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Abstract 
Issues related to the application of multithreshold neural units in machine learning are considered in 

the paper. A labeled modification of the model of binary-valued multithreshold neuron is proposed. 

The 2-layer feedforward network architecture with the hidden layer consisting of multithreshold 

neurons is treated. The multicategory classifier is designed on the base of such architecture. The 

supervised algorithm is proposed for the synthesis of multithreshold neural networks. Simulation results 

are presented related to the performance of multithreshold classifier on real-world dataset compared to 

some popular classifiers. The impact of algorithm hyperparameters on the classifier performance, as 

well as on its representational capacity is discussed. 
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1. Introduction 

Neural networks play extremely important role in machine learning [1] and intelligent data pro-

ceeding [2, 3]. They are used as efficient components of modern smart hardware [4] and software 

solutions [5, 6]. Powerful capabilities of artificial neural network (NN) are provided by the pos-

sibility of the use of problem-oriented network architecture [7], appropriate supervised or unsu-

pervised learning techniques [8, 9] and the proper choice of hyperparameters of the learning 

algorithm [2]. 

During few past decades we were witnesses of numerous rises and falls of the interest in neural 

computations. Early neural-like models (e.g., a model of McCulloch and Pitts artificial neuron) 

used linear threshold units in which binary-valued Heaviside step function [9] was used. These 

models were inspired by the brain study of the structure of biological neurons [2]. But the limited 

capacity of a single threshold unit [10] along with difficulty in the design of learning algorithms 

for threshold networks even in case of the relatively small number of units were stumbling blocks 

for an efficient application of threshold NN in machine learning and caused the decline of interest 

in them [11]. 

In order to overcome these drawbacks of early models of neurons, many improvements were 

proposed [2, 12] intended to boost the recognition capability of a single threshold unit and make 

easier the process of the network learning [9]. They can be divided into two big categories. The 
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first contains models using the more complicated approach to the aggregation of the input signals 

of the neural unit instead of the weighted sum of inputs in linear threshold units, e.g., polynomial 

threshold units [11, 13]. The second category contains models in which the basic threshold 

function is replaced by its more sophisticated modifications [14]. This category is much more 

useful because it allows to use diverse learning techniques adapted to the particular problem or 

application [15, 16]. 

The models with multithreshold activation function were one of first in the second category 

[17]. A multithreshold neuron has weight vector  1, , n

nw w w R  associated with inputs 

1, , nx x  and threshold vector  1, , k

kt t t R  instead of a single threshold used in McCulloch 

and Pitts neuron. The use of multiple thresholds allows to operate with neuron in two modes: 

binary-valued and multi-valued, respectively [18]. The first mode uses the following activation: 
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Note that bipolar output values are also acceptable for such function, if 0 is replaced by –1 in the 

last row in braces in equation (1). 

The second mode can be preferable for application in multiclass classification [19, 20]. In this 

mode the following ( 1)k  -valued counterpart of (1) is used 
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Notice that both activations (1) and (2) can be used in multiclass classification [18]. But in the 

case of the binary-valued activation (1) the output layer of special shape is required as well as the 

employing of the “one versus all” approach for the learning of classifier [21]. 

The main goal of the paper is the study of the model of 2-layer neural network whose hidden 

layer consists of binary-valued multithreshold neurons and examination whether this model is 

suitable for the multiclass classification, as well as the development of the synthesis algorithm 

for such networks. 

2. Related works 

As it was mentioned in introduction, multithreshold neural units were proposed in the early 

studies in artificial intelligence [17, 21, 22]. The first models employed the binary-valued acti-

vation in the form (1). The reason for the use of additional thresholds was the assumption that it 

can improve the capability of basic (single-threshold) linear threshold units [23, 24]. The theo-

retical reasons were studied in [17, 21, 23, 25] confirming this assumption and giving quantitative 

expressions for it. These works dealt with the estimation of capability of multithreshold elements 

to produce dichotomies of finite sets in n-dimensional real space [9]. These studies confirmed the 



power of multithreshold approach and its advantage over single-threshold one. But the ways of 

the practical realization of this advantage remained almost unclear, because few applications of 

multithreshold-based models and networks were proposed [26] despite their better potential 

capacities compared to the basic linear threshold units [18, 24]. The hardness results stated in [5, 

18] for 2-valued multithreshold neurons and networks shed some light on these difficulties related 

to the design of multithreshold systems in the case of two or more thresholds. Nevertheless, the 

lack of learning techniques for multithreshold systems implies the reduction of the interest in their 

development [6, 7, 27]. 

Papers [5, 28] stated some recent advances in the study of bithreshold neural units and NN 

that changed the situation somewhat. It was caused by new approaches in the synthesis of NN 

whose hidden layer consists of bithreshold neurons, which were proposed in [5, 24] using the 

generalization of the Baum’s idea [29] for threshold networks combined (see [24]) with the power 

of the bithreshold activation function, which is the partial case of (1) obtained for 2.k   

The above observation was confirmed in [1, 3], where bithreshold neural networks were consi-

dered as effective tools for intellectual data processing and machine learning [4]. The drawbacks 

and limitations of the basic bithreshold NN were stated in [5]. They were explained as the con-

sequence of the non-local nature of bithreshold activation function in [24]. Hybrid models of the 

multiclass classifier with additional hidden layers were proposed in [29] in order to reduce the 

mentioned downside of the bithreshold paradigm. It should be noted that bithreshold NN can be 

useful not only for solution of classification problems. The scope of their application can be 

considerably extended [8, 14] to new scopes. E.g., they were mentioned in design of powerful 

deep NN providing the exponential improvement of the memorization capacity [15]. Moreover, 

the bithreshold approach is not limited only by real-valued domain [16]. The generalization of 

multithreshold paradigm is known for systems proceeding with complex-valued data [16]. The 

complex bithreshold-like activations were introduced in [12] in order to increase the capability of 

complex-valued neural units. 

Notice that the mentioned advances in the use of multithreshold activation are actually related 

to only networks that use bithreshold nodes in their hidden layers [6]. There are applications of 

networks including nodes neither with multithreshold activation (1) nor (2) in the case where the 

number of thresholds 2k   [5, 18]. Papers [18, 28] clarify the reasons causing difficulties related 

to the application of multithreshold approach. The learning of a single multithreshold unit with 

activation (1), as well as the learning of NN consisting of neurons with activation (2) proved to 

be NP-hard even in the case 2k  . Therefore, the intractability is the internal property of 

multithreshold models [30]. 

3. Models and methods 

3.1. Model of multithreshold neural unit 

Let us consider again a model of k-threshold binary-valued neuron with the weight vector w and 

(ordered) threshold vector t, which output is given by (1). It is possible to enhance this model a 

bit by using a binary starting label. The performance of such unit can be described as follows:  
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where  1, , nx xx  is an input vector, 1 1 ...w x  w x n nw x ,  0,1  is a binary label of the 

neuron,   is its negation, and  y is the output value of the neuron. Further, we shall consider only 

binary-valued neurons that obey (3) and their attribute “binary-valued” will be omitted. The 

corresponding labeled activation function will be denoted as  2

,f t
. 

The labeled k-threshold neuron is completely defined by the triplet  , ,w t . As well as in [5] 

we call this triplet the structure vector of labeled multithreshold neuron. 

Two sets nA R  and nA R  are called k-separable [18] if there exists a k-threshold 

neuron with structure  , ,w t  such that 

for all 
   2

, 1A f 

  tx w x  and for every 
   2

, 0A f 

  tx w x . 

In this case labeled k-threshold neuron with the structure  , ,w t  produces the k-dichotomy 

 ,A A 
 of the set A A A    in two disjoint sets A  and A . Therefore, k-threshold neurons 

can be used as binary classifiers. But, as stated in [18], the computational power provided by a 

single multithreshold unit is insufficient for the design of efficient multiclass classifiers [2]. 

Model (3) has a simple geometrical interpretation [18]. The family of parallel hyperplanes 

: ,j jH t w x   1, ...,j k  divides the space n
R  by 1k   parts, which can be successively la-

beled by numbers 0, 1, …, k. In the case 1   all points belonging to parts with even indices are 

attributed as “negative”, whereas “odd” parts are considered as “positive” [18]. If 0  , then the 

order of parts should be changed to opposite. The illustration is shown in Figure 1, where the case 

2, 4, 1n k      is considered, and the sets of blue (negative) and yellow (positive) points are 

4-separable. 

 

Figure 1: Illustration of the performance of binary-valued 4-threshold neuron. 



Figure 1 can also illustrate the nature of difficulties related to the application of a binary-

valued k-threshold neuron. Its value can alternate k times. It ensures the greater capability of the 

neuron on the one hand, but results in the hardness of its training on the other hand. 

3.2. Model of 2-layer multithreshold neural network 

We can overcome the limitation of a single multithreshold neuron by using a NN in which multi-

threshold neurons are connected layer-wise. The simplest architecture has only two computation 

layers and its hidden layer consists of labeled multithreshold neurons, whereas outputs layer 

contains single-threshold nodes each of them corresponds to a separate class of patterns. The 

architecture of a 2-layer feedforward fully-connected multithreshold neural network is shown in 

Figure 2. 

 

Figure 2: Architecture of a 2-layer multithreshold NN with n-h-l topology 

The NN has n nodes in the input layer, h multithreshold neurons in the hidden layer and l 

threshold neurons in the output layer, where l is a predefined number of classes. Note that the 

hidden layer can be a bit heterogeneous in the sense of the number of thresholds and labels of 

neurons. Namely, the same number of thresholds is not required for neurons in this layer. This 

assumption can make network synthesis easier and may reduce the size of memory that is neces-

sary to store all network parameters. 

Consider how multithreshold NN can be used to perform the desired partition of patterns in n-

dimensional space. The example of the network performance in two dimensions is presented in 

Figure 3. 

Circles are members of the first class C1. The second class C2 is formed by triangles, and 

squares belong to the third class C3. Note that both C1 and C3 are formed by 2 compact clusters, 

which are denoted using multiple occurrences of class names. The presented partition can be 

produced by 2-layer multithreshold NN, which have 2-4-3 topology. The hidden layer of the 

network consists of 4 multithreshold neurons each of them is responsible of the recognition of 

patterns belonging to one of 3 classes. For the proper classification of patterns from class C1 a 

single neuron is sufficient. The same is true for C2. The first class C1 requires the use of multi-

threshold neuron with 3 thresholds, whereas a single bithreshold neuron suffices for the second 



class. The proper classification of patterns belonging to the third class C3 requires the use of 2 

bithreshold neurons (one of them can be even replaced by a single-threshold neuron). The hyper-

planes that form bounding surfaces of multithreshold neurons are drawn in solid lines. 

 

Figure 3. Example of the performance of 2-layer multithreshold neural network 

Each hidden neuron makes its own primary “slice” whose width depends on neuron two thre-

sholds, which in turn are defined by the relative position of patterns. Every multithreshold neuron 

recognizes at least two patterns of corresponding class, with possibly some additional points. All 

primary slices are equidistant from their pivot lines depicted in Figure 3 in dashed line. For the 

neuron corresponding to the first class one more (unbounded) slice is required, which is 

performed using an additional third threshold. The corresponding line is marked in Figure 3 using 

an arrow. The label 0 should be assigned to this neuron, whereas all other neurons in the hidden 

layer would be labeled with 1. Every single-threshold neuron in the output level can be connected 

only with neurons corresponding to its own class and performs only the disjunction of its inputs. 

Consider the network performance in the prediction mode. Let P1 and P2 are new instances 

presented to the network. Using (3) and the rule of the action of the output neurons we can 

conclude that network classifies P1 and P2 as members of C1 and C3, respectively. It should be 

noted that classification of patterns P3 and P4 seems less clear. We shall return to this issue later. 

3.3. Network synthesis algorithm 

Consider the task of the synthesis of multithreshold NN. Essentially, multithreshold NN with l 

outputs computes a vector mapping  : 0,1
ln F R . The question arises how to design of a com-

putationally efficient algorithm for synthesis a network, which is able to produce a given partition 

 1, , lC C  of the finite set C into l disjoint nonempty sets 1, , lC C , i.e., for all Cx

  1i iC  F x x , where 1, ,i l . 

In the algorithm design the approach to NN synthesis shall be used that is the generalization 

of similar techniques used in [5] for the synthesis of bithreshold NN. This approach extends an 

idea of the synthesis of single-threshold NN [29] to the case of neurons with several thresholds. 



The necessary number of such neurons would be inserted in the hidden layer that each of them is 

capable to recognize its own portion of patterns belonging to a particular class by separating them 

from patterns belonging to other classes using 2 or more parallel hyperplanes. 

Let a collection of pairs     1 1, , , ,m my yx x  be our training set, where m  m n  is its size, 

n

i x R  is a training pattern provided with its label  1, ,iy l  and iy j  implies that the 

corresponding pattern ix  belongs to the class ,jC  1, ,i m . Suppose that all patterns in the 

sequence X  1, , mx x  are in general position in n-dimensional space—that is, every subset of 

n or fewer patterns consists of linearly independent elements. Assume also that 

, 1, ,i iX X C i     1, ,..., mm y yy . Consider the following pseudocode of the network 

synthesis algorithm: 

 
MultithresholdSynthesis(X, y, α, p) 

Stage 1. Synthesis of the hidden layer 

1.1  1, , lZ X X  

1.2  0h   

1.3 while Z  : 

1.4  select a random set iX  from Z 

1.5  1h h   

1.6   c h i  

1.7   min , ir n X  

1.8  Move r randomly chosen patterns from Xi into the matrix A 

1.9  Solve linear system 
TA w 1  

1.10   min | 1| \ iX X    w x x  

1.11   \ | 1|i i iX X X     x w x  

1.12   1 , 1   t  

1.13  1   

1.14  foreach iXa : 

1.15   s  w a  

1.16    1 min \ ,is X X s      w x x w x  

1.17    2 min \ ,is X X s      w x x w x  

1.18    1 2,iB X s      x x w x  

1.19   if B p : 

1.20    \i iX X B  

1.21    if 1  is well-defined: insert 1s   in the ordered vector t 

1.22    else: 0   

1.23    if 2  is well-defined: insert 2s   in the ordered vector t 



1.24  Add multithreshold neuron  , ,w t in the hidden layer 

1.25  if iX  : 

1.26   remove Xi from S 

Stage 2. Synthesis of the output layer 

2.1 for 1i   to l: 

2.2  for 1j   to h: 

2.3   if   c h i : 2ijv   

2.4   else: 0ijv   

2.5  Add threshold neuron  ,1iv  in the output layer 

 

The presented algorithm has 2 parameters X—the sequence of training patterns, y—the target 

vector of class labels for all patterns (is used only in step 1.1), and two hyperparameters α and p. 

The synthesis process is divided by 2 stages. The main first stage defines the creation of the 

network hidden layer consisting of multithreshold neurons with variable number of thresholds. 

The second stage is very simple and defines the output layer consisting of single-threshold 

neurons. 

In the above algorithm h is the counter responsible for the current number of hidden multi-

threshold neurons. After the completion of the first stage h equals the size of the hidden layer. 

Inside a while loop the portion of unhandled patterns is selected, which belong to the same class. 

Then r patterns are moved into rows of auxiliary matrix A. In step 1.9 the vector of length r is 

denoted by 1, which consists solely of 1’s. Steps 1.8–1.12 are intended to determine the parameter 

of the “main slice” of multithreshold neuron which is defined by the weight vector w from step 

1.9—a normal vector of the two parallel hyperplanes that perform this slice using thresholds 1   

and 1  , respectively. Such slices are crucial for MultithresholdSynthesis, because each of them 

properly classifies at least n patterns of ith class (when patterns are in general position). The 

nested loop in steps 1.14–1.23 is intended to try candidates for secondary slices. Each such slice 

is taken into account only if it detects at least p new properly classified patterns, where p is the 

hyperparameter of the synthesis algorithm. 

Note also that 1  and 2  determine the width of corresponding secondary slice and can be 

undefined. In this case at most a single threshold will be added into the threshold vector. It can 

result in multithreshold neurons with odd number of thresholds. If 1  is undefined, then 0 is assig-

ned to the neuron label. It is useful in the case when all remaining class patterns are only training 

instances lying in the “negative” half-space produced by corresponding hyperplane s w x . 

As mentioned in [5], the hyperparameter α can be considered as a tolerance measure of multi-

threshold NN. If (0,1] , then the network performs well on training set (training error is almost 

0) but it can be “overfitted” and less effective outside the training data. If α is slightly greater than 

1, then the network can have the better generalization ability. Moreover, the use of α > 1 can 

result in the reduction of the number of neurons in the hidden layer. 

In step 2.5 we denote by (vi, 1) the ith single-threshold neuron with the weight vector i v  

 1, ,i ihv v  and the unit threshold. 



The following proposition estimates the complexity of the considered algorithm. 

Proposition. An arbitrary partition of m-set X into l disjoint nonempty sets X1, …, Xl of n-

dimensional vectors can be performed by a 2-layer multithreshold NN with at most  /m n l  

nodes in the hidden layer and l neurons in the output layer, whereas the network can be synthe-

sized using MultithresholdSynthesis(X, y, α, p) in  3O m  time. 

4. Experiment 

Let us consider the capability of MultithresholdSynthesis to synthesis a multithreshold multiclass 

classifier to solve the classification problems compared to classical classifiers, such as k-nearest 

neighbor, decision tree, random forest, RBF SVC (support vector classifier with RBF kernel), 

MLPClassifier (multilayer perceptron or fully-connected feed-forward NN, using softmax 

function for estimates the probability of the target class over all possible target classes and cross-

entropy loss function). Classifiers were tested on the “Wine Quality” dataset [31], related to red 

and white variants of the Portuguese "Vinho Verde" wine provided by “UC Irvine Machine 

Learning Repository” [32], as well as other popular repositories, e.g., [33]. This medium-sized 

dataset contains 6497 instances, 4898 of which are related to white wine, and other 1599—to red 

one [31]. 

The data includes only 12 features, 11 physicochemical properties as inputs (see [34]), wine 

color and one sensory quality score as the output from 0 to 10 (actually, for red wine the quality 

is between 3 and 8, and for white wine—between 3 and 9). The distribution of qualities is shown 

in Figure 4. 

 

Figure 4. Distribution of qualities of wines 

Note that only 9 instances have the quality value 9 and they are almost invisible in Figure 4. The 

most frequent quality value is 6 with 2836 representatives. Thus, the classes are very imbalanced. 

Moreover, not all input features are supposed to be quite relevant [31]. Thus, the training task for 

this dataset can be considered hard enough to estimate classifier ability [34]. 

Dataset contains only numerical data (except the color value). Thus, the feature extraction was 

very simple. Data were standardized by removing the mean and scaling to unit variance using 

standard scaler from Scikit Learn [2, 35]. 80% of instances of every dataset were used as the 



training set (namely, 5198 instances), and the rest 20%—as the test set for the final evaluation of 

classifier results. In order to avoid the dependence of the selection of patterns for the training, 

random sub-sampling validation was used [2], i.e., randomly chosen testing instances keeping the 

same proportion 1:3 between instances concerning red and white wines, respectively. 

For every classifier stratified 5-fold cross-validation was used in order to evaluate the classifier 

performance and to tune its hyperparameters. The average performance measure over all 5 splits 

and grid search was employed for this purpose. 

For k-nearest neighbor classifier only the number of neighbors was explored. For multilayer 

perceptron Adam optimizer was used and the number of hidden layer as well as their sizes, the 

kind of activation function and batch size were investigated. For support vector classifier with 

RBF kernel different combinations of values were tried of regularization parameter C, degree of 

the polynomial kernel function and kernel coefficient gamma [35]. In the case of random forest 

classification, the number of trees in the forest and the maximum depth of the tree were chosen. 

The last parameter also was studied for decision tree classifier. 

Both hyperparameters α and p were explored for MultithresholdSynthesis(X, y, α, p). {0.7, 

0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2} and {2, 3, 4, 5, 6, 7} ranges were used for α and p, 

respectively. During the experiments we used implementations of 5 above-mentioned popular 

classifiers provided by Scikit-Learn library [35]. 

Two classification metrics were used during simulation. The first was the accuracy, the 

second—top-2 score (successful when the target class is within the top 2 predictions) [35]. 

5. Results 

The following two tables contain results of experiments in the case of first and second metrics, 

respectively. For first 5 classifiers best between all specified combinations of hyperparameter 

values are not shown for sake of brevity (and because their study is beyond the main scope of the 

paper). Note that all classifiers were retrained one more time on full training set after the finish 

of cross-validation and grid search. That is why the values of metrics on the test set are often 

higher than average across all splits during cross-validation. 

Table 1 

Classifiers performance on “Wine Quality” dataset. Accuracy metric (in %) 

Classifier 
Cross-validation 

Test set 
Train score Test score 

7-Nearest Neighbor 65.45 54.43 56.01 

Decision tree 100 57.68 60.92 

Random forest 100 65.62 67.87 

Multilayer perceptron 91.71 63.11 62.13 

Support vector machine 67.55 56.77 58.15 

2-layer multithreshold NN1 100 49.02 54.28 

2-layer multithreshold NN2 93.02 56.24 60.95 

 
Results for two versions of multithreshold 2-layer NN are presented in last two rows in both 

tables. In the synthesis of NN1 α = 1 was used. NN2 was synthesized using the best value 

α* = 1.05 found by the grid search. In both networks the best value p* = 4 was used. 



Table 2 

Classifiers performance on “Wine Quality” dataset. Top-2 score metric (in %) 

Classifier 
Cross-validation 

Test set 
Train score Test score 

7-Nearest Neighbor 92.2 84.31 85.01 

Decision tree 100 61.17 63.88 

Random forest 100 91.38 92.05 

Multilayer perceptron 98.46 85.6 87.97 

Support vector machine 88.84 77.14 77.8 

2-layer multithreshold NN1 100 57.11 56.29 

2-layer multithreshold NN2 98.02 83.92 84.36 

 

By analyzing the performance results shown in Table 1 and Table 2, we can conclude that: 

 The basic version of multithreshold network NN1 was good memorizer and performed 

perfectly on the training set. 

 The generalization ability of NN1 was very poor. Its performance on the test set was worst 

for both considered metrics. 

 The optimized version NN2 lost a bit in the accuracy on the training set, but performed 

considerable better on new patterns. 

 The proper choice of the α allow us to avoid the great overfitting. 

 The test error during cross-validation varies significantly.  

 The use of value of   lying inside the half-interval (0, 1] results in the degradation of the 

generalization capability of the classifier. 

 The most typical number of thresholds of the neuron in the hidden layer of NN2 was 3. 

 The growth of the value of hyperparameter p results in almost bithreshold hidden layer. 

 Using the modified software implementation and additional memory it is possible to 

decrease the time complexity of MultithresholdSynthesis(X, y, α, p) in Proposition from 

 3O m  to   2 logO m n m . 

 The estimated hidden layer size  /m n l  from Proposition is too pessimistic. The actual 

size in the experiment was 231. But it seems plausible that the number of nodes in the 

hidden layer growths as /m n . 

6. Discussions 

The proposed model of 2-layer multithreshold NN and corresponding synthesis algorithm can be 

considered as the first step towards an application of multilayer NN based on the multithreshold 

paradigm in machine learning in the case of an arbitrary number of thresholds. Even the first 

applications of such networks in classification on the real-word datasets showed that they have 

the similar pros and cons that bithreshold neural networks considered in [5, 24]. 

The principal consequences that follow from concrete results of simulation concerning the 

pattern classification on synthetic [35] as well as real-world datasets [32, 33] using multithreshold 

2-layer NN suggest that networks yielded by MultithresholdSynthesis or its more complicated 



modifications have good performance on the design set but are rather inefficient on new instances. 

More precisely, as it was observed that for “Wine Quality” and other datasets: 

Making prediction, classifier can attribute new patterns to a class whose all representatives in 

the training set are very distant from this pattern (“nonlocality” of classifier [24]). 

The size of the hidden layer of the network strongly depends on the order in which the training 

patterns were presented to learner. Moreover, during the cross-validation the NN synthesized on 

different splits demonstrated the significant diversity of the size of the hidden layer. 

The size of the hidden layer is too large in the case of the larger datasets. 

This downsides of the basic multithreshold 2-layer NN classifier is illustrated in Figure 3. The 

network classifies pattern P3 as a member of first class despite it looks more likely be a member 

of one of two other classes (first drawback). Moreover, the network is undecisive when it predicts 

a class for new pattern P4, despite it is situated in the proximity of a compact cluster of members 

of the first class (second drawback). 

A conjecture was stated in [5] that the reason for such two downsides is the nature of the 

multithreshold activation function. These downsides can be eliminated by using a localized 

modifications of activation function (1), e.g., the multithreshold modifications of smoothed local 

activations, which were proposed in [24]. Another solution consists in the use of modified net-

work architectures with additional layers comprising nodes of different kinds, as it was proposed 

in [30] for bithreshold neural networks. The last drawback can be partially reduced using some 

additional hyperparameters in the MultithresholdSynthesis, e.g., the limitation of the hidden layer 

size. 

It should be noted that the more expensive part of MultithresholdSynthesis algorithm is 

computations in step 1.10, which have the O(m2n) contribution in its time complexity. These 

computations can be performed simultaneously with solely synchronization of the shared variable 

ε. Therefore, MultithresholdSynthesis has massively parallel structure and can be effectively 

realized using multicores processors and graphical accelerators. 

7. Conclusions 

The ways of the use of multithreshold paradigm in neural computation were treated in the paper. 

The new modification of the model of binary-valued multithreshold neural unit was proposed, 

which allows often to reduce number of thresholds. The 2-layer neural network architecture was 

studied whose hidden layer consists of multithreshold neurons with different number of 

thresholds. The synthesis algorithm was developed for such multithreshold NN. The multiclass 

classifier was designed on the base of such architecture. 

Experiment results of the performance of multithreshold classifier on “Wine Quality” real-

world dataset were presented. These results clarify pros and cons of the proposed model compared 

to some popular classifiers. The impact of algorithm hyperparameters on the classifier ability to 

make a precise prediction, as well as and the ways to improve it were discussed. The main 

conclusion is that there exists a need in the development of localized modifications of the 

multithreshold activation function and additional hyperparameters in synthesis algorithm in order 

to regulate the network performance more precisely. 
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