
Comparison of image processing techniques for defect 
detection 

Semen Kovalskyi1, Vasyl. Koval1  

1West Ukrainian National University, 11 Lvivska Str., Ternopil, 46009, Ukraine , 

Abstract 
Defect detection is a crucial quality control process in the manufacturing industry, aimed at identifying 
and classifying imperfections or anomalies in products before they reach customers. Traditional manual 
inspection methods are time-consuming, labor-intensive, and prone to human error. This paper 
provides a comprehensive overview of image-based defect detection algorithms, including traditional 
image processing techniques, machine learning algorithms, and deep learning models. The study 
analyzes the strengths, limitations, and performance of each approach across various applications and 
datasets. The results demonstrate that while traditional methods and machine learning algorithms offer 
reliable defect detection, deep learning models, particularly convolutional neural networks (CNNs), 
achieve exceptional accuracy and robustness. However, deep learning models require significant 
computational resources and large amounts of labeled data for training. The paper highlights the 
importance of selecting the most appropriate approach based on specific application requirements, data 
characteristics, and computational constraints. Furthermore, it discusses future research opportunities, 
such as developing more robust and generalized algorithms, leveraging multi-modal data, improving 
model interpretability, and enabling real-time and edge computing solutions. 
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1. Introduction 

Defect detection is a crucial quality control process in the manufacturing industry that aims to 
identify and classify imperfections or anomalies in products before they reach the customer. 
Failure to detect defects can have severe consequences, including financial losses, customer 
dissatisfaction, product recalls, and potential safety hazards. 

In many industries, such as automotive, aerospace, electronics, and consumer goods, products 
undergo rigorous inspection at various stages of the production process. Traditional manual 
inspection methods involve human inspectors visually examining each product for defects, which 
can be time-consuming, labor-intensive, and prone to human error due to factors like fatigue, 
distraction, or subjective judgment. 

Furthermore, as manufacturing processes become increasingly complex and product quality 
standards continue to rise, manual inspection becomes increasingly challenging and inefficient. 
Some defects may be difficult to detect with the naked eye, especially those related to microscopic 
features, surface textures, or subtle variations in color or shape. 

The need for automated and reliable defect detection methods has led to the development of 
image-based approaches that leverage computer vision and machine learning techniques. By 
capturing high-resolution images of products and analyzing them using advanced algorithms, 
defects can be identified with greater accuracy, consistency, and speed compared to manual 
inspection. 
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Image-based defect detection offers several advantages over traditional methods: 
 Increased accuracy and consistency: Advanced algorithms can detect even the most 
subtle defects consistently, reducing the risk of human error and subjectivity. 
 Faster inspection times: Automated systems can process and analyze images significantly 
faster than manual inspection, enabling higher throughput and reducing production 
bottlenecks. 
 Improved traceability and documentation: Digital images and defect detection records 
can be stored and analyzed for quality control purposes, enabling better traceability and root 
cause analysis. 
 Cost savings: Automated inspection systems can reduce labor costs associated with 
manual inspection and minimize product losses due to undetected defects. 
 Adaptability: Machine learning algorithms can be trained to detect new types of defects 
as production processes evolve, offering greater flexibility and scalability. 
However, implementing effective image-based defect detection systems presents several 

challenges, including the need for high-quality image data, robust and accurate algorithms, 
computational resources, and seamless integration with existing manufacturing processes[1]. 

To address these challenges, researchers and engineers have developed various approaches 
ranging from traditional image processing techniques to advanced machine learning and deep 
learning methods. Selecting the most appropriate approach depends on factors such as the type 
of defects, product characteristics, available data, computational resources, and specific industry 
requirements. 

In summary, image-based defect detection is a critical component of modern manufacturing 
processes, enabling companies to maintain high quality standards, reduce costs, and improve 
customer satisfaction. As technology continues to evolve, the development and deployment of 
advanced defect detection algorithms will become increasingly important for maintaining a 
competitive edge in the manufacturing industry. 

1.1. Problem Statement 

In the manufacturing industry, ensuring product quality and identifying defects is a critical 
task. Manual inspection processes are often inefficient, subjective, and prone to human error, 
leading to potential quality issues and financial losses. The need for automated and reliable defect 
detection methods has become increasingly important as manufacturing processes become more 
complex and product quality standards continue to rise. 

Image-based defect detection algorithms aim to address this challenge by leveraging computer 
vision and machine learning techniques to analyze high-resolution images of products and 
identify defects with greater accuracy, consistency, and speed compared to manual inspection. 
However, developing effective image-based defect detection systems presents several challenges, 
including: 

1. Obtaining high-quality image data representative of various defect types and product 
variations. 
2. Developing robust and accurate algorithms capable of detecting and classifying defects in 
different scenarios. 
3. Handling varying environmental conditions, such as lighting variations, occlusions, and 
background clutter. 
4. Adapting to evolving product designs and manufacturing processes, which may introduce 
new defect types or patterns. 
5. Ensuring real-time performance and seamless integration with existing manufacturing 
systems and workflows. 
6. Addressing computational resource constraints, especially for resource-intensive deep 
learning models. 
7. Maintaining data privacy and security, particularly in sensitive industries or applications. 



Overcoming these challenges requires a multidisciplinary approach that combines expertise 
in computer vision, machine learning, signal processing, and domain-specific knowledge of 
manufacturing processes and product characteristics. Effective image-based defect detection 
systems must strike a balance between accuracy, robustness, computational efficiency, and ease 
of deployment, while remaining adaptable to changing requirements and technological 
advancements. 

Furthermore, the successful adoption of these systems in industrial settings hinges on factors 
such as cost-effectiveness, user-friendliness, and seamless integration with existing 
infrastructure. Addressing these considerations is crucial for enabling widespread adoption and 
realizing the full potential of image-based defect detection in enhancing product quality, reducing 
waste, and improving overall manufacturing efficiency. 

2. Analysis of Existing Solution 

This research paper aims to provide a comprehensive overview of image-based defect 
detection algorithms, their underlying principles, and their applications in various industries. We 
will explore the different approaches, including traditional image processing techniques, machine 
learning algorithms, and deep learning models. Additionally, we will discuss the challenges and 
limitations associated with these algorithms and potential future directions for research and 
development. 

2.1. Related Work 
Defect detection is a well-researched area in computer vision and image processing, with 

numerous studies exploring various techniques and algorithms. Traditional image processing 
methods, such as edge detection, thresholding, and morphological operations, have been widely 
applied for defect detection tasks [15, 16, 17]. These methods rely on low-level image features 
and are computationally efficient, but may struggle with complex or varying defect patterns. 

Machine learning algorithms, including supervised and unsupervised approaches, have gained 
popularity for defect detection tasks due to their ability to learn from data and adapt to varying 
conditions. Supervised methods, such as support vector machines (SVMs) [18], random forests 
[19], and boosting algorithms [20], have shown promising results in various applications. 
Unsupervised methods, such as clustering algorithms [21] and autoencoders [22], have also been 
explored for detecting anomalies or defects without the need for labeled training data. 

In recent years, deep learning techniques, particularly convolutional neural networks (CNNs), 
have achieved state-of-the-art performance in image-based defect detection tasks [23, 24, 25]. 
These models can automatically learn discriminative features from raw image data, enabling 
them to detect and classify complex defect patterns with high accuracy. Transfer learning and 
domain adaptation techniques have further enhanced the applicability of deep learning models 
by leveraging pre-trained models from related domains [26, 27]. 

While existing research has made significant progress, the development of more robust and 
efficient defect detection algorithms remains an active area of research, driven by the increasing 
complexity of manufacturing processes and the need for higher quality standards. 

2.2. Traditional Image Processing Technique 
Traditional image processing techniques have been widely used for defect detection in various 

applications. These techniques rely on low-level image features, such as edges, textures, and 
intensity values, to identify and classify defects. Some common approaches include: 

2.2.1. Edge Detection 
Edge detection algorithms are used to identify the boundaries or edges of objects in an image. 

These algorithms can be applied to detect defects that manifest as cracks, scratches, or deviations 
from the expected shape or pattern [2, 28]. Various edge detection techniques, such as the Sobel 
operator, Canny edge detector, and Laplacian of Gaussian (LoG), can be employed for this 
purpose. 

 
 



2.2.2. Thresholding 
Thresholding is a simple yet effective technique for separating objects of interest from the 

background based on their intensity values. Binary thresholding converts an image into a binary 
representation, where pixels above a certain intensity value are considered part of the object, and 
pixels below that value are considered background. Adaptive thresholding techniques, such as 
Otsu's method or Niblack's method, can be used to handle varying illumination conditions or 
background variations. 

2.2.3. Texture Analysis 
Texture analysis techniques analyze the spatial distribution and patterns of pixel intensities 

within an image. These techniques can be particularly useful for detecting defects that exhibit 
textural irregularities, such as surface imperfections, scratches, or stains[3]. Common texture 
analysis methods include statistical approaches (e.g., gray-level co-occurrence matrices), 
structural approaches (e.g., morphological operations), and transform-based approaches (e.g., 
Gabor filters). 

2.2.4. Morphological Operations 
Morphological operations are image processing techniques that analyze the shape and 

structure of objects within an image. These operations can be used for various tasks, such as noise 
removal, edge detection, and object segmentation. Common morphological operations include 
erosion, dilation, opening, and closing, which can be applied to detect and analyze defects based 
on their shape and size characteristics. [4] 

Advantages of Traditional Image Processing Techniques: 
 Well-established and widely understood methods. 
 Computationally efficient and suitable for real-time applications. 
 Can be effective in specific scenarios or for certain types of defects. 
 Limitations of Traditional Image Processing Techniques: 
 Require manual feature engineering and parameter tuning. 
 May struggle with complex or varying defect patterns. 
 Sensitive to environmental conditions, such as lighting variations and occlusions. 

2.3. Machine Learning Algorithms for Defect Detection 
Machine learning algorithms have become increasingly popular for image-based defect 

detection due to their ability to learn from data and adapt to varying conditions. These algorithms 
can be broadly categorized into supervised and unsupervised learning approaches. 

2.3.1. Supervised Learning Algorithms 
Supervised learning algorithms rely on labeled training data, where images are annotated with 

the presence or absence of defects, as well as the type and location of the defects. These 
algorithms learn to map input images to the corresponding labels or defect classifications. Some 
commonly used supervised learning algorithms for defect detection include: [5] 

2.3.2. Support Vector Machines (SVMs) 
SVMs are widely used for binary classification tasks, such as defect/non-defect classification. 

They construct a hyperplane in a high-dimensional feature space to maximize the margin 
between the two classes. SVMs can be extended to handle multi-class classification problems, 
making them suitable for detecting and classifying different types of defects. 

2.3.3. Random Forests 
Random Forests are ensemble learning methods that combine multiple decision trees to 

improve accuracy and robustness. Each tree is trained on a random subset of the data and 
features, which helps to reduce overfitting and increase generalization performance. Random 
Forests can handle high-dimensional data and are robust to noise and outliers, making them 
suitable for defect detection tasks. 

2.3.4. Boosting Algorithms 
Boosting algorithms, such as AdaBoost or Gradient Boosting, iteratively combine weak 

learners (e.g., decision trees) to create a strong ensemble classifier. These algorithms can 
effectively handle complex and non-linear decision boundaries, making them useful for detecting 
and classifying various types of defects. 



2.3.5. Unsupervised Learning Algorithms 
Unsupervised learning algorithms do not require labeled training data. Instead, they aim to 

discover patterns or anomalies in the data without prior knowledge of the defect types or 
locations. These algorithms can be particularly useful in scenarios where labeling data is time-
consuming or impractical. Some common unsupervised learning algorithms for defect detection 
include: 

Clustering algorithms, such as K-Means or Gaussian Mixture Models (GMMs), group similar 
data points together based on their features or characteristics. In the context of defect detection, 
clustering can be used to identify anomalous regions or patterns within an image that may 
correspond to defects. 

Autoencoders are a type of neural network that learns to encode input data into a compressed 
representation and then reconstruct the original data from the encoded representation. The 
reconstruction error can be used as an indicator of anomalies or defects, where higher errors may 
correspond to defective regions in the image. 

OC-SVMs are a variant of traditional SVMs that can be used for novelty or outlier detection. 
They learn to define a boundary that encompasses the majority of the training data, which is 
assumed to be defect-free. Any new data points that fall outside this boundary are considered 
anomalies or defects. 

Advantages of Machine Learning Algorithms: 
 Can handle complex and non-linear relationships between features and defects. 
 Capable of learning from large amounts of data and adapting to varying conditions. 
 Can be extended to detect and classify multiple types of defects. 
 Limitations of Machine Learning Algorithms: 
 Require a sufficient amount of labeled or representative data for training. 
 Performance can be affected by data quality, imbalanced classes, or noisy labels. 
 May struggle with detecting rare or unseen defect types. 

2.4. Deep Learning for Defect Detection 

Deep learning, a subfield of machine learning, has gained significant attention in recent years 
for its ability to automatically learn discriminative features from raw data, such as images or 
videos. Convolutional Neural Networks (CNNs) and other deep learning architectures have 
shown remarkable performance in various computer vision tasks, including image-based defect 
detection. 

2.4.1. Convolutional Neural Networks (CNNs) 
CNNs are a type of deep neural network specifically designed for processing grid-like data, 

such as images or videos. They consist of multiple layers of convolutional filters and pooling 
operations that progressively extract higher-level features from the input data. CNNs have been 
widely used for defect detection tasks, as they can learn to recognize complex patterns and 
features associated with various types of defects. 

2.4.2. Supervised CNNs 
Supervised CNNs are trained on labeled data, where images are annotated with the presence 

or absence of defects, as well as the type and location of the defects. These models can be trained 
for binary classification (defect/non-defect) or multi-class classification (different defect types). 

2.4.3. Unsupervised and Semi-Supervised CNNs 
In scenarios where labeled data is scarce or unavailable, unsupervised and semi-supervised 

CNNs can be employed. Unsupervised CNNs, such as autoencoders or generative adversarial 
networks (GANs), can learn to reconstruct defect-free images and detect anomalies based on the 
reconstruction error. Semi-supervised CNNs combine a small amount of labeled data with a larger 
amount of unlabeled data to improve performance. [6] 

2.4.4. Object Detection and Segmentation Networks 
In addition to classification tasks, deep learning models can be used for object detection and 

segmentation, which are crucial for locating and delineating defects within an image. Object 



detection networks, such as Faster R-CNN or YOLO, can detect and localize defects by generating 
bounding boxes around them. Semantic segmentation networks, like U-Net or Mask R-CNN, can 
produce pixel-level masks or segmentations of the defects, providing finer-grained localization 
and delineation. 

2.4.5. Transfer Learning and Domain Adaptation 
One of the challenges in applying deep learning for defect detection is the need for large 

amounts of labeled data, which can be time-consuming and costly to obtain. Transfer learning 
and domain adaptation techniques can mitigate this issue by leveraging pre-trained models on 
related tasks or domains. For example, a CNN pre-trained on a large-scale image classification 
dataset, such as ImageNet, can be fine-tuned on a smaller defect detection dataset, significantly 
reducing the required training data and time. 

Advantages of Deep Learning: 
 Can automatically learn discriminative features from raw data. 
 Capable of handling complex and non-linear relationships between features and defects. 
 Can be applied to various defect detection tasks, including classification, object detection, 
and segmentation. 
 Benefit from transfer learning and domain adaptation techniques. 
 Limitations of Deep Learning: 
 Require large amounts of labeled data for supervised training, which can be costly and 
time-consuming. 
 Computationally expensive and may require specialized hardware (e.g., GPUs) for 
training and inference. 
 Can be sensitive to data quality, imbalanced classes, and domain shifts. 
 Lack of interpretability and transparency in decision-making process. 
 

3. Results Analysis 
The performance comparison of different defect detection methods was conducted on various 
publicly available datasets, as well as proprietary datasets. The datasets covered a wide range of 
applications, including wood, ceramic tiles, metal products, printed circuit boards, and solar 
panels. 
     For traditional image processing techniques, the algorithms were implemented using well-
established libraries, such as OpenCV and scikit-image, with careful parameter tuning for each 
application. Machine learning algorithms were trained and evaluated using popular libraries like 
scikit-learn and XGBoost, with appropriate data preprocessing, feature engineering, and cross-
validation techniques. 
    Deep learning models were implemented using popular deep learning frameworks, such as 
TensorFlow and PyTorch. The models were trained on high-performance computing clusters or 
cloud-based GPU resources to accelerate the training process. Standard practices for deep 
learning, including data augmentation, transfer learning, and hyperparameter tuning, were 
employed to optimize the model performance. 
    The evaluation metrics, such as accuracy, precision, recall, F1-score, and AUC, were calculated 
using established evaluation protocols and libraries, ensuring a fair and consistent comparison 
across different methods and applications. Here are some examples: 
 

3.1. Traditional Image Processing Techniques 
In study [7], various image processing methods were used to detect defects in wood images. 

The best results were shown by a method based on morphological operations with an accuracy 
of 88.2% and a completeness of 79.4%. However, the accuracy of this approach was low, at only 
62.8%. Edge detection using the Canny method achieved a higher accuracy of 84.7%, but the 
precision dropped to 73.9%. 

Morphological operations like erosion/dilation were evaluated in [8] for detecting defects on 
ceramic tiles. The best F1-score of 0.74 was obtained, but recall remained limited at 0.68. 



In another study [9], the Otsu thresholding method and texture analysis using grey level co-
occurrence matrices (GLCMs) were used for the inspection of ceramic tiles. The Otsu method 
showed the highest accuracy of 91.3%, but the F1 value was only 0.72. The GLCM-based approach 
achieved a better balance with 88.5% accuracy and F1 of 0.83. 

3.2. Machine Learning Algorithms: 
In a study [10], various machine learning algorithms were tested to detect defects in images 

of metal products. Random Forest demonstrated the best performance with 94.2% accuracy, 
92.6% completeness, and AUC of 0.974. SVM showed close results with 93.8% accuracy and AUC 
of 0.962, but its completeness was lower at 88.7%. Boosting algorithms, such as XGBoost, also 
performed well with an accuracy of 92.5% and an AUC of 0.951. 

Another study [11] compared clustering, SVM, and random forests for detecting defects in 
solar panel images. K-means clustering had a low accuracy of 68%. SVMs showed moderate 
results with an accuracy of 82% and F1 of 0.79. Random forests were the best with 93% accuracy, 
F1 0.91, and AUC 0.962. 

3.3. Deep Learning: 
In a large-scale study [12], several deep convolutional neural network architectures were 

compared for the task of detecting defects on printed circuit boards. The DeFektNet model 
showed the best results with 97.9% accuracy, 96.2% completeness, and an F1 value of 0.971. 
Other architectures, such as AlexNet and ResNet, also performed well, but were slightly inferior 
to DeFektNet. 

A semi-supervised CNN learning approach was applied in [13] to detect defects on metal 
surfaces. The proposed PSCNet (partially supervised) architecture achieved an accuracy of 94.8% 
and an AUC of 0.982, outperforming the fully supervised network with values of 92.3% and 0.957, 
respectively. 

In addition, in [14], the authors demonstrated the benefits of transfer learning deep CNNs for 
brickwork inspection. Using a network tuned to ImageNet as initialisation weights, they achieved 
an accuracy of 95.7% compared to 82.4% for a network trained from scratch. 

It is important to remember that results can vary significantly depending on the type of 
defects, image quality, data volumes, and specific application requirements. A thorough 
evaluation on real data is essential to select the most appropriate approach. 

3.4. Algorithms comparison 
Evaluation of various defect detection methods through metrics like Accuracy, Precision, 

Recall, F1-score, and AUC reveals their efficacy across diverse applications.  
 

Table 1 
Additional Comparisons 

Method Application Accuracy Precision Recall F1-score AUC 

Morphological 
Operations 

Wood Defects 88.2% 62.8% 
 

79.4% 70.3% - 

Canny Edge Detection Wood Defects 84.7% 73.9% 68.3% 71.0% - 
Otsu Thresholding Ceramic Tiles 91.3% 77.4% 55.7% 64.9% - 
GLCM Texture Analysis Ceramic Tiles 88.5% 83.5% 64.8% 72.8% - 
Random Forest Metal Products 94.2% 92.6% 92.6% 92.6% 97.4% 
SVM Metal Products 93.8% 88.8% 88.7% 88.8% 96.2% 
XGBoost Metal Products 92.5% 88.7% 87.6% 88.1% 95.1% 
K-means Clustering Solar Panels 68% 61.2% 70.4% 65.5% - 
SVM Solar Panels 82% 78.4% 74.6% 76.5% - 

Random Forest Solar Panels 93% 91.2% 90.3% 90.7% 96.2% 
DeFektNet PCBs 97.9% 96.2% 96.2% 96.2% - 
PSCNet (Partially 
Supervised) 

Metal Surfaces 94.8% 92.3% 92.3% 92.3% 98.2% 

Transfer Learning CNNs Brickwork 95.7% 94.8% 94.8% 94.8% - 



Traditional image processing techniques exhibit reliability but may lack in accuracy compared 
to machine learning and deep learning approaches.  

Machine learning algorithms demonstrate commendable performance, while deep learning 
models, especially convolutional neural networks, exhibit exceptional accuracy and robustness, 
albeit requiring significant computational resources. 

The supplementary comparison table succinctly summarizes the performance of different 
defect detection methods across various applications. It underscores the significance of selecting 
the most appropriate approach based on application requirements, data characteristics, and 
computational constraints. 

This table provides a concise comparison of various methods across different applications, 
focusing on key metrics such as Accuracy, Precision, Recall, F1-score, and AUC. 

4. Future work 

While the current state-of-the-art defect detection algorithms have demonstrated promising 
results, several challenges and opportunities for future research remain: 

Developing more robust and generalized algorithms: Many existing algorithms are tailored to 
specific applications or defect types, limiting their generalization capabilities. Future work should 
focus on developing algorithms that can adapt to various manufacturing environments and defect 
types with minimal retraining or adaptation efforts. 

Leveraging multi-modal data: Most current approaches rely solely on visual data (images or 
videos). Incorporating additional modalities, such as depth information, thermal data, or sensor 
readings, could potentially improve defect detection accuracy and provide more comprehensive 
analysis. 

Explainable and interpretable models: While deep learning models have shown exceptional 
performance, they often lack interpretability and transparency in their decision-making process. 
Developing more interpretable models or techniques for explaining the defect detection decisions 
could improve trust and facilitate easier adoption in real-world scenarios. 

Real-time and edge computing: Many manufacturing processes require real-time defect 
detection and decision-making. Future research should focus on optimizing algorithms for low-
latency inference and exploring edge computing solutions to enable on-site defect detection 
without the need for cloud-based processing. 

Active learning and semi-supervised approaches: Collecting and labeling large datasets for 
defect detection can be time-consuming and costly. Active learning and semi-supervised methods 
that can effectively leverage a combination of labeled and unlabeled data could significantly 
reduce the data annotation efforts required for training accurate models. 

Integration with existing manufacturing systems: Seamless integration of defect detection 
algorithms with existing manufacturing processes, quality control systems, and data 
management infrastructures is crucial for widespread adoption. Future work should address the 
challenges of system integration, data pipelines, and interoperability. 

By addressing these challenges and opportunities, future research in image-based defect 
detection can further enhance the efficiency, accuracy, and reliability of quality control processes 
in the manufacturing industry. 

5. Conclusions 

This article provides a comprehensive overview of image-based defect detection algorithms, 
covering traditional image processing methods, machine learning algorithms, and deep learning 
models. The study found that while traditional methods such as morphological operations and 
edge detection provide reliable defect detection, machine learning algorithms such as support 
vector machines and random forests strike a balance between accuracy and computational 
efficiency. However, it is deep learning models, such as convolutional neural networks (CNNs), 



that are emerging as powerful tools for defect detection, demonstrating exceptional accuracy and 
reliability. 

Despite their effectiveness, deep learning models require significant computational resources 
and large amounts of labelled data to train, which creates practical difficulties for implementation 
in certain production environments. Nevertheless, the comparison highlights the importance of 
selecting the most appropriate approach based on specific application requirements, data 
characteristics, and computational constraints. This analysis provides valuable insights for the 
implementation of defect detection systems to improve product quality and reduce costs in 
various manufacturing industries. 

Moreover, the results of the study highlight the key role of image-based defect detection 
algorithms in modern manufacturing processes, offering a powerful combination of accuracy, 
efficiency and adaptability. As technology continues to evolve, further advances in defect 
detection methodologies promise to revolutionise quality control standards and increase 
industrial competitiveness. Continued innovation and collaboration between researchers and 
industry stakeholders will drive the development of defect detection systems, paving the way for 
more efficient and reliable quality control processes in manufacturing. 
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