models for MPPT 
control. A sample of the collected data is shown in the Table 1. 

Table 1 

Sample solar power plant data with 1-minute intervals. 

Date Voltage Current Power Temperature Irradiance 

2023-06-01 

10:00:00 
112.76 2.49 281.58 25 563.67 

2023-06-01 

10:01:00 
113.09 2.48 280.88 25 565.55 

2023-06-01 

10:02:00 
113.53 2.51 285.57 25 567.43 

2023-06-01 

10:03:00 
113.85 2.50 284.80 25 569.31 

2023-06-01 

10:04:00 
114.21 2.50 286.11 25 571.18 

2023-06-01 

10:05:00 
114.56 2.51 288.48 25 573.06 

2023-06-01 

10:06:00 
114.95 2.50 287.68 25 574.94 

2023-06-01 

10:07:00 
115.31 2.50 289.39 25 576.82 

2023-06-01 

10:08:00 
115.75 2.49 289.33 25 578.70 

2023-06-01 

10:09:00 
116.13 2.48 288.35 25 580.58 

2023-06-01 

10:10:00 
116.46 2.51 293.33 25 582.46 



3.2. LSTM Architecture and Functioning 

Long Short-Term Memory (LSTM) neural networks are a type of recurrent neural network 
(RNN) designed to capture long-term dependencies in sequential data. LSTM networks are 
particularly well-suited for processing time-series data, making them suitable for dynamic 
MPPT control in solar panel systems. The architecture of an LSTM network consists of 
multiple memory cells and gating mechanisms that regulate the flow of information through 
the network. This allows LSTM models to retain information over extended time periods 
and learn complex patterns in the input data [17]. 

In the context of MPPT control, LSTM models function by processing historical data of 
solar panel performance and environmental conditions to predict the optimal operating 
point for maximizing power output. By leveraging past observations, LSTM networks can 
adaptively adjust the operating point in response to changing environmental conditions, 
thus improving the efficiency of solar panel systems. 

3.3. Training and Implementation 

The training of LSTM networks for MPPT control involves several steps. Firstly, the 
collected dataset is preprocessed to remove noise and outliers and normalize the input 
features. Next, the dataset is partitioned into training, validation, and testing sets to 
facilitate model evaluation. The LSTM network is then trained using the training data, with 
the objective of minimizing the prediction error between the actual and predicted 
maximum power points. 

After training, the LSTM model is integrated into the control system of solar panel arrays. 
Real-time data from sensors in a simulated environment measuring voltage, current, 
temperature, and solar irradiance are fed into the LSTM model, which generates predictions 
of the optimal operating point. These predictions are then used to dynamically adjust the 
operating parameters of the solar panels, thereby maximizing power output. 

4. Experiment 

This section elucidates the experimental procedures employed to evaluate the performance 
of LSTM-based MPPT controllers in solar panel systems. 

4.1. Parameter Selection and Control Mechanism 

The selection of input parameters and the design of the output control mechanism are 
crucial aspects of developing an effective LSTM-based MPPT controller. In our case the input 
parameters include measurements of solar irradiance, temperature, voltage, and current, 
which are essential for accurately predicting the maximum power point of the solar panel. 
Additionally, historical data of power output and environmental conditions are used to 
capture temporal dependencies and improve prediction accuracy. 

The output control mechanism of the LSTM model involves determining the optimal 
operating point of the solar panel based on the predicted maximum power point. This 
involves adjusting the duty cycle of a DC-DC converter or controlling the voltage and current 
levels to maximize power output. The design of the output control mechanism aims to 
dynamically adapt the operating parameters of the solar panel system in response to 
changing environmental conditions, thereby optimizing energy harvesting efficiency. 



4.2. Training Procedure 

The training procedure for the LSTM model involves several steps to ensure optimal 
performance and generalization ability. Firstly, the collected dataset is divided into training, 
validation, and testing sets using a suitable partitioning strategy. Between random sampling 
and time-based splitting the latter was chosen to maintain the continuity among the 
datapoints which gives the LSTM more opportunities to learn repeating patterns in the data. 
The training set is used to update the parameters of the LSTM network through 
backpropagation and gradient descent, 
while the validation set is utilized to monitor model performance and prevent overfitting. 

During training, hyperparameters such as learning rate, batch size, and number of epochs 
are tuned to optimize model performance. Regularization techniques such as dropout and 
early stopping are also employed to prevent overfitting and improve generalization ability. 
Once training is complete, the trained LSTM model is evaluated on the testing set to assess 
its performance in unseen data. 

4.3. Fine-tuning of the LSTM Model 

Fine-tuning the LSTM model is an iterative process aimed at improving its performance in 
MPPT control [18]. This involves adjusting hyperparameters, retraining the model with 
additional data, and fine-tuning the network architecture to better capture complex 
patterns in the input data. Between fine-tuning techniques such as grid search and Bayesian 
optimization, grid search was employed due to it’s simplicity to systematically explore the 
hyperparameter space and identify the optimal configuration for the LSTM model. Fine-
tuning the LSTM model is essential for achieving high accuracy and robustness in real-world 
applications of solar panel systems. 

5. Results 

This section presents the experimental findings obtained from comparing the performance 
of LSTM-based MPPT controllers with conventional algorithms, along with an evaluation of 
the accuracy, efficiency, and adaptability of the LSTM model under various conditions. 

5.1. Experimental Findings 

The averaged output of a photovoltaic system with different MPPT controllers across 
different times of day is shown in the Table 2. The experimental results demonstrate the 
efficacy of LSTMbased MPPT controllers in optimizing solar panel performance compared 
to traditional algorithms such as Perturb and Observe (P&O), Incremental Conductance 
(IncCond), and Hill Climbing (HC). The LSTM-based controller exhibits superior tracking 
accuracy and adaptability to changing environmental conditions, resulting in higher energy 
yields across different scenarios. 

  



Table 2 

Solar photovoltaic generation (W) with different MPPT controllers 

Time of Day Perturb and Observe Incremental Conductance Hill Climbing LSTM-based 

approach 
00:00 0.00 0.00 0.00 0.00 

01:00 0.00 0.00 0.00 0.00 
02:00 0.00 0.00 0.00 0.00 
03:00 0.00 0.00 0.00 0.00 
04:00 0.00 0.00 0.00 0.00 
05:00 0.00 0.00 0.00 0.00 
06:00 15.83 17.55 16.69 19.55 
07:00 93.74 103.94 98.83 115.75 
08:00 175.17 194.23 184.67 216.30 
09:00 211.86 234.92 223.36 261.60 
10:00 234.98 260.56 247.73 290.15 
11:00 247.04 273.94 260.45 305.05 
12:00 251.32 278.68 264.96 310.33 
13:00 246.04 272.82 259.39 303.81 
14:00 240.01 266.13 253.03 296.36 
15:00 228.95 253.87 241.37 282.71 
16:00 211.86 234.92 223.36 261.60 
17:00 170.64 189.22 179.90 210.71 
18:00 94.74 105.06 99.88 116.99 
19:00 42.97 47.65 45.30 53.06 
20:00 0.00 0.00 0.00 0.00 
21:00 0.00 0.00 0.00 0.00 
22:00 0.00 0.00 0.00 0.00 
23:00 0.00 0.00 0.00 0.00 

Under varying solar irradiance levels and temperature gradients, the LSTM-based MPPT 
controller consistently outperforms traditional algorithms in maintaining the solar panel 
operating point at or near the maximum power point. This is evidenced by the higher power 
output achieved by the LSTM-based controller compared to conventional methods, 
particularly during transient conditions and partial shading events. 

5.2. Evaluation of Accuracy, Efficiency, and Adaptability 

The comparison of MPPT controllers’ performance on a cloudless day is shown on Figure 4. 
However, the accuracy of the LSTM model is assessed based on its ability to predict the 
maximum power point of the solar panel accurately under diverse environmental 
conditions. Comparative analysis with traditional algorithms reveals that the LSTM-based 
MPPT controller achieves higher accuracy in tracking the optimal operating point, resulting 
in increased energy harvesting efficiency. For instance, during the hours with variable solar 
irradiance, the LSTM-based MPPT controller managed to produce 19.01% more power than 
P&O controller, 10.19% more power than IncCond controller and 14.62% more power than 
HC controller. The LSTM-based controller exhibits robustness in adapting to rapid 
fluctuations in environmental conditions, effectively optimizing power output and 
mitigating the effects of partial shading and other transient phenomena. During the ideal 
conditions all controllers operate within the margin of error from each other. 



 

Figure 4: Comparison of solar panel output with different MPPT controllers. 

Furthermore, the efficiency of the LSTM model is evaluated in terms of its computational 
complexity and real-time performance. Despite the additional computational overhead 
associated with training and implementing LSTM networks, the experimental results 
demonstrate that the LSTM-based MPPT controller maintains high efficiency in predicting 
the maximum power point and dynamically adjusting the operating parameters of the solar 
panel system. 

Overall, the experimental findings underscore the effectiveness of LSTM-based MPPT 
controllers in enhancing solar panel efficiency and energy harvesting capabilities, thereby 
contributing to the advancement of renewable energy technologies. 

6. Discussions 

This section engages in discussions surrounding the limitations and challenges encountered 
during experimentation, interpretation of findings, analysis of advantages and 
disadvantages of using LSTM neural networks for MPPT control, and proposes future 
research directions in the field. 

6.1. Limitations and Challenges 

Despite the promising results obtained, several limitations and challenges were 
encountered during the experimentation phase. One notable challenge is the complexity of 
training LSTM networks, which requires large amounts of data and computational 
resources. Additionally, the generalization ability of the LSTM model may be limited by the 
specific conditions and datasets used for training, leading to potential performance 
degradation in real-world applications. 



6.2. Interpretation of Findings 

The experimental findings underscore the potential of LSTM-based MPPT controllers in 
significantly improving solar panel efficiency and energy harvesting capabilities. By 
leveraging the temporal dependencies in input data, LSTM networks demonstrate superior 
accuracy and adaptability compared to traditional MPPT algorithms. The interpretation of 
findings suggests that LSTM-based approaches hold promise for enhancing the 
performance of solar panel systems under diverse environmental conditions, contributing 
to the advancement of renewable energy technologies and sustainability efforts. 

6.3. Advantages and Disadvantages 

The analysis of advantages of using LSTM neural networks for MPPT control highlights their 
ability to capture long-term dependencies and complex patterns in time-series data, 
enabling more accurate and dynamic control of solar panel systems. Additionally, LSTM-
based approaches offer potential for real-time optimization and adaptability to changing 
environmental conditions. However, disadvantages such as computational complexity, 
requirement for extensive training data, and potential overfitting remain challenges to be 
addressed. 

6.4. Future Research Directions 

Future research in the field of LSTM-based MPPT controllers may explore potential 
applications, scalability, and hybrid approaches to further enhance performance and 
applicability. One direction is the investigation of hybrid models that combine traditional 
MPPT algorithms with LSTM-based approaches to leverage the strengths of both methods. 
Additionally, research on optimizing the computational efficiency of LSTM networks and 
improving generalization ability in realworld scenarios is warranted. Furthermore, 
scalability and deployment of LSTM-based MPPT controllers in large-scale solar panel 
systems merit exploration to facilitate widespread adoption and maximize energy 
harvesting efficiency. 

7. Conclusions 

This section provides a summary of the key findings and contributions of the study, 
emphasizing the significance of LSTM-based MPPT controllers in enhancing solar panel 
efficiency and contributing to sustainable energy production. 

7.1. Key Findings and Contributions 

In summary, the study investigated the efficacy of LSTM-based MPPT controllers for 
optimizing solar panel performance. Experimental results demonstrated that LSTM-based 
controllers outperform traditional MPPT algorithms in terms of accuracy, efficiency, and 
adaptability. By leveraging the temporal dependencies in input data, LSTM networks 
accurately predict the maximum power point of solar panels under diverse environmental 
conditions, thereby maximizing energy harvesting efficiency. The study contributes to 
advancing the field of renewable energy technologies by showcasing the potential of AI-
based approaches in enhancing solar panel efficiency. 



7.2. Significance of LSTM-based MPPT Controllers 

The significance of LSTM-based MPPT controllers lies in their ability to address the inherent 
challenges of traditional algorithms and improve the efficiency of solar panel systems. By 
leveraging the capabilities of LSTM neural networks, these controllers offer enhanced 
accuracy and adaptability, enabling more effective utilization of solar energy resources. 
LSTM-based MPPT controllers play a crucial role in advancing sustainable energy 
production by maximizing the power output of solar panels and reducing dependency on 
fossil fuels. As such, they represent a promising avenue for realizing the transition towards 
a more sustainable and environmentally friendly energy future. 
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