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Abstract 
Hopfield networks, renowned for their associative memory capabilities, have been extensively 
studied since their inception. Recent advancements in activation functions have sparked 
interest in exploring their applicability within the framework of these networks. This paper 
investigates the integration of chaotic activation functions into Hopfield networks and their 
implications on network dynamics and performance. 
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1. Introduction 

In deep learning, activation functions play a key role in transmitting signals between 

layers of neurons. While functions such as sigmoid or hyperbolic tangents have been 

popular in the past, recent research has emphasized the benefits of using chaos-based 

activation functions [1]. Chaos-based functions exhibit properties that facilitate faster and 

more efficient convergence during neural network training. They allow to increase the 

search area for optimal model parameters, helping to reduce the problem of getting stuck 

in local minima and providing a more stable learning process [2, 3]. 

This can lead to improved prediction quality and reduced time required for training 

deep models. Moreover, the use of chaos in activation functions can help solve the 

problem of training reproducibility, as these functions show less sensitivity to initial 

conditions [4]. However, it should be borne in mind that the use of chaos-based activation 

functions may require more complex optimization methods and increase computational 

resource requirements. 

One of the mathematical models of neural network theory is the Hopfield model. A 

Hopfield neural network is a type of recurrent, fully connected, artificial neural network 
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with a symmetric matrix of connections. In the course of operation, the dynamics of such 

networks converge to one of the equilibrium positions. These equilibrium positions are 

local minima of a functional called the network energy (in the simplest case, local minima 

of a negatively defined quadratic form on an n-dimensional cube). Such a network can be 

used as an auto-associative memory, as a filter, and to solve some optimization problems. 

Unlike many neural networks that work until a result is obtained after a certain number of 

cycles, Hopfield networks work until an equilibrium is reached, when the next state of the 

network is equal to the previous one.  This model describes the process of training and 

subsequent pattern recognition. 

In Hopfield models, activation functions are used to model the behavior of neurons in 

the brain. Although linear or sigmoidal activation functions are commonly used, some 

studies show that the use of chaotic activation functions can lead to interesting results [5]. 

For example, chaotic functions can add a stochastic element to the problem-solving 

process, which can be useful for some classes of problems, such as optimization or pattern 

recognition, where diversity and dynamics are important [6]. 

The use of chaotic activation functions can also improve the performance of Hopfield 

networks in solving problems with a large number of local minima. Chaotic functions can 

help in finding global optima due to their more complex and random nature [7]. But the 

use of chaotic activation functions can also complicate training and increase 

computational costs, as they require more complex optimization and processing methods. 

An additional advantage of using chaotic activation functions in Hopfield networks is 

their ability to create more complex dynamic dependencies between neurons. This can 

lead to an improvement in the network's ability to adapt to changes in input data or to 

different environmental conditions. Such chaotic dependencies can help the model 

reproduce complex dynamic processes such as memory or bias learning [8, 9]. 

It is important to keep in mind that the use of chaotic activation functions requires 

additional careful tuning of model parameters and selection of appropriate training 

methods. Incorrect tuning can lead to unpredictable network behavior or failures in the 

learning process. It should also be borne in mind that chaotic activation functions may be 

less effective in tasks requiring high accuracy or stability, as their nature may lead to 

greater variability in results. 

The need for a deeper study of the use of chaotic activation functions in Hopfield 

networks is becoming increasingly important due to the growing interest in neural 

networks and their potential applications in complex information processing tasks. 

Although some studies have already shown the promise of this approach, there is 

insufficient coverage of this topic in the scientific literature. It is important to conduct 

more in-depth experimental and theoretical research to explore the potential advantages 

and limitations of using chaotic activation functions in Hopfield networks [10, 11]. 

Understanding the dynamics of such networks with chaotic activation functions can 

lead to important discoveries in the areas of information storage and recovery, as well as 

in working with large data sets. 



2. Chaos in Hopfield networks 

Let the variable x(t) denote the activity of the neuron at time t. The state x(t) = 1 

corresponds to the "excitation" state, and the state x(t) = -1 corresponds to the 

"inhibition" state. Let h(t) be an external influence on the neuron, for example, from other 

neurons. For convenience, we assume that time is discrete (t = 0, 1, 2,...). In [12], it was 

proposed that the evolution of a neuron is determined by a dynamical system, which is a 

piecewise linear, piecewise continuous one-dimensional function: 

𝑥(𝑡 +  𝑙)  =  𝐹(𝑥(𝑡), ℎ(𝑡)) (1) 

This family of functions is defined by the function K(h) of the slope angle. This 

dependence must satisfy the following conditions: 1) parity K(-h) = K(h); 2) monotonic 

decrease at h > 0 (and, therefore, monotonic increase at h < 0); 3) K(0) = 2. All these 

requirements are met for the function 

𝐾(ℎ) =
2

1 + |ℎ|/𝜇
 

(2) 

The dynamics of a formal neuron is determined by a ratio: 

𝑥(𝑡 + 1) = {
1, ℎ(𝑡) > 0

−1, ℎ(𝑡) < 0
 

(3) 

That is, without any transient process, x(t) takes the value +1 or - 1 regardless of the 

neuron's state at the previous moment.  

It is known that a real neuron is an extremely complex system of inertia [13, 14, 15, 16]. 

Its processes have characteristic times ranging from units to hundreds (or more) of 

milliseconds [17, 18, 19, 20]. In [12], it was assumed that at a large value of external 

influence h, the neuron "quickly" enters the state of excitation, while at lower values, the 

speed of transition to the state of excitation decreases. This is taken into account in the 

above chaotic Izhikevich activation function in (1), because as h decreases, K(h) increases 

and the transition time increases in (2), although the only special point x = 1 is still stable. 

When K(h) passes through 1, x = 1 loses stability and the neuron's dynamics becomes 

chaotic. 

The above scenario of the transition from order to chaos in (3) is observed in many 

discontinuous or sharp-vertex functions and is called a homoclinic explosion [21]. 

Previous studies have shown that the results are weakly dependent on the specific type of 

the function K(h) if this scenario is chaos. The most important parameter to display is only 

the value of h = p, in which K(h) = 1, i.e., at which the transition to chaos occurs. 

3. Comparison of activation functions 

Differentiable activation functions in neural networks have a number of significant 

advantages over their undifferentiable counterparts. First of all, they allow efficient use of 

optimization algorithms, such as back-propagation, to train the network. The smooth 

nature of differentiable functions allows you to find optimal parameters by searching for 

gradients, which simplifies the training process and improves the convergence rate. 



It is important to keep in mind that differentiable activation functions allow the use of 

regularization methods that reduce network overtraining and improve its overall 

generalization ability. For example, you can apply L1 or L2 regularization to the model 

weights, which helps to control their complexity and avoid overfitting. 

In addition, differentiable activation functions provide a smooth and continuous 

relationship between the network's inputs and outputs, which facilitates smooth 

transitions between values and eases optimization processes. They also allow the use of 

more powerful optimization algorithms, such as adaptive gradient descent methods, 

which contributes to faster and more efficient network convergence. 

The chaotic Izhikevich activation function described in the previous section has a 

drawback, it is not differentiable for small values of h(t). This drawback can be solved by 

replacing the linear function with a parametric Bézier function (check Figure 1). Such a 

replacement allows to ensure the differentiability of activation functions by fulfilling the 

condition on the bijectionality of the equation x(p), where x is a vector of input values and 

p is the parameters of the Bézier function. 

 

 

Figure 1: The chaotic Izhikevich activation function and its modified version with a 

parametric Bezier curve 

The following experiment was conducted to compare the activation functions of the 

Hopfield network - a signum, a chaotic Izhikevich activation function, and its differentiable 

modification. The input data were samples from normal distributions 𝑁(𝜇, 𝜎2) of two 

classes. The parameters μ and σ2 were chosen to cover a variety of cases of intersection of 

the distributions. Training images were built on the training data according to each 

category of binary classification, and the quality of the models was evaluated on the test 

data using Leave-One-Out validation, with the F1-score as the target metric. 

 



 

 

Figure 2: Samples for binary classification from normal distributions with the same 

variance and different mathematical expectation 

 

 

Figure 3: Samples for binary classification from normal distributions with the same 

mathematical expectation and different variance 

The null hypothesis is that the activation functions do not affect the model results. The 

alternative hypothesis is that chaotic activation functions produce better results. 

Consider the case when the distributions intersect, 𝜇1 = 0.4, 𝜇2 = 0.6, 𝜎1
2 = 𝜎2

2 = 0.05. 

After 100 experiments, using the signum as an activation function, an average F1-score of 



0.81 was obtained. Using statistical power, the required number of experiments for the 

incremental increase to the mean value of the F1-score to be significant can be obtained. 

Accordingly, at least 23664 experiments are needed for each group for the z-test to be 

significant for an increase of at least 1%. 

24000 experiments were conducted for each of the activation functions compared 

(signum, chaotic Izhikevich activation function and its differentiable modification), and 

calculated F1-scores for each experiment. The average value of the F1-score for the 

experiments with the signum was 0.9, with the chaotic Izhikevich activation function was 

0.91, and with the differentiable modification was 0.911. After that, z-tests were 

performed for each pair of experiments (check Table 1). 

Table 1 

Results of z-tests for experiments with activation functions 

N Title z-statistics p-value 

1 sign_vs_izh -4.8446 < 0.0001 
2 sign_vs_bezier -5.022 < 0.0001 
3 izh_vs_bezier -1.5722 0.1158 

 
Both samples with chaotic functions are statistically significantly different from the 

sample of experiments with signum, but do not have a statistically significant difference 

between themselves, although the modified function gave better results, as can be seen 

from the z-statistics. 

Similarly, experiments with other parameters of normal distributions were conducted, 

calculated F1-scores for each sample, and conducted paired z-tests (check Table 2).  

Table 2 

Results of z-tests for experiments with activation functions 

N Title Parameters z-statistics p-value 

1 sign_vs_izh 𝜇1 = 0.3, 𝜇2 = 0.7, 𝜎1
2 = 𝜎2

2 = 0.05 -5.6611 < 0.0001 
2 sign_vs_bezier 𝜇1 = 0.3, 𝜇2 = 0.7, 𝜎1

2 = 𝜎2
2 = 0.05 -5.4636 < 0.0001 

3 izh_vs_bezier 𝜇1 = 0.3, 𝜇2 = 0.7, 𝜎1
2 = 𝜎2

2 = 0.05 -1.4194 0.1557 
4 sign_vs_izh 𝜇1 = 0.45, 𝜇2 = 0.55, 𝜎1

2 = 𝜎2
2 = 0.05 -3.0375 0.0023 

5 sign_vs_bezier 𝜇1 = 0.45, 𝜇2 = 0.55, 𝜎1
2 = 𝜎2

2 = 0.05 -3.4627 0.0005 
6 izh_vs_bezier 𝜇1 = 0.45, 𝜇2 = 0.55, 𝜎1

2 = 𝜎2
2 = 0.05 -0.3879 0.6980 

7 sign_vs_izh 𝜇1 = 𝜇2 = 0.5, 𝜎1
2 = 0.05, 𝜎2

2 = 0.1 -1.6876 0.0914 
8 sign_vs_bezier 𝜇1 = 𝜇2 = 0.5, 𝜎1

2 = 0.05, 𝜎2
2 = 0.1 -1.3331 0.1824 

9 izh_vs_bezier 𝜇1 = 𝜇2 = 0.5, 𝜎1
2 = 0.05, 𝜎2

2 = 0.1 0.9344 0.3500 
10 sign_vs_izh 𝜇1 = 𝜇2 = 0.5, 𝜎1

2 = 0.05, 𝜎2
2 = 0.075 -1.2260 0.2199 

11 sign_vs_bezier 𝜇1 = 𝜇2 = 0.5, 𝜎1
2 = 0.05, 𝜎2

2 = 0.075 -1.5949 0.1107 
12 izh_vs_bezier 𝜇1 = 𝜇2 = 0.5, 𝜎1

2 = 0.05, 𝜎2
2 = 0.075 -0.4813 0.6302 

 

For the experiments with different mathematical expectation, the previous tendency 

has been preserved: chaotic functions show a statistically significant improvement over 

signum, but the differentiable modification shows better results. 



In the experiments with the same mathematical expectation, all functions showed 

similar results and have no statistically significant difference. 

4. Experiment on fractal analysis of buccal epithelium kernels 

Now let's consider the effectiveness of chaotic activation functions in an experiment with 

real data. 

Some of the first reports of malignant changes appeared in the 1960s, when the content 

of X-chromatin in somatic cells was widely studied and its instability became apparent in 

various functional changes in the body and general pathology of somatic cells. In the 

presence of tumors in the body, there are obvious changes in the content of X-chromatin in 

the buccal epithelium and peripheral blood neutrophils. It has also been shown that 

changes in the number of cells with X chromosomes are caused by a defect in the 

functional state of the heterozygous X-chromosome [22]. 

Studies demonstrating changes in buccal epithelial cells in patients with tumors are of 

great interest: in the 1960s, H. Nieburgs and co-authors [23] reported a characteristic 

redistribution of chromatin mass in somatic cells in 77% of cancer patients and called 

these changes tumorigenic. These changes were characterized by an increase in the size of 

epithelial cell nuclei and an increase in the size of "restricted" chromatin regions 

surrounded by light areas [24]. The same changes were observed in cells of the liver, 

kidneys and other organs. In patients with breast cancer, an increase in DNA content in the 

buccal epithelium and the size of interphase nuclei was found. However, some authors did 

not find a significant difference in this indicator between patients and practically healthy 

men when the DNA content of buccal epithelial cells in men with bronchial epithelioma 

was measured by cellular spectrophotometry [25].  

Study [26] examined a control group (29 patients), a group of patients with stage II 

breast cancer (68 patients), and a group of patients with fibroadenomatosis (33 patients). 

All diagnoses were confirmed by histology. The morphologic dataset consisted of 20256 

images of interphase nuclei of the buccal epithelium (6752 nuclei were scanned in three 

versions: without filtering, with a yellow filter, and with a purple filter). 

The morphological material was smears of epithelial cells of the oral mucosa in the 

middle depth of the spinous layer. On average, each preparation consisted of 52 cells. The 

content of DNA-fuchsin in the nuclei of epithelial cells was calculated as the product of 

optical density and area. At the first stage of the analysis, an image of the chromatin 

distribution was obtained in the form of a 128 x 128 pixel matrix [26]. 

To reflect the fractal nature of the chromatin distribution and to ensure invariance to 

image rotation, a spatial fill curve was created along each pixel of the image, and the RGB 

color values of the image pixels were read sequentially rather than line by line. As a result, 

the pixel matrix could be mapped to three vectors corresponding to the three channels of 

the RGB color model. The Sierpinski curves [26] were used as space filling curves. 

In order to apply the fractal image analysis method, the image must be pre-processed. 

For this purpose, the Otsu method was applied [26]. This method is used for threshold 

binarization of halftone images. The algorithm assumes that there are two classes of pixels 



in the image (main and background), and searches for the optimal threshold value that 

divides the pixels into two classes so that the intra-class variance is minimal. 

There are several methods for calculating the fractal dimension of an image. In [26], the 

Hurst index was chosen because it is very suitable for sequential analysis. The Hurst index 

is related to the fractal dimension D by the formula H = 2 - D. 

The input data for the model were three-channel (RGB) samples of fractal kernel 

dimensions for each patient.  The samples differed significantly in the number of elements. 

Therefore, when preparing the data before training the neural network, n quantiles were 

calculated for each sample, where n is the number of elements in the smallest sample 

(check Figure 4). 

 

Figure 4: An example of consolidation of training samples using quantiles 

 

Additional datasets were created from the input three-channel RGB data. The following 

input data samples were used in the experiments: RGB (three channels at the same time), 

R (red only), G (green only), B (blue only), Gray (gray channel calculated using the formula 

0.299 ∙ R + 0.587 ∙ G + 0.114 ∙ B), Mean (arithmetic mean of three channels). 

To build training images for the Hopfield network, two methods of quantile aggregation 

were used: arithmetic mean and median. 

At this stage, the training images were sequences of real numbers. The neurons of the 

Hopfield network can have two values: 1 or -1. Therefore, additional binarization was 

applied to the images: real values were rounded to the ninth decimal place, converted to 

binary and concatenated into the final binary portrait (check Figure 5). 



 
Figure 5: An example of prepared training image 

A total of 144 experiments were set up and divided into 4 categories: cancer patients 

vs. healthy controls, cancer patients vs. healthy controls and fibroadenomatosis patients, 

cancer patients vs. fibroadenomatosis patients, fibroadenomatosis patients vs. healthy 

controls. 

Training images were built on the training data according to each category of binary 

classification, the quality of the models was evaluated on the test data using Leave-One-

Out validation, and the target metrics were precision, recall, and F1-score. 

Table 3 

Results of the comparative experiment on fractal analysis of 

buccal epithelium kernels (cancer patients vs. fibroadenomatosis patients) 

N Experiment Input  Aggregation F. activation Precision Recall F1 

1 BC_vs_FAM B avg bezier 0.6389 0.3382 0.4423 
2 BC_vs_FAM B avg izh 0.6316 0.3529 0.4528 
3 BC_vs_FAM B avg sign 0.6750 0.3971 0.5000 
4 BC_vs_FAM B median bezier 0.8077 0.6176 0.7000 
5 BC_vs_FAM B median izh 0.8269 0.6324 0.7167 
6 BC_vs_FAM B median sign 0.8077 0.6176 0.7000 
7 BC_vs_FAM G avg bezier 0.6538 0.5000 0.5667 
8 BC_vs_FAM G avg izh 0.6400 0.4706 0.5424 
9 BC_vs_FAM G avg sign 0.6538 0.5000 0.5667 
10 BC_vs_FAM G median bezier 0.8727 0.7059 0.7805 
11 BC_vs_FAM G median izh 0.8679 0.6765 0.7603 
12 BC_vs_FAM G median sign 0.8727 0.7059 0.7805 
13 BC_vs_FAM gray avg bezier 0.7292 0.5147 0.6034 
14 BC_vs_FAM gray avg izh 0.7347 0.5294 0.6154 
15 BC_vs_FAM gray avg sign 0.7292 0.5147 0.6034 
16 BC_vs_FAM gray median bezier 0.7347 0.5294 0.6154 
17 BC_vs_FAM gray median izh 0.7059 0.5294 0.6050 
18 BC_vs_FAM gray median sign 0.7347 0.5294 0.6154 



19 BC_vs_FAM mean avg bezier 0.6667 0.4706 0.5517 
20 BC_vs_FAM mean avg izh 0.6600 0.4853 0.5593 
21 BC_vs_FAM mean avg sign 0.6735 0.4853 0.5641 
22 BC_vs_FAM mean median bezier 0.7143 0.5882 0.6452 
23 BC_vs_FAM mean median izh 0.7193 0.6029 0.6560 
24 BC_vs_FAM mean median sign 0.7143 0.5882 0.6452 
25 BC_vs_FAM R avg bezier 0.6800 0.5000 0.5763 
26 BC_vs_FAM R avg izh 0.6596 0.4559 0.5391 
27 BC_vs_FAM R avg sign 0.5429 0.2794 0.3689 
28 BC_vs_FAM R median bezier 0.8636 0.8382 0.8507 
29 BC_vs_FAM R median izh 0.8636 0.8382 0.8507 
30 BC_vs_FAM R median sign 0.8636 0.8382 0.8507 
31 BC_vs_FAM RGB avg bezier 0.7333 0.4853 0.5841 
32 BC_vs_FAM RGB avg izh 0.6923 0.3971 0.5047 
33 BC_vs_FAM RGB avg sign 0.6667 0.3529 0.4615 
34 BC_vs_FAM RGB median bezier 0.9474 0.7941 0.8640 
35 BC_vs_FAM RGB median izh 0.9310 0.7941 0.8571 
36 BC_vs_FAM RGB median sign 0.9474 0.7941 0.8640 

 

In the comparison "cancer patients vs. fibroadenomatosis patients", the differentiable 

modification showed better results in the experiments with the best results, the median 

being a better aggregation function than the arithmetic mean. The highest accuracy was 

obtained with input data in RGB format and single-channel inputs R, G, and B (check Table 

3). 

Table 4 

Results of the comparative experiment on fractal analysis of 

buccal epithelium kernels (cancer patients vs. healthy controls) 

N Experiment Input Aggregation     F. activation Precision Recall F1 

1 BC_vs_C B avg bezier 0.8980 0.6471 0.7521 
2 BC_vs_C B avg izh 0.9000 0.6618 0.7627 
3 BC_vs_C B avg sign 0.8980 0.6471 0.7521 
4 BC_vs_C B median bezier 0.8364 0.6765 0.7480 
5 BC_vs_C B median izh 0.8364 0.6765 0.7480 
6 BC_vs_C B median sign 0.8364 0.6765 0.7480 
7 BC_vs_C G avg bezier 0.6591 0.4265 0.5179 
8 BC_vs_C G avg izh 0.6744 0.4265 0.5225 
9 BC_vs_C G avg sign 0.6591 0.4265 0.5179 
10 BC_vs_C G median bezier 0.7347 0.5294 0.6154 
11 BC_vs_C G median izh 0.7174 0.4853 0.5789 
12 BC_vs_C G median sign 0.7347 0.5294 0.6154 
13 BC_vs_C gray avg bezier 0.7500 0.5735 0.6500 
14 BC_vs_C gray avg izh 0.7692 0.5882 0.6667 
15 BC_vs_C gray avg sign 0.7500 0.5735 0.6500 
16 BC_vs_C gray median bezier 0.7059 0.5294 0.6050 
17 BC_vs_C gray median izh 0.7000 0.5147 0.5932 
18 BC_vs_C gray median sign 0.7059 0.5294 0.6050 



19 BC_vs_C mean avg bezier 0.7556 0.5000 0.6018 
20 BC_vs_C mean avg izh 0.7660 0.5294 0.6261 
21 BC_vs_C mean avg sign 0.7556 0.5000 0.6018 
22 BC_vs_C mean median bezier 0.7917 0.5588 0.6552 
23 BC_vs_C mean median izh 0.7917 0.5588 0.6552 
24 BC_vs_C mean median sign 0.7917 0.5588 0.6552 
25 BC_vs_C R avg bezier 0.7347 0.5294 0.6154 
26 BC_vs_C R avg izh 0.7347 0.5294 0.6154 
27 BC_vs_C R avg sign 0.7347 0.5294 0.6154 
28 BC_vs_C R median bezier 0.7143 0.5147 0.5983 
29 BC_vs_C R median izh 0.7143 0.5147 0.5983 
30 BC_vs_C R median sign 0.7143 0.5147 0.5983 
31 BC_vs_C RGB avg bezier 0.8889 0.5882 0.7080 
32 BC_vs_C RGB avg izh 0.8636 0.5588 0.6786 
33 BC_vs_C RGB avg sign 0.8696 0.5882 0.7018 
34 BC_vs_C RGB median bezier 0.7959 0.5735 0.6667 
35 BC_vs_C RGB median izh 0.7959 0.5735 0.6667 
36 BC_vs_C RGB median sign 0.7959 0.5735 0.6667 

 

In the comparison "cancer patients vs. healthy controls", the differentiable modification 

showed similar results to the chaotic Izhikevich function. Both chaotic functions gave 

better results than signum in most experiments. The median and arithmetic mean gave 

similar results in similar experiments. The most accurate results were obtained with input 

data in B and RGB formats (check Table 4). 

Table 5 

Results of the comparative experiment on fractal analysis of 

buccal epithelium kernels (cancer patients vs. healthy controls and fibroadenomatosis 

patients) 

N Experiment Input Aggregation F. activation Precision Recall F1 

1 BC_vs_C+FAM B avg bezier 0.6207 0.5294 0.5714 
2 BC_vs_C+FAM B avg izh 0.6000 0.5294 0.5625 
3 BC_vs_C+FAM B avg sign 0.6316 0.5294 0.5760 
4 BC_vs_C+FAM B median bezier 0.5857 0.6029 0.5942 
5 BC_vs_C+FAM B median izh 0.5857 0.6029 0.5942 
6 BC_vs_C+FAM B median sign 0.5857 0.6029 0.5942 
7 BC_vs_C+FAM G avg bezier 0.5507 0.5588 0.5547 
8 BC_vs_C+FAM G avg izh 0.5606 0.5441 0.5522 
9 BC_vs_C+FAM G avg sign 0.5507 0.5588 0.5547 
10 BC_vs_C+FAM G median bezier 0.5254 0.4559 0.4882 
11 BC_vs_C+FAM G median izh 0.5345 0.4559 0.4921 
12 BC_vs_C+FAM G median sign 0.5254 0.4559 0.4882 
13 BC_vs_C+FAM gray avg bezier 0.5588 0.5588 0.5588 
14 BC_vs_C+FAM gray avg izh 0.5571 0.5735 0.5652 
15 BC_vs_C+FAM gray avg sign 0.5588 0.5588 0.5588 
16 BC_vs_C+FAM gray median bezier 0.6034 0.5147 0.5556 
17 BC_vs_C+FAM gray median izh 0.6034 0.5147 0.5556 



18 BC_vs_C+FAM gray median sign 0.6034 0.5147 0.5556 
19 BC_vs_C+FAM mean avg bezier 0.5333 0.4706 0.5000 
20 BC_vs_C+FAM mean avg izh 0.5469 0.5147 0.5303 
21 BC_vs_C+FAM mean avg sign 0.5333 0.4706 0.5000 
22 BC_vs_C+FAM mean median bezier 0.6071 0.5000 0.5484 
23 BC_vs_C+FAM mean median izh 0.6140 0.5147 0.5600 
24 BC_vs_C+FAM mean median sign 0.6071 0.5000 0.5484 
25 BC_vs_C+FAM R avg bezier 0.5294 0.5294 0.5294 
26 BC_vs_C+FAM R avg izh 0.5441 0.5441 0.5441 
27 BC_vs_C+FAM R avg sign 0.5294 0.5294 0.5294 
28 BC_vs_C+FAM R median bezier 0.5741 0.4559 0.5082 
29 BC_vs_C+FAM R median izh 0.5741 0.4559 0.5082 
30 BC_vs_C+FAM R median sign 0.5741 0.4559 0.5082 
31 BC_vs_C+FAM RGB avg bezier 0.5667 0.5000 0.5313 
32 BC_vs_C+FAM RGB avg izh 0.5738 0.5147 0.5426 
33 BC_vs_C+FAM RGB avg sign 0.5667 0.5000 0.5313 
34 BC_vs_C+FAM RGB median bezier 0.6000 0.5294 0.5625 
35 BC_vs_C+FAM RGB median izh 0.6066 0.5441 0.5736 
36 BC_vs_C+FAM RGB median sign 0.6000 0.5294 0.5625 

 

In the comparison "cancer patients vs. healthy controls and fibroadenomatosis 

patients", all three activation functions showed similar results. Similarly, there are no 

overperforming alternatives among the aggregations and input data formats (check Table 

5). 

Table 6 

Results of the comparative experiment on fractal analysis of 

buccal epithelium kernels (fibroadenomatosis patients vs. healthy controls) 

N Experiment Input Aggregation F. activation Precision Recall F1 

1 FAM_vs_C B avg bezier 0.6429 0.5625 0.6000 
2 FAM_vs_C B avg izh 0.5926 0.5000 0.5424 
3 FAM_vs_C B avg sign 0.6429 0.5625 0.6000 
4 FAM_vs_C B median bezier 0.7353 0.7813 0.7576 
5 FAM_vs_C B median izh 0.7429 0.8125 0.7761 
6 FAM_vs_C B median sign 0.7353 0.7813 0.7576 
7 FAM_vs_C G avg bezier 0.4583 0.3438 0.3929 
8 FAM_vs_C G avg izh 0.4231 0.3438 0.3793 
9 FAM_vs_C G avg sign 0.4400 0.3438 0.3860 
10 FAM_vs_C G median bezier 0.4688 0.4688 0.4688 
11 FAM_vs_C G median izh 0.4516 0.4375 0.4444 
12 FAM_vs_C G median sign 0.4688 0.4688 0.4688 
13 FAM_vs_C gray avg bezier 0.4800 0.3750 0.4211 
14 FAM_vs_C gray avg izh 0.4815 0.4063 0.4407 
15 FAM_vs_C gray avg sign 0.4615 0.3750 0.4138 
16 FAM_vs_C gray median bezier 0.4688 0.4688 0.4688 
17 FAM_vs_C gray median izh 0.4333 0.4063 0.4194 
18 FAM_vs_C gray median sign 0.4688 0.4688 0.4688 



19 FAM_vs_C mean avg bezier 0.6429 0.5625 0.6000 
20 FAM_vs_C mean avg izh 0.6552 0.5938 0.6230 
21 FAM_vs_C mean avg sign 0.6000 0.5625 0.5806 
22 FAM_vs_C mean median bezier 0.4444 0.5000 0.4706 
23 FAM_vs_C mean median izh 0.4444 0.5000 0.4706 
24 FAM_vs_C mean median sign 0.4444 0.5000 0.4706 
25 FAM_vs_C R avg bezier 0.6667 0.5625 0.6102 
26 FAM_vs_C R avg izh 0.6000 0.5625 0.5806 
27 FAM_vs_C R avg sign 0.5000 0.5625 0.5294 
28 FAM_vs_C R median bezier 0.5200 0.4063 0.4561 
29 FAM_vs_C R median izh 0.4815 0.4063 0.4407 
30 FAM_vs_C R median sign 0.5200 0.4063 0.4561 
31 FAM_vs_C RGB avg bezier 0.7083 0.5313 0.6071 
32 FAM_vs_C RGB avg izh 0.6538 0.5313 0.5862 
33 FAM_vs_C RGB avg sign 0.5862 0.5313 0.5574 
34 FAM_vs_C RGB median bezier 0.6774 0.6563 0.6667 
35 FAM_vs_C RGB median izh 0.7000 0.6563 0.6774 
36 FAM_vs_C RGB median sign 0.6774 0.6563 0.6667 

 

In the comparison "fibroadenomatosis patients vs. healthy controls", chaotic functions 

showed better results than signum in most experiments. The median was more effective 

than the arithmetic mean in similar experiments. Input data in RGB and B formats gave the 

highest accuracy (check Table 6). 

The best results were obtained in the experiments "cancer patients vs. 

fibroadenomatosis patients" - the average value of the F1-score of the 5 best experiments 

is 0.84, the worst results were obtained in the group of experiments "cancer patients vs. 

healthy controls and fibroadenomatosis patients " - the average value of the F1-score of 

the 5 best experiments is 0.57. This can be explained by the distinction of the second class 

– healthy controls and fibroadenomatosis patients - which, when aggregated, generated an 

image that the model could hardly distinguish from cancer patients. 

Also, the median proved to be a better aggregation for training images - the F1-score is 

higher in most experiments. 

The best input sample formats are RGB and B, which are present in the top five for each 

group of experiments.  

5. Conclusions 

In deep learning, especially in the context of artificial neural networks, the use of chaos in 

activation functions plays a significant role in ensuring the efficiency and flexibility of 

models. Chaotic activation functions allow to enrich the feature distribution space, which 

allows the model to adapt to various conditions and maintain resistance to noise in the 

data. This approach increases the robustness of models to changes in training data and can 

improve their overall ability to generalize to new data. The use of chaotic activation 

functions can also be important in cases where the model needs to adapt to unpredictable 

or nonlinear relationships in the data, making it more versatile and powerful in solving 

complex machine learning problems. 



Also, activation functions that can be differentiated in neural networks have 

several important advantages over their undifferentiable counterparts. First of all, they 

allow for the efficient use of optimization algorithms, such as back-propagation of errors, 

to train the network. The smooth nature of differentiable functions allows finding optimal 

parameters using gradient descent, which simplifies the training process and improves the 

convergence rate. 

The paper substantiates and demonstrates the advantages of chaotic activation 

functions of the Hopfield model on the example of experiments with artificial samples 

from normal distributions and on real data in predicting breast cancer. 

This area still requires further research and experimentation, and the development and 

implementation of new chaotic activation functions may be a promising way to improve 

deep learning not only in Hopfield models but also in alternative algorithms and neural 

network architectures and improve results in various tasks. 
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