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Abstract
Cybersecurity advancements necessitate effective measures to combat rising and sophisticated threats.
Artificial Intelligence (AI) and eXplainable AI (XAI) solutions have demonstrated significant capabilities
in predicting and responding to cyber threats. Moreover, integrating AI components with Intelligent
User Interfaces (IUI) has been explored as a promising approach, emphasizing user experience and
interaction policies. Despite these advancements, the primary challenge remains addressing human
errors, particularly those induced by cognitive biases. This paper provides an overview of possible
recommendations on AI integration with cybersecurity systems and human cognitive bias mitigation
solutions.
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1. Introduction

With the advance of technology in different sectors, cybersecurity becomes crucial to protect
against attacks and ensure digital safety [1]. As the complexity and frequency of cyber attacks
rise, there is a need to employ different measures for identifying and countering emerging
threats. Artificial Intelligence (AI) cybersecurity solutions [2, 3, 4, 5] have proven to be a good
ally in fighting cybercrime, which, alongside eXplainable AI (XAI) techniques, have immense
power in reducing and predicting cyber threats [6, 7]. Recent studies discussed the benefits
of integrating AI components with an appropriate Intelligent User Interface (IUI), providing
principles to apply when developing intelligent threat modelling tools, especially considering
users’ interaction guidelines and User Experience (UX) [8, 9, 10, 11, 12]. However, one of the
main challenges that may invalidate the effectiveness of cybersecurity systems lies in human
errors, often caused by users’ cognitive biases [13, 14]. This calls for defining strategies to detect
and mitigate human irrational judgements (e.g., optimism bias) [14, 15].

In this paper, we collect a set of shared problems and overcome strategies arising from
the converging literature in cybersecurity considering Artificial Intelligence (AI), Intelligent
User Interfaces (IUI), and human cognitive biases in decision-making. We start by outlining
the emerging challenges of AI applications in cybersecurity systems and the necessity for
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explainability resolutions. Next, we list the most encountered cognitive biases and phenomena
that undermine users’ decision-making and lead to potential errors, accompanied by mitigation
approaches.

2. Related Work

In this section, we briefly summarize the emerging gaps and needs in the literature encompassing
the fields of Artificial Intelligence (AI), Intelligent User Interface (IUI), and human cognitive
bias in the cybersecurity domain.

2.1. Artificial Intelligence in Cybersecurity

Cybersecurity is continuously changing with the development of new technologies and the
emergence of new threats [1]. The integration of Artificial Intelligence (AI) has the potential to
significantly enhance cybersecurity systems by enabling them to identify and counter novel
and unknown threats [16, 17]. Common approaches encompass AI tactics for identifying and
surveilling malicious activities, detecting cyber threats, and safeguarding an organization’s
networks, which may include Expert Systems, Intelligent Agents, Deep Learning, and Reinforce-
ment Learning [3, 4, 5, 18, 19]. Some practical examples of these techniques involve AI systems
for Intrusion Detection [2, 20], Botnet Attack Detection [21, 22, 23, 24], Malware detection,
analysis, and mitigation [25]. However, integrating complex and black-box AI systems under-
mines the transparency of these systems’ decision-making processes. Adopting eXplainable
AI (XAI) techniques becomes a starting point for providing insights into the rationale behind
AI-driven decisions and enhancing overall transparency in the cybersecurity domain [6, 7, 26].
In addition to adopting Explainable AI (XAI) techniques, assessing AI confidence and robustness
becomes crucial to avoid unintended behaviours of AI-based cybersecurity systems. Specifically,
estimating measures like uncertainty and implausibility [27, 28] allows practitioners to make
more informed decisions and adapt cybersecurity measures in responding to new threats.

2.2. Intelligent User Interfaces in Cybersecurity

Integrating Artificial Intelligence (AI) solutions in the cybersecurity ecosystem profoundly
influences user interface (UI) design due to its ability to enhance user experiences and enable
personalized interactions. This process is commonly referred to as Intelligent User Interface
(IUI) design, ultimately leading to user interfaces that are user-centric, engaging, and effective in
meeting user needs and expectations [8]. Previous literature already proposed potential designs
of intelligent user interfaces for defending against Malicious Bot Attacks [24] and preventing
Phishing Attacks [29, 30]. Instead, other research explored how users make decisions when
engaging with these interfaces during phishing attacks [12], showing that the interface design
was understandable and familiar to users. However, they posit a need for future research to
determine the most effective malicious features to display and how to enhance users’ interest
and trust. Additionally, further research studied how cognitive bias affects users’ decisions in a
phishing detection scenario [11], revealing that the higher occurrence of hyperbolic discounting
bias (i.e., choose immediate rewards over rewards that come later in the future) made it more



easily identifiable by humans, reducing its effectiveness in deceiving participants. Conversely,
the lower occurrence of authority bias (i.e., the tendency to be more influenced by the opinions
and judgments of authority figures) proved more effective in phishing human participants. We
will deepen the topic of cognitive biases in the next section.

2.3. Human Behavioral Decision-Making in Cybersecurity

A major challenge in the cybersecurity domain concerns the detection and mitigation of human
cognitive biases, as they can influence decision-making, leading users to think irrationally in
certain situations and make unreasonable judgments [13, 31]. Recent research gathered which
are the most common cognitive biases based on different scenarios: for example, Gutzwiller et
al. [32] found phenomena like confirmation bias, anchoring bias, and take-the-best heuristic
are the most common among red teamers attackers. Furthermore, the authors of [33] investi-
gated the role of four cognitive biases (i.e., selective perception, exposure to limited alternatives,
adjustment and anchoring, and illusion of control) in anticipating and responding to Distributed-
Denial-of-Service (DDoS) attacks. They highlighted several practical implications for managers
in dealing with the increasing threat of cyberattacks like raising awareness, developing clear
step-by-step tested and documented defense procedures, and identifying organizational vulnera-
bilities. Majumdar et al. [34] carried out a systematic literature review collecting human-related
components (e.g., confirmation bias, availability bias, and framing effect) and risky habits (e.g.,
sharing passwords, accidental insider threats, and lack of perseverance) that impact cybersecu-
rity practices, also suggesting solutions to overcome them among which: security awareness
training, phishing simulations, and incident response plan. Alnifie and Kim [15] studied another
relevant bias called optimism bias, which can result in an inaccurate perception of risks, leading
to subjective decisions that lack objectivity. To reduce this bias, they suggest that employees reg-
ularly follow instructions from security teams, adhere to cybersecurity policies, and recognize
optimism bias at both individual and organizational levels.

A novel security paradigm that emerged from recent literature [14] is referred to as cognitive
security, where the authors emphasize the vulnerabilities in human cognitive processes (e.g.,
perception, attention, memory, and mental operations) that can be exploited by cognitive attacks,
affecting performance and decision-making. The authors present several cognitive and technical
defense methods to deter the kill chain (i.e., the stages of a cyberattack) of cognitive attacks,
such as real-time tracking of cognitive attacks, identification of abnormal patterns in human
behaviors, introducing compensation mechanisms to mitigate the impact of cognitive attacks,
or reducing cognitive load during security incidents.

Another significant trend investigating human vulnerabilities involves cybersecurity games
[35, 36], where participants make strategic decisions in a simulated environment and tackle
real-world cyber threats to enhance their practical understanding of cybersecurity. Jalali et
al. [37] developed a simulation game to assess decision-makers effectiveness in addressing
two challenges in cybersecurity capability development: potential delays and uncertainties in
predicting cyber incidents. They found that (i) decision-makers respond poorly to time delays
in dynamic settings under uncertainty, and (ii) experienced managers did not perform better
than inexperienced individuals in making proactive decisions about building cybersecurity
capabilities. These results call for a strong need for training tools to underscore the drawbacks



of a solely cognition-focused strategy and to grasp the impacts of feedback delays.

3. Discussion

The review of the literature work we discussed in Section 2 shows that the integration of AI is
increasingly applied to defense mechanisms against cyber threats. From an interaction point
of view, solutions that team together humans and AI-based agents are particularly relevant,
especially for the tasks where AI-based solutions perform better than humans [1, 17]. This
suggests that the synergistic teaming of humans and AI is a promising way to address cyber
threats’ dynamic and complex nature. However, the effectiveness of AI solutions in cybersecurity
still poses several key challenges. One prominent issue is the shortage of skilled cybersecurity
professionals [1, 16, 17]. This scarcity is a barrier even to the spread of AI-based solutions, which
require professionals at least to set them up. The lack of professionals also sets a challenge to
create and promote adequate educational programmes [3], which require expert human trainers
again. However, building such programs is crucial for widespread awareness about cyber threats
and fostering a culture of cybersecurity consciousness among organizations and individuals.

Another critical consideration is the design of computing platforms resilient to AI-based
adversarial threats [19]. Rather than treating security measures as an afterthought, there is a
growing recognition of embedding resilience into computing infrastructure from the outset. This
proactive approach reflects a shared responsibility among stakeholders to mitigate cybersecurity
risks effectively.

Transparency and interpretability are fundamental principles in deploying AI-driven cyberse-
curity solutions [16]. Biased data and decision-making processes pose significant challenges, as
the opaque nature of AI models complicates understanding their logic and outcomes. It is often
difficult for an administrator to understand the AI system logic in the event of a security breach.
AI systems sometimes provide inaccurate findings in the form of false positives, which mislead
security experts, jeopardizing the entire system’s integrity [17]. Assimilating eXplainable AI
solutions [6, 7] along with factors such as AI robustness and uncertainty [27, 28] is essential
for maintaining trust and confidence in cybersecurity systems. Additionally, it is worth men-
tioning that XAI techniques can face security attacks, which emphasizes the need to carry out
experimental studies of the impacts of various attacks on XAI methodologies, together with a
balance between the security and usability of XAI-integrated cybersecurity systems [26].

Moreover, cognitive biases inherent in human decision-making introduce additional complex-
ities to cybersecurity strategies [32]. The presence of biases, such as the take-the-best heuristic,
confirmation bias, optimism bias, and anchoring bias [34], along with other phenomena like
framing effects, sunk cost, irrational escalation, and the illusion of control [33], poses challenges
for measurement. Future research should focus on inducing and assessing the exhibition of
biased behaviour, moving away from over-reliance on observational assessment. Additionally,
researchers should develop experimental designs and measures specifically designed to elicit
particular biases.

In particular, optimism bias [15] refers to the tendency of individuals, regardless of their
capacity, to perceive risks inappropriately. They often believe they are not vulnerable or exhibit
overconfidence in the effectiveness of security measures: essentially, they think, "I/we won’t



be a target." To address this bias, researchers can explore longitudinal studies that track the
development and evolution of optimism bias over time. Additionally, evaluating the effectiveness
of different interventions, such as training programs, awareness campaigns, and educational
initiatives, can help mitigate this bias. Furthermore, considering AI approaches may provide
valuable insights into managing optimism bias.

Unique conditions significantly impact which biases are possible to study. For instance, it
would be tough to investigate illusory correlation in a context lacking relevant data for correla-
tion. Similarly, studying sunk cost [32] would be challenging if no resources were utilized. Some
biases remain understudied, including the availability heuristic, default effect, and information-
pooling bias. Additionally, social engineering techniques exploit cognitive biases to manipulate
user behaviour [14], highlighting the importance of user training and awareness programs.
Cultivating critical thinking skills and promoting a culture of cybersecurity consciousness is
essential for defending against cognitive attacks and enhancing overall cybersecurity resilience.

4. Conclusion and Future Work

This paper summarised the shared needs and shortcomings of Artificial Intelligence (AI) so-
lutions and human decision-making biases in cybersecurity. We discussed common points
that emerge from the literature and provide potential directions against cybersecurity threats,
which we outline as follows. The first significant aspect regards the importance of human-AI
collaboration, urging the promotion of suitable professional programs to address the shortage
of skilled cybersecurity experts. The second point highlights the necessity for transparency and
explainability in cybersecurity AI solutions, revealing the necessity of planning new procedures
to defend against AI-based cybersecurity attacks. Finally, the last trait calls for training programs
to detect and measure cognitive biases, along with experimental settings that stimulate these
biases, intending to elicit users’ awareness and foster the growth of the cybersecurity culture.

Follow-up studies need to consider these aspects for a better AI-based cybersecurity sys-
tems administration, ensuring effective cyber-threat detection and mitigation by appropriately
addressing human cognitive biases.
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