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Abstract
Industrial Data Analytics refers to data analyses across different phases of the industrial product life cycle. The specific
characteristics of available industrial data often pose challenges for common data management and data analysis methods.
This paper gives an overview on the projects of the research group ICT Platform for Manufacturing at the Graduate School
of Excellence advanced Manufacturing Engineering (GSaME) of the University of Stuttgart. These projects are related to
Industrial Data Analytics and offer approaches to addressing the domain-specific data characteristics. Relevant research areas
are metadata management, use of domain knowledge to improve data preparation, the management of machine learning (ML)
models, and approaches to meta-learning and automated machine learning (AutoML). In addition, this paper details on two
specific research contributions. Firstly, it discusses a metadata model that facilitates a democratized access to data in virtual
product development projects. The second contribution is an approach to exploit domain knowledge during data preparation
in order to address two of the most important challenging data characteristics in industrial data: a multi-class imbalance and
a data bias that is due the high variety of underlying products.
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1. Introduction
Industrial Data Analytics refers to problems and solution
approaches to data management, data provision, and
data analytics across different phases of the industrial
product life cycle [1]. This paper gives an overview on
the research topics of the research group ICT Platform
for Manufacturing at the Graduate School of Excellence
advanced Manufacturing Engineering (GSaME) of the
University of Stuttgart. This research group deals with
both application-oriented and fundamental research in
the area of Industrial Data Analytics. It examines data
and their potential for data analysis in various phases of
a product life cycle, e.g., for analyzing simulation data
in the product development phase [2], sensor data from
test benches in the production phase [3, 4], or data from
the product usage phase describing the configurations of
sold products [5].

The specific characteristics of available industrial data
pose challenges for common data management and data
analysis methods [6, 7, 8, 9]. For instance, data may come
in diverse and heterogeneous formats and be contained in
isolated data silos across different organizational units of
a company. This makes it difficult or even impossible to
acquire relevant data for a particular analysis [2]. More-
over, the high product diversity increases the number
and complexity of patterns and correlations contained in
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data [10, 4]. Here, machine learning algorithms often fail
to correctly identify all these patterns and correlations.
The specific characteristics of industrial data and the

resulting challenges for data management and data analy-
sis methods often lead to fundamental research questions
that have not yet been considered in scientific literature.
The research group contributes to answering these ques-
tions by developing novel approaches that are tailored
to the specific characteristics of industrial data. Here,
relevant research topics include how to address differ-
ent kinds of data bias and data set shifts in real-world
industrial data [11, 5] or how to improve data quality in
unstructured text data and text analysis pipelines [12].
Other areas of research are related to metadata manage-
ment [13], use of domain knowledge to improve data
preparation and data analysis [14, 15], the management
of machine learning (ML) models [16], as well as ap-
proaches to meta-learning [17] and automated machine
learning (AutoML) [18, 19].

After giving an overview on related research projects
of the group ICT Platform for Manufacturing in Section 2,
this paper details on two specific contributions in Sec-
tions 3 and 4. The first contribution is a metadata model
that connects data from heterogeneous and previously
isolated data sources in virtual product development [13].
The second major contribution is an approach to exploit
domain knowledge from a taxonomy during data prepa-
ration in order to address two of the most important
challenging data characteristics and kinds of bias in in-
dustrial data: a multi-class imbalance and a data bias that
is due the high variety of underlying products [10, 14].
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Figure 1: Overview on research projects of the research group ICT Platform for Manufacturing and their association to
individual phases of a typical product life cycle.

2. Research Group ICT Platform
for Manufacturing

Figure 1 gives an overview on the projects and research
topics related to Industrial Data Analytics in the research
group ICT Platform for Manufacturing. Furthermore, the
figure assigns the projects to the phases of a typical prod-
uct life cycle, from which the projects mainly acquire and
analyze data. The first project deals with metadata mod-
eling in the area of virtual product development [2]. The
second project focuses on the production phase and how
to identify quality issues in complex assembly products,
e.g., truck engines [3]. The major contributions of these
two projects are discussed in Sections 3 and 4.
The major outcome of the third project is a platform

to manage machine learning (ML) models, e.g., classi-
fication or regression models [16]. Data scientists of a
company may develop ML models for specific use cases
and upload them in the platform. The ML models are
then associated with appropriate metadata to further de-
scribe them. This metadata covers, amongst others, life
cycle information of the ML model, e.g., whether it is
in the training or application phase or whether it has
already been retired and is thus not used anymore [20].
Moreover, themetadata covers semantic information [16].
This for instance includes information about the domain-
specific use case, e.g., fault detection or fault diagnosis, or
about the machine in a production line for which the ML
model has been developed. It helps other stakeholders
find appropriate models for their specific use cases and
thus effectively facilitates reusability of ML models.
The contributions of the fourth project offer struc-

tured methods to specify, configure and select whole ML
solutions. These ML solutions constitute combinations

and configurations of ML tools and software to perform,
e.g., data collection, data preprocessing, model training,
and model deployment [21]. One contribution of this
project is a method to structure the collabaration among
different stakeholdes, e.g., data scientists, IT experts, busi-
ness analysts, engineers or other domain experts during
development projects for ML solutions [22]. In addi-
tion, AssistML is a novel concept that enhances the ML
model management platform of the previous project by
approaches to meta-learning [17]. This way, AssistML
automates the discovery and recommendation of ML so-
lutions for a given use case, and it makes this task feasible
for non-experts such as citizen data scientists.
The fifth project deals with hybrid approaches and

their application to fault detection and fault diagnosis in
a production line [15]. Hybrid approaches combine data-
driven models with knowledge-based models, such as
physics-based simulation models. These different kinds
of data-driven and knolwedge-driven models enhance
and complement each other. This is particularly useful
in cases when pure data-driven solutions are not ade-
quate due to a lack of data. A major contribution of this
project is PUSION, a generic and automated framework
for decision fusion in classification ensembles that may
be composed of diverse data-driven or knowledge-driven
models [18]. By combining the decisions of these diverse
classification models via decision fusion algorithms, the
overall prediction accuracy may be enhanced.
The focus of the next project is related to methods

for data-driven prediction of product failures during the
product usage phase [5]. Here, different kinds of data
set shifts may occur, i.e., changes of the statistical data
distribution over time [23]. This means that both the
decision boundaries of classification patterns and the



C
o
n

te
x
tu

a
l 

M
e

ta
d

a
ta

W
o
rk

 

A
c
ti
v
it
ie

s

D
a
ta

 

C
o
n

ta
in

e
rs

C
o
n

te
x
tu

a
l 

M
e

ta
d

a
ta

owner:

Mrs. X 

date:

04.03.20

application:

Designer2K

solver:

model_4

voxels:

30x40x50

factory:

Stuttgart…

…
………

…

…

…

…
…

material:

paper

②
Product

Planning

⑧
Product

Testing

③
Virtual

Prototype

④
Product

Simulation

⑦
Physical

Prototype

⑤
Simulation

Result

①
Product

Specifi-

cation

⑥
Proto-

typing

⑨
Test

Results

dimensions:

3

Figure 2: Example of an instance of the metadata model that describes both data, metadata, and work activities of virtual
product development projects, cf. Ziegler at al. [13].

statistical distribution of these patterns may change. This
has to be reflected via adequate approaches to detect data
set shifts and to adapt classification models to the new
statistical distribution if necessary.

Finally, one project concerns data quality of text data.
It introduces the QUALM concept for continuous data
quality measurement and improvement at different steps
of text analysis pipelines [12]. QUALM data quality indi-
cators quantify text characteristics, e.g., the number of
abbreviations or spelling mistakes, and give hints how
these may affect the quality of analysis results. Corre-
sponding QUALMmodifiers use these text characteristics
to enhance the text quality. An example of such a modi-
fier is an approach to select the best-fitting training data
for an analysis task based on the similarity between this
training data and the input data [24]. In addition, QUALM
offers a hybrid method for information extraction, which
exploits both structured and unstructured data sources to
yield more relevant information from these sources [25].

3. Metadata Model for Virtual
Product Development Projects

Product development projects in companies are mainly
virtual and digitized thanks to several computer-aided
systems, e.g., for Computer-Aided Design (CAD),
Computer-Aided Engineering (CAE), and Computer-
Aided Testing (CAT) [26] These CAx systems produce a
huge amount of data that offer additional opportunities
for data analysis, e.g., to gain insights how to improve
a product design. However, several challenges hinder
exploiting the full potential for data analysis [13]. In par-
ticular, different CAx systems store their data in various
heterogeneous formats, e.g., proprietary 2D or 3D ge-
ometry files, plain text, images, videos, XML documents,

or CSV-formated files. In addition, different data are
contained in isolated data silos across individual organi-
zational units that are often not willing to share their data
with other stakeholders, even from the same company.
Altogether, this makes it nearly impossible for domain ex-
perts, i.e., development engineers, to acquire and explore
the data they need for a particular data analysis.
Ziegler et al. [13] thus propose a metadata model to

describe all related CAx data and to address the above-
mentioned challenges. This metadata model not only
describes data, but it offers a connected view on data,
metadata, and work activities in virtual product devel-
opment projects. Figure 2 shows an idealized example
of an instance of the metadata model. It covers several
data containers [27, 28] (blue in the figure) that abstract
from heterogeneous data formats and point to the un-
derlying data sources or files via URIs. Furthermore, the
metadata explicitly describes the work activities (yellow)
that are carried out by development engineers in vir-
tual product development projects. These work activities
are connected to the data containers the activities con-
sume and produce. So, the whole metadata describes full
and connected views of project workflows including the
activities and the data. The grey elements shown in Fig-
ure 2 represent metadata that further describe either data
containers or work activities via contextual information.

A major benefit of this metadata model is that product
development engineers easily understand it, because it
is based on the project workflows and work activities
these engineers carry out in their daily work life. This
facilitates a democratized data access, so that product de-
velopment engineers may easily find the data associated
to the work activities in development projects they are
familiar with. It facilities an expert-led data exploration
and a subsequent data analysis to gain sophisticated in-
sights from the underlying data. The metadata model
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Figure 3: Major steps of the approach that uses domain knowledge and metrics about class distributions to address the
challenges of heterogeneous product groups and multi-class imbalance, cf. Hirsch et al. [10].

is implemented in a data lake and as a property graph
structure in a graph database system [13]. This system
offers APIs to navigate through the graph structure and
to issue queries, e.g., in Cypher, to search for specific
data sets. It may be used to realize various kinds of data
analysis, ranging from reports over data mining to even
process mining [29].

4. Approach to Exploit Domain
Knowledge for Data Preparation

Hirsch et al. [11] introduce a challenging use case of
data-driven identification of quality issues in complex
assembly products, e.g., truck engines. The use cases con-
stitutes a multi-class classification problem, where each
class corresponds to one of 84 engine components, e.g.,
cylinders, fuel injectors, or turbochargers. The problem
is to train a classification model that is able to identify
one of these multiple classes and engine components that
are the cause of a particular quality issue.
With 1050 data instances, the data set of this use

cases is of rather low size and contains several kinds of
noise [11]. Nevertheless, literature comprises techniques
for classification ensembles [30], e.g., Random Forest [31],
which are able to deal with these two data characteris-
tics. However, such data-driven methods usually still
show poor prediction performance, as they are not able
to address two additional kinds of domain-specific data
characteristics [11]. The first one is a multi-class imbal-
ance, i.e., the class labels occur in an imbalanced way in
the data [32]. Here, many learning algorithms tend to
ignore the patterns of class labels that are underrepre-
sented. The second challenging data characteristic results
from the fact that companies offer heterogeneous product
groups with a high product variety. Here, the class pat-
terns, i.e., decision boundaries in the feature space of a
particular class usually differ across individual product

groups. So, the number of class patterns is even higher
than the number of classes, and the class patterns may be
represented by different and overlapping ranges of fea-
ture values. This makes it hard for learning algorithms
to identify and clearly distinguish all class patterns. Fur-
thermore, these learning algorithms again tend to ignore
the class patterns of seldom product groups that are un-
derrepresented in data.

Hirsch et al. propose an approach to data preparation
that effectively addresses both challenges arising from a
multi-class imbalance and from heterogeneous product
groups [10, 14]. Figure 3 shows the major steps of this
approach. It divides the whole data set𝒳 into several sub-
sets 𝒳𝑗 ⊆ 𝒳. After this data preparation, a classification
model is trained for each of the data subsets 𝒳𝑗.
The first step, Segementation according to Product Hi-

erarchy (SPH), uses domain knowledge from a product
hierarchy or product taxonomy to divide the data set into
one subset 𝒳𝑗 for each product group. As only data of
one particular product group is contained in each sub-
set 𝒳𝑗, this subset contains a significantly less number
of class patterns, i.e., usually only one pattern for each
remaining class in 𝒳𝑗. In addition, these class patterns
are more evenly distributed in each subset. So, learn-
ing algorithms have much less problems to identify and
distinguish all class patterns, even those that have previ-
ously been underrepresented in the whole data set 𝒳
The second step, Class Partitioning according to Im-

balance (CPI), further divides some of the subsets 𝒳𝑗 to
address multi-class imbalance. Therefore, CPI first deter-
mines the degree of class imbalance in each subset 𝒳𝑗
resulting from SPH using the Gini coefficient as an imbal-
ance metric. If the value of the Gini coefficient as higher
than a threshold, e.g., 30 %, the subset 𝒳𝑗 is divided into
a subset 𝒳+

𝑗 containing only data instance of majority
classes and a subset𝒳−

𝑗 for instances of minority classes.
Here, CPI uses a quantile approach to determine the point
of intersection between majority and minority classes.



Hirsch et al. [10] apply their approach to the data of
the above-mentioned uses case for a data-driven identifi-
cation of quality issues in assembled truck engines and
discuss the evaluation results. In addition, the authors
prove the generality of their approach by applying it to
several synthetic data sets that show varying data and
class distributions [14]. In both evaluations, they com-
pare their approach exploiting domain knowledge with
a data-driven baseline that applies Random Forest and a
feature selection technique to the whole data set𝒳. They
show that their approach leads to an average increase of
classification accuracy between 4 and 13%-points. Fur-
thermore, it leads to a reduction of the number of rework
steps needed to repair faulty truck engines.

5. Summary
This paper gives an overview on the projects of the re-
search group ICT Platform forManufacturing at the Grad-
uate School of Excellence advanced Manufacturing En-
gineering (GSaME) of the University of Stuttgart. These
projects are related to Industrial Data Analytics covering
data analyses across the whole industrial product life
cycle. The research topics of this group include meth-
ods to address different kinds of data bias, data set shifts,
or text data quality, as well as areas such as metadata
management, use of domain knowledge to improve data
preparation, management of machine learning (ML) mod-
els, and approaches to meta-learning and automated ma-
chine learning (AutoML). In addition, this paper details
on two specific research contributions. Firstly, it dis-
cusses a metadata model that facilitates a democratized
access to data of different CAx systems in virtual prod-
uct development projects. The second contribution is
an approach to exploit domain knowledge during data
preparation in order to address two of the most impor-
tant challenging data characteristics in industrial data: a
multi-class imbalance and a data bias that is due the high
variety of underlying products.
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