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Abstract

The focus of this paper is to address research issues and conduct a comparative analysis of swarm
bio-inspired methods for optimizing parameters in fuzzy systems (FS). Various hybrid modifications
of particle swarm optimization (PSO) and grey wolf optimization (GWO) multi-agent techniques,
tailored for FS parameter optimization, are compared with conventional search methods. The
research and comparative analysis are performed using a specific example: the parametric
optimization of a Takagi-Sugeno fuzzy control system designed for an inspection mobile robotic
platform (MRP). This robotic platform is capable of navigating inclined and vertical surfaces. It
serves as an efficient autonomous tool for executing complex inspection and monitoring tasks in
challenging and hazardous environments in various industrial facilities and urban environments
inaccessible to humans. However, to effectively utilize this MRP, an intelligent control system
optimized through an advanced method is necessary. The simulation results obtained validate the
effectiveness of the presented swarm bio-inspired optimization techniques, considering both the
performance achieved by the FS and the computational costs incurred.
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1. Introduction

When developing complex systems and models across various domains such as technology,
manufacturing, economics, agriculture, and medicine, the need for optimal solutions finding
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in a multidimensional search space often arises [1-4]. Conventional optimization methods
frequently prove ineffective for solving these challenges due to the terrain uncertainty and the
presence of multi-extremality in the functions under study, which describe the complex
dependencies of solution effectiveness on unknown parameters [5-7]. Presently, approximate
global optimization methods are becoming increasingly popular due to their ability to uncover
high-quality solutions with acceptable computational and time expenses [8, 9]. Among these
methods, bioinspired swarm and evolutionary optimization algorithms show promise [10-13].
Unlike traditional local search methods, bioinspired techniques can be utilized even in
situations where there is scarce information about the nature and specific characteristics of
the objects and processes being studied. They excel at avoiding local minima and can be
readily adapted to address a wide range of real-world optimization tasks. Furthermore, these
methods employ relatively simple computational procedures that emulate behaviors observed
in social animals, evolutionary principles like natural selection, and physical phenomena.
Ultimately, bioinspired intelligent techniques can be seamlessly integrated with various local
search algorithms, thereby enhancing the optimization process significantly by strategically
combining global and local search strategies [14].

Among the array of bioinspired intelligent methods under consideration, those that have
emerged as particularly effective and widely adopted for solving diverse optimization
problems in recent years, include grey wolf optimization (GWO) [15], cuckoo search (CS)
algorithm [16], ant lion optimization (ALO) [17], particle swarm optimization (PSO) [18],
firefly algorithm (FA) [19], chaotic swarming of particles (CSP) algorithm [20], whale
optimization algorithm (WOA) [21], and numerous others. Additionally, various hybrid
methods have been successfully employed for the development of various complex systems
[22].

The application of bioinspired swarm and evolutionary techniques in designing and
optimizing intelligent control and decision support systems across various fields is a
promising area, especially when applied to fuzzy logic systems [23, 24]. Recent studies
highlight that fuzzy systems developed using bioinspired optimization methods demonstrate
significant efficacy in addressing complex control and decision support challenges across
diverse domains [11, 13, 25]. So, for example, in studies [26-29] PSO methods are adapted for
parametric optimization of linguistic terms (LT) of fuzzy automatic control systems (ACS) of
various technical plants. In particular, in [28], the optimization of the vertices of triangular-
type LTs is performed for a fuzzy power control system of an industrial wireless sensor
network. In the paper [27], optimization of the parameters of 1st type Gaussian LTs for the
fuzzy ACS of the autonomous mobile robot operating in an uncertain environment was
carried out. Furthermore, the GWO method demonstrates highly competitive performance in
addressing the challenges of parametric optimization across a range of configurations and
purposes for fuzzy systems, surpassing other well-established bioinspired techniques [30, 31].
Consequently, research directed towards the development, refinement, and deployment of
bioinspired swarm methods and approaches for synthesizing and optimizing various types of
fuzzy systems remains undeniably pertinent and crucial.

This study focuses on researching and comparing bio-inspired swarm techniques in
addressing the task of parametric optimization for the Takagi-Sugeno fuzzy ACS, tailored for
an inspection mobile robotic platform. This platform exhibits the capability to traverse
inclined and vertical surfaces, functioning as a self-sufficient tool for executing intricate



inspection and monitoring operations in challenging and hazardous environments present in
various industrial facilities and urban settings inaccessible to humans. However, to fully
leverage the potential of this mobile platform, an intelligent control system optimized through
an advanced method is imperative. Herewith, choosing the most appropriate method to
achieve high efficiency while keeping computational costs relatively low can indeed be a
challenging endeavor. Thus, the primary objective of this paper is the implementation of the
efficiency research and comparative analysis of several modifications (basic and hybrid) of
PSO and GWO swarm techniques, previously adapted for the parametric optimization of fuzzy
ACSs.

2. Fuzzy automatic control system for the inspection mobile
robotic platform

Mobile robotic platforms designed for traversing both inclined and vertical surfaces are
effectively deployed for conducting inspection and monitoring operations in demanding and
hazardous environments found in a variety of industrial facilities and urban areas inaccessible
to humans [32-36]. Moreover, robotic platforms of this kind can be employed in critical
infrastructure facilities, even for executing intricate tasks of utmost importance [37]. Such
platforms have magnetic clamping devices for moving along ferromagnetic surfaces and
belong to the class of complex technical plants, for which it is beneficial to use fuzzy
automatic control systems to automate movement processes [36, 38-40]. This study focuses on
researching and comparing bio-inspired swarm optimization methods by examining the
application of the Takagi-Sugeno fuzzy ACS for controlling the speed of the MRP movement
on an inclined surface. To ensure high-quality control of the speed of spatial motion and,
accordingly, the overall efficiency of performing various technological operations by the MRP
on inclined ferromagnetic surfaces, it is advisable to use the combined fuzzy ACS, which is
based on the model of combined fuzzy control proposed in [41]. In turn, the structure of the
combined fuzzy ACS for the MRP developed with the built-in dynamic model of the control
plant is presented in Fig. 1, where the following notations are adopted: SD is the setting
device; CFC is the combined fuzzy controller; FC is the function converter; FSS1 and FSS2 are
first and second fuzzy subsystems that are used in the second and third control channels,
respectively; DMRP is the dynamic model of the robotic platform built into the controller; LU
is the limiting unit designed to limit the maximum value of the controller’s output signal; SS is
the speed sensor; v and w are the set and real values of the movement speed of the mobile
platform along an inclined operating surface; usp, uss, v, U, i, Uz, and upc are the
corresponding output signals of the SD, SS, DMRP, FC, FSS1, FSS2, and CFC; ¢, and e, are the

control errors formed in the second and third control channels, respectively; €, and e, are

the control errors derivatives, respectively; Kpi, Kpi, Kp2, Kp. are the normalizing factors; Fp is
the vector of disturbances acting on the robotic platform during movement.

The given combined fuzzy ACS of the mobile robotic platform with the presented structure
(Fig. 1) has a combined fuzzy controller that contains three main control channels. The first
control channel is a feedforward channel, which is implemented using a function converter
FC with an inverse static characteristic of the MRP (ur= flusp)). In turn, this static
characteristic is built using the basic equations of the MRP’s mathematical model [34, 38] in a



static mode and without taking into account the disturbances acting on the MRP during its
movement and technological operations implementation.
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Figure 1: Functional structure of the combined fuzzy ACS for the MRP.

The second channel is the main feedback control channel, implemented on the basis of the
speed sensor and the first fuzzy subsystem FSS1. In turn, the main control error &, and its

derivative € are the main input variables of the FSS1. The third control channel is an

additional feedback channel, implemented on the basis of the built-in dynamic model DMRP
of the robotic platform and the fuzzy subsystem FSS2, which are used to indirectly determine
and compensate for all existing disturbances Fp. The error e, which is caused only by the
action of disturbances Fp, is defined in this channel as the deviation of the sensor’s output
signal uss from the output signal of the built-in platform’s model uy (ev = um — uss). Since the
same control signal usc is received simultaneously at the inputs of the MRP and its dynamic
model, the presence of an error e, will indicate the presence of the disturbances Fp acting on
the MRP. Thus, in this control channel, the current value of the disturbances Fp is determined
based on the error value e,. In order to take into account the change of the disturbances Fp
effects over time, it is also advisable to determine the derivative of the error €, and use it as

the second input of the FSS2. In turn, the built-in dynamic model of the MRP contains the
main equations presented in paper [38] without taking into account disturbances (the load
moments of the motors of electric drives are equal to 0). The normalizing factors Kpi, Kpi, Kpa,
Kb are used to bring input signals of the FSS1 and FSS2 to relative units from their maximum
value. The specified value of the required movement speed vs of the platform along an
inclined working surface can be set from the upper-level control system, which is advisable to
be implemented based on the Internet of Things technology [42-44].

The control signal of the developed CFC with a built-in dynamic MRP’s model is calculated
as follows:
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In this paper, for the comparative analysis of the efficiency of the studied hybrid swarm
methods, the parametric optimization of the Takagi-Sugeno FSS1 and FSS2 was carried out for
the combined ACS with a built-in model of the MRP’s movement speed. In turn, the vector X
of parameters to be optimized, in this case, is given by the expression (2)

X= {Ki ) PLTl ) PLTZ ) Pc1 ) Pcz} ) (2)

where K;is the vector of normalizing factors consisting of coefficients Kpi, Kpi, Kp2, Kpz; Pt
and Pir, are the vectors of adjustable parameters of the linguistic terms for the FSS1 and FSS2,
accordingly; Pc; and Pc; are the vectors of weighting gains for the consequences of the RB
rules for the FSS1 and FSS2, accordingly.

For the first input signals of the FSS1 and FSS2 (Kpigy, Kpzey), 5 LTs of the triangular type
were selected: BN (big negative); SN (small negative); Z (zero); SP (small positive); BP (big
positive). In turn, for the second input signals of the FSS1 and FSS2 (K ,€,, K ,€,), 3 terms of

the triangular type were selected: N (negative); Z (zero); P (positive). Thus, the Prr; and Pir.
vectors contain 24 adjustable parameters each, which are subject to optimization.

The FSS1 and FSS2 rule bases consist of 15 rules each. In turn, the r-th RB rules for the
FSS1 and FSS2 are given by the expressions (3) and (4), respectively:

IF “Kpe, =LT,” AND “K &, =LT,” THEN “u; =k, (Kp €, ) + Ky, (K0,)7 3)
IF “Ky,e, =LT,” AND “K\,é, =LT,” THEN “u, = k,,, (Ky,€,) + ky,, (K1,6,)", 4)

where ki, kizr are the weighting gains of the r-th rule of the FSS1 rule base; kai, k- are the
weighting gains of the r~th rule of the FSS2 rule base.

Thus, the vectors of weighting gains for the consequences Pc; and Pc. contain 30
coefficients each, which are subject to optimization.

In total, the vector X of parameters to be optimized, in this case, consists of 112
parameters.

Following that, we proceed directly to optimizing the parameters of the presented
combined fuzzy control system to implement efficiency research and comparative analysis of
several modifications (basic and hybrid) of PSO and GWO swarm methods.

3. Bio-inspired parametric optimization of the combined fuzzy
control system for the inspection robotic platform

The authors suggest conducting the parametric synthesis and optimization of the given
combined fuzzy control system utilizing effective and well-established bio-inspired methods,
such as PSO and GWO [14, 15, 18, 45], alongside their several modifications hybridized with
local search methods to expedite convergence. Specifically, hybrid modifications of the PSO
based on the elite strategy with the gradient descent (GD) algorithm and the extended Kalman
filter (EKF) algorithm, as proposed in [38], are to be applied. Additionally, an improved GWO
method [45] and its hybridization with GD and EKF techniques, as suggested in the paper
[46], are considered. Lastly, for comprehensive comparison, it is recommended to optimize the
fuzzy control system's parameters using individual local search GD and EKF techniques.



The main principles of the PSO method, along with its application for synthesizing and
parametrically optimizing FSs, are extensively discussed in [14, 18]. Furthermore, the authors
proposed hybridizing PSO with GD and EKF based on the elite strategy to enhance FS
optimization processes in [38]. The core concept of these modifications involves enabling an
independent parallel search by the best swarm particle using GD or EKF, thereby potentially
accelerating convergence and reducing computational costs associated with these algorithms.
The fundamental principles of both the basic and improved GWO methods are elaborated in
[15] and [45]. The improved method integrates an additional dimension learning-based
hunting (DLH) strategy to enhance population diversity and mitigate premature convergence
to suboptimal solutions [45]. In the study [46], the authors proposed hybridizing the enhanced
GWO with local search techniques of GD and EKF. To achieve this, akin to hybrid PSO
methods, alpha, beta, and delta wolves of the pack are tasked with conducting local searches
in their vicinity using GD or EKF, in addition to employing group hunting and DLH strategies.

In this study, the expression (5) was chosen as the objective function J for the
implementation of the optimization processes, which is the generalized integral deviation of
the systems’ real transient characteristic w(t, X) from the desired characteristic wp(t) of its
reference model (RM) [38].

JEX) == [ (B, + k(£,) + k(B 6)

tmax

where . is the total transient time of the combined fuzzy control system; kj, kp are the
weighting factors of the objective function; E, is the deviation of w(t, X) from w(#), Ev = w(t) -
w(t, X).

In turn, the reference model of the MRP’s control system is presented by the following
transfer function:

vp(s) 1
ve(s) (Tus+1)°

W (s) = (6)
where Try is the time constant of the reference model.

The optimal value of the objective function was chosen to be F,,c = 0.2, which had to be
achieved during the optimization process. However, in order to carry out full-fledged
research, the maximum number of iterations Nu.x = 200 was chosen as the criterion for the
end of the optimization. Moreover, when implementing the search procedures, the following
adjustable parameters of the PSO algorithms were selected: particles number in the swarm
Zmax = 30; maximum particles velocity Vi = 10; accelerations values C; = C; = 0.1. As for the
GWO-methods modifications, the number of wolves in the pack Zm.« = 30. In addition, in this
case, the same restrictions were applied as in [38].

The parametric optimization procedures of the vector X were carried out in turn using
each of the studied swarm methods 5 times with the subsequent selection of the best results.
When calculating the values of the objective function (5) at each iteration, the simulation of
the transients for the combined fuzzy system of the MRP speed control was carried out in
different operating modes, in particular, under the influence of strong step disturbances.

For assessing the efficacy of the swarm optimization methods employed in this study, it is
recommended to compare the obtained best values of the objective function Fuin along with



the computational costs incurred. Additionally, the computational expenses needed to attain
the specified optimal value of the objective function J: are utilized for evaluation. In this
context, the computational costs of the analyzed methods primarily hinge on the total number
of times vy of the objective function calculation required to achieve its specific values (Vs for
reaching the optimal value Fu, and vsmin for attaining the best value Fuin).

The Fig. 2 shows the curves of changes in the best values of the objective function (5) in
the optimization process of the vector X utilizing the studied methods: 1 - basic PSO Gbest;
2 = hybrid PSO with GD; 3 - hybrid PSO with EKF; 4 - basic GWO; 5 - IGWO (improved
GWO); 6 — hybrid IGWO with GD; 7 - hybrid IGWO with EKF; 8 - GD; 9 — EKF.
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Figure 2: Curves of changes in the best values of the objective function j during the

optimization process of the combined fuzzy ACS for MRP speed (in the range of iterations N =
0...100).

The best results of the computational experiments obtained in the process of optimization
of vector X using each of the studied methods are summarized in Table 1.

Table 1
The best experimental results obtained in the optimization process of the combined fuzzy ACS
for MRP

Optimization method Nijopt Uopt Finin Ninin Vfmin
Basic PSO Gbest 144 4206 0.183 167 4873
Hybrid PSO with GD 84 2550 0.149 98 2970
Hybrid PSO with EKF 78 2370 0.146 94 2850
Basic GWO 139 3783 0.178 153 4161
IGWO 62 3378 0.174 76 4134
Hybrid IGWO with GD 39 2253 0.131 53 3051
Hybrid IGWO with EKF 36 2082 0.129 48 2766
GD - - 0.479 87 87

EKF - - 0.412 79 79




In turn, for swarm methods and their various modifications (hybrid and improved), the
parameters Ljp and Ujmin are significantly greater than the corresponding number of iterations
Nijopt and Nymin, since the calculation of the objective function at each iteration must be
performed for each agent of the flock (swarm). As for the gradient method and the algorithm
of the extended Kalman filter taken separately, the number of calculations of the objective
function vimin, which is necessary to achieve its minimum value Jui, is equal to the number of
iterations Njmin.

As can be seen from Fig. 2 and Table 1, the hybrid IGWO methods have a generally higher
efficiency compared to the hybrid PSO methods when performing parametric optimization of
fuzzy subsystems (FSS1, FSS2) of the combined ACS for the mobile robotic platform.
Therefore, employing the hybrid IGWO methods with EKF and GD necessitated, at best, 288
and 297 fewer evaluations of the objective function J, respectively, compared to using the
hybrid PSO methods based on the elite strategy with EKF and GD. Furthermore, on average,
the utilization of the hybrid IGWO methods resulted in attaining a lower minimum value of
the objective function Funin compared to the hybrid PSO methods.

For addressing this particular problem (optimization of the combined fuzzy ACS for MRP),
the most efficient approach is the hybrid IGWO method with EKF. Through its
implementation, it was feasible to attain the optimal value of the objective function for the
combined fuzzy ACS (J < 0.2) with the fewest number of evaluations of the objective function
(Vjopt = 2082). Furthermore, employing this method led to the achievement of the lowest value
of the target function (Juin = 0.129) on the 48th iteration (Fig. 2, curve 7).

Regarding the gradient method and the extended Kalman filter algorithm wused
individually, while their implementation entails considerably lower computational and time
costs compared to bio-inspired swarm methods, they were unable to attain the optimal value
of the objective function (7 < 0.2) in addressing this problem.

In turn, the optimized parameters of the obtained vector Xy have the following values.
For the vector of normalizing factors K,, the following values of its components were found:
Kp1 = 6.44; Kp1 = 0.29; Kp, = 11.27; Kp2 = 0.81. As for the linguistic terms for the input variables
of the FSS1 and FSS2, their appearance with optimized parameters is presented in Fig. 3.
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Figure 3: LTs with optimized parameters for the input signals of the FSS1 and FSS2 for the
MRP’s combined fuzzy ACS.



Parts of the RBs from the fuzzy subsystems, optimized using the hybrid IGWO method
with the EKF to achieve the minimum objective function value, are outlined in Table 2.

Table 2
Parts of the rule bases for the FSS1 and FSS2 of the combined fuzzy ACS for MRP
Linguistic terms of the input Weighting gains of the rules’
Rule variables consequents
number Part of the rule base for the FSS1
Kpiey Kb év kllr k12r
1 BN N 79.24 46.21
3 BN P 34.26 11.32
5 SN Z 92.11 75.7
10 SP N 76.82 73.04
15 BP P 19.01 56.14
Rule Part of the rule base for the FSS2
number Kpsey Kn:€, ko1 kozr
1 BN N 51.03 20.16
3 BN p 21.12 8.36
5 SN Z 82.45 68.2
10 SP N 59.71 54.94
15 BP P 11.8 44.71

Additionally, the complete vectors of optimized weighting gains Pc; and Pc, take the
following form:

Pci = {79.24; 46.21; 95.37; 81.12; 34.26; 11.32; 68.75; 60.8; 92.11; 75.7; 9.43; 31.08; 47.89; 69.13;
69.38; 54.02; 87.28; 72.36; 76.82; 73.04; 72.87; 52.75; 64.41; 51.12; 43.65; 69.09; 33.54; 21.72; 19.01;
56.14};

Pc. = {51.03; 20.16; 67.04; 63.87; 21.12; 8.36; 54.63; 47.11; 82.45; 68.2; 5.76; 26.13; 35.71; 54.2;
51.07; 47.13; 69.82; 66.16; 59.71; 54.94; 52.09; 37.4; 50.11; 36.47; 33.18; 57.65; 22.05; 14.39; 11.8;
4471},

Next, let's proceed to the outcomes of simulation experiments conducted on the developed
combined fuzzy control system to validate the efficacy of the swarm optimization methods
under study.

4. Simulation experiments of the combined fuzzy control system
for the inspection robotic platform

To confirm the effectiveness of the developed combined fuzzy ACS with the optimized
parameters of the FSS1 and FSS2 based on the considered hybrid IGWO method with EKF, the
Fig. 4 presents the transients of the MRP motion under strong step disturbances. In turn, the
curves 1, 2 and 3 are the outputs of the system (the real value of the MRP movement speed 1)
with the combined fuzzy controller (based on the FSS1 and FSS2, optimized using the hybrid
IGWO method with EKF), the fuzzy PID controller (developed in [38]) and the optimally tuned
traditional PID controller. The line 4 is a stepped disturbance varying in the range from 0 to



600 N. In turn, the parameters of the traditional PID controller are as follows: k, = 6.5; ks =
0.23; ki = 422.4. Moreover, the Fig. 5 illustrates the detailed transient processes of the MRP
movement in the presence of step disturbances.
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Figure 4: Transients of the MRP movement under conditions of disturbances.
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Figure 5: Detailed transients of the MRP movement under conditions of step disturbances.



Additionally, Table 3 offers a comparative analysis of the control system’s quality
indicators for the MRP’s speed during these transients (actual value of the MRP movement
speed w) under strong step disturbance conditions.

Table 3
Analysis of the quality indicators of ACS for MRP under conditions of disturbances

lity indicators’ val
Quuality indicators of the MRP’s Quality indicators values

Traditional PID Fuzzy PID Combined fuzzy
speed control system
controller controller controller
Amplitude of disturbance, N 600 600 600
Th ion of the di
e duration o St e disturbance, 0.75 0.75 0.75
Regulating time, s 0.34 0.27 0.21
The maximum speed deviation
under the influence of 30.05 8.3 2.1

disturbance, %

It is evident from Fig. 4, 5, and Table 3 that the combined fuzzy control system for the
mobile robotic platform with optimized FSS1 and FSS2 using the hybrid IGWO method with
EKF exhibits notably superior control quality indicators compared to systems relying on
optimized fuzzy and traditional PID controllers.

5. Conclusions

This study conducts research and comparative analysis on swarm bio-inspired methods for
optimizing parameters in fuzzy systems. Specifically, it compares various hybrid modifications
of particle swarm optimization and grey wolf optimization swarm techniques, customized for
optimizing FS parameters, both amongst themselves and with conventional search methods.

The research and comparative analysis are conducted using a specific case study: the
parametric optimization of a Takagi-Sugeno fuzzy control system devised for an inspection
mobile robotic platform. The simulation results demonstrate that hybrid IGWO methods
generally exhibit higher efficiency compared to hybrid PSO methods when optimizing
parameters of fuzzy subsystems (FSS1, FSS2) within the combined ACS for the MRP. Among
these methods, the hybrid IGWO method with EKF emerges as the most efficient approach for
this particular problem. Its implementation enables the attainment of the optimal objective
function value for the combined fuzzy ACS (F < 0.2) with the least number of objective
function evaluations (Vjp: = 2082).

Furthermore, the combined fuzzy ACS utilizing FSS1 and FSS2, due to the use of three
control channels and a built-in MRP’s model, coupled with a highly efficient parameter
optimization method, demonstrates superior speed when accelerating the MRP to the
specified velocity. It also exhibits smaller deviations (no more than 2.1%) during strong step
disturbance operations compared to the ACS employing a fuzzy PID controller. Moreover,
identifying the optimal variant of the vector Xy for FSS1 and FSS2 of the combined ACS
using the hybrid IGWO method with EKF incurred minimal computational and time expenses



(Umin = 2766), thereby corroborating the overall effectiveness of this hybrid swarm
optimization method for parameter optimization, as well as the proposed fuzzy combined ACS
model.

Acknowledgements

This study is financially supported by the National High Level Foreign Experts Introduction
Project, China (G2022014116L).

References

[1] A. Gogna, A. Tayal, Metaheuristics: review and application. Journal of Experimental &
Theoretical Artificial Intelligence 25 (2013) 503-526.

[2] M.V. Maksimov, S.N. Pelykh, R.L. Gontar, Principles of controlling fuel-element cladding
lifetime in variable VVER-1000 loading regimes, Atomic Energy 112(4) (2012) 241-249.
https://doi.org/10.1007/s10512-012-9552-3.

[3] Y.P. Kondratenko, O.V. Korobko, O.V. Kozlov, Frequency Tuning Algorithm for
Loudspeaker Driven Thermoacoustic Refrigerator Optimization, in: K. J. Engemann, A.
M. Gil-Lafuente, J. M. Merigo (Eds.), Lecture Notes in Business Information Processing,
volume 115 of Modeling and Simulation in Engineering, Economics and Management,
Springer-Verlag, Berlin, Heidelberg: 2012, pp. 270-279. https://doi.org/10.1007/978-3-642-
30433-0_27.

[4] A.L Brunetkin, M.V. Maksimov, The method for determination of a combustible gase
composition during its combustion, Naukovyi Visnyk Natsionalnoho Hirnychoho
Universytetu 5 (2015) 83-90. http://nvngu.in.ua/index.php/uk/arkhiv-zhurnalu/za-
vipuskami/1132-2015/zmist-5-2015/tekhnologiji-energozabezpechennya/3162-metod-
viznachennya-skladu-goryuchikh-gaziv-pri-jikh-spalyuvanni.

[5] T. Mai, D. Mortari, Theory of functional connections applied to quadratic and nonlinear
programming under equality constraints, Journal of Computational and Applied
Mathematics 406 (2022) 113912.

[6] O.Kozlov, et al., Synthesis and Optimization of Green Fuzzy Controllers for the Reactors
of the Specialized Pyrolysis Plants, in: Kharchenko V., Kondratenko Y., Kacprzyk J. (Eds.),
Green IT Engineering: Social, Business and Industrial Applications, volume 171 of Studies
in Systems, Decision and Control, Springer, Cham, 2019, pp. 373-396. doi: 10.1007/978-3-
030-00253-4_16.

[7] M.A. Elsisy, M.A. El Sayed, Y. Abo-Elnaga, A novel algorithm for generating Pareto
frontier of bi-level multi-objective rough nonlinear programming problem, Ain Shams
Engineering Journal 12(2) (2021) 2125-2133.

[8] D. Simon, Evolutionary Optimization Algorithms: Biologically Inspired and Population-
Based Approaches to Computer Intelligence, John Wiley & Sons, 2013.

[9] I Boussaid, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics, Information
Sciences 237 (2013) 82-117.

[10] C. Blum, et al, Hybrid metaheuristics in combinatorial optimization: a survey, Applied
Soft Computing 11(6) (2011) 4135-4151.

[11] O.V. Kozlov, Optimal Selection of Membership Functions Types for Fuzzy Control and
Decision Making Systems, in: Proceedings of the 2nd International Workshop on



Intelligent Information Technologies & Systems of Information Security with CEUR-WS,
Khmelnytskyi, Ukraine, Intell TSIS 2021, CEUR-WS, Vol-2853, 2021, pp. 238-247.

[12] X. Wang, G. Wang, S. Li, A distributed fixed-time optimization algorithm for multi-agent
systems, Automatica 122 (2020) 109289.

[13] W. Pedrycz, K. Li, M. Reformat, Evolutionary reduction of fuzzy rule-based models, in:
Fifty Years of Fuzzy Logic and its Applications, volume 326 of STUDFUZ, Cham,
Springer, 2015, pp. 459-481.

[14] S. Muthukaruppan, M. J. Er, A hybrid particle swarm optimization based fuzzy expert
system for the diagnosis of coronary artery disease, Expert Systems with Applications
39(14) (2012) 11657-11665.

[15] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software 69 (2014)
46-61.

[16] S. Chakraborty, K. Mali, Biomedical image segmentation using fuzzy multilevel soft
thresholding system coupled modified cuckoo search, Biomedical Signal Processing and
Control 72(B) (2022) 103324.

[17] S. Mirjalili, The Ant Lion Optimizer, Advances in Engineering Software 83 (2015) 80-98.

[18] S. Vaneshani, H. Jazayeri-Rad, Optimized Fuzzy Control by Particle Swarm Optimization
Technique for Control of CSTR, International Journal of Electrical and Computer
Engineering 5(11) (2011) 1243-1248.

[19] A. M. Altabeeb, et al., Solving capacitated vehicle routing problem using cooperative
firefly algorithm, Applied Soft Computing 108 (2021) 107403.

[20] A. Kaveh, et al., Chaotic swarming of particles: a new method for size optimization of
truss structures, Adv. Eng. Softw. 67 (2014) 136-147.

[21] S. Mirjalili, The Whale Optimization Algorithm, Advances in Engineering Software 95
(2016) 51-67.

[22] T. B., Thang, H. T. T. Binh, A hybrid multifactorial evolutionary algorithm and firefly
algorithm for the clustered minimum routing cost tree problem, Knowledge-Based
Systems, 241 (2022) 108225.

[23] L. D. Seixas, H. G. Tosso, F. C. Corréa, J. J. Eckert, Particle Swarm Optimization of a Fuzzy
Controlled Hybrid Energy Storage System - HESS, in: 2020 IEEE Vehicle Power and
Propulsion Conference (VPPC), Gijon, Spain, 2020,  pp. 1-6. doi:
10.1109/VPPC49601.2020.9330939.

[24] O. Castillo, P. Melin, An Approach for Optimization of Intuitionistic and Type-2 Fuzzy
Systems in Pattern Recognition Applications, in: 2019 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA, 2019, pp. 1-5, doi: 10.1109/FUZZ
IEEE.2019.8858951.

[25] O.V. Kozlov, Information Technology for Designing Rule Bases of Fuzzy Systems using
Ant Colony Optimization, International Journal of Computing 20(4) (2021) 471-
486. https://www.computingonline.net/computing/article/view/2434.

[26] P. Ponce, et al., Optimization of Fuzzy Logic Controllers by Particle Swarm Optimization
to Increase the Lifetime in Power Electronic Stages, in: Adel El-Shahat (Ed.), Electric
Machines for Smart Grids Applications — Design, Simulation and Control, IntechOpen,
2018, pp. 213-233.



[27] M. Algabri, et al.,, Optimization of Fuzzy Logic Controller using PSO for Mobile Robot
Navigation in an Unknown Environment, Applied Mechanics and Materials 541-542
(2014) 1053-1061.

[28] M. Collotta, G. Pau, V. Maniscalco, A Fuzzy Logic Approach by Using Particle Swarm
Optimization for Effective Energy Management in IWSNs, IEEE Transactions on
Industrial Electronics 64(12) (2017) 9496-9506. doi: 10.1109/TIE.2017.2711548.

[29] V. Maniscalco, F. Lombardo, A PSO-based approach to optimize the triangular
membership functions in a fuzzy logic controller, in: AIP Conference Proceedings 1906,
2017, 1900111. https://doi.org/10.1063/1.5012474.

[30] B.P. Sahoo, S. Panda, Improved grey wolf optimization technique for fuzzy aided PID
controller design for power system frequency control, J. Sustainable Energy, Grids and
Networks 16 (2018) 278-299.

[31] E. Hernandez, O. Castillo, J. Soria, Optimization of fuzzy controllers for autonomous
mobile robots using the grey wolf optimizer, in: 2019 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA, 2019, pp. 1-6.

[32] M. Karimi, et al. ReMoRo; A mobile robot platform based on distributed I/O modules for
research and education, in: 2015 3rd RSI International Conference on Robotics and
Mechatronics (ICROM), Tehran, Iran, 2015, pp- 657-662, DOI:
10.1109/ICRoM.2015.7367861.

[33] D. Maia, A. Coelho, M. Ricardo, Obstacle-aware On-demand 5G Network using a Mobile
Robotic Platform, in: 2022 18th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), Thessaloniki, Greece, 2022,
pp- 470-473, doi: 10.1109/WiMob55322.2022.9941633.

[34] Y.P. Kondratenko, et al, Features of clamping electromagnets using in wheel mobile
robots and modeling of their interaction with ferromagnetic plate, in: Proc. of the 9th
IEEE International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), Vol. 1, Bucharest, Romania, 2017, pp.
453-458. doi: 10.1109/IDAACS.2017.8095122.

[35] V. Mazur, Robotic Mobile Platform for Container Transportation, in: 2021 IEEE 16th
International Conference on the Experience of Designing and Application of CAD
Systems (CADSM), Lviv, Ukraine, 2021, Pp- 10-13. doi:
10.1109/CADSM52681.2021.9385212.

[36] O. Kozlov, et al., Swarm Optimization of Fuzzy Systems for Mobile Robots with Remote
Control, Journal of Mobile Multimedia 19(3) (2023) 839-876.
https://doi.org/10.13052/jmm1550-4646.1939.

[37] S. Alyokhina, I. Nevliudov, Y. Romashov, Safe Transportation of Nuclear Fuel Assemblies
by Means of Wheeled Robotic Platforms, Nuclear and Radiation Safety 3(91) (2021) 43-50.
https://doi.org/10.32918/nrs.2021.3(92).05.

[38] Y.P. Kondratenko, A.V. Kozlov, Parametric optimization of fuzzy control systems based
on hybrid particle swarm algorithms with elite strategy, Journal of Automation and
Information Sciences 51(12) (2019), 25-45. doi: 10.1615/JAutomatInfScien.v51.i12.40

[39] R. Duro, et al. (Eds.), Advances in intelligent robotics and collaborative automation, River
Publishers, Aalborg, 2015. doi: 10.13052/rp-9788793237049.

[40] Y.P. Kondratenko, et al., Slip displacement sensors for intelligent robots: Solutions and
models, in: Proceedings of the 2013 IEEE 7th International Conference on Intelligent Data


https://www.scopus.com/record/display.uri?eid=2-s2.0-84990306417&origin=resultslist&sort=plf-f&cite=2-s2.0-84990306417&src=s&imp=t&sid=9686b971a82db85a74f8b1e7a433be80&sot=cite&sdt=a&sl=0
https://doi.org/10.13052/rp-9788793237049

Acquisition and Advanced Computing Systems, IDAACS 2013, 2, art. no. 6663050, pp.
861-866. doi: 10.1109/IDAACS.2013.6663050.

[41] Y.P. Kondratenko, O.V. Kozlov, Combined Fuzzy Controllers with Embedded Model for
Automation of Complex Industrial Plants, in: Shahnaz N. Shahbazova, Janusz Kacprzyk,
Valentina Emilia Balas, Vladik Kreinovich (Eds.), Recent Developments and the New
Direction in Soft-Computing Foundations and Applications, volule 393 of Studies in
Fuzziness and Soft Computing, Springer, Cham, 2020, pp. 215-228.
https://doi.org/10.1007/978-3-030-47124-8_18.

[42] Y.P. Kondratenko, et al., Internet of Things Approach for Automation of the Complex
Industrial Systems, in: Proceedings of the 13th International Conference on Information
and Communication Technologies in Education, Research, and Industrial Applications.
Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, Ermolayev, V. et al.
(Eds.), ICTERI’2017, CEUR-WS, Vol-1844, 2017, pp. 3-18.

[43] R. S. Batth, A. Nayyar, A. Nagpal, Internet of Robotic Things: Driving Intelligent Robotics
of Future - Concept, Architecture, Applications and Technologies, in: 2018 4th
International Conference on Computing Sciences (ICCS), Jalandhar, India, 2018, pp. 151-
160. doi: 10.1109/ICCS.2018.00033.

[44] M. Basha, et al, Command Control Robot using Internet of Things on Field
Programmable Gate Array, in: 2020 International Conference on Electronics and
Sustainable Communication Systems (ICESC), Coimbatore, India, 2020, pp. 1068-1073.
doi: 10.1109/ICESC48915.2020.9155989.

[45] M.H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, An improved grey wolf optimizer for
solving engineering problems, J. Expert Systems with Applications 166 (2021) 113917.

[46] O.V. Kozlov, Y.P. Kondratenko, O.S. Skakodub, Information Technology for Parametric
Optimization of Fuzzy Systems Based on Hybrid Grey Wolf Algorithms, SN Computer
Science 3(6) (2022) 463. https://doi.org/10.1007/s42979-022-01333-4.



