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Abstract
We introduce prefixed tableau systems for many-valued model logics (MVMLs). Semantically, we follow Fitting [1, 2] in

allowing both the truth values of propositional variables at states as well as relational links between states in many-valued

Kripke frames to take values in an arbitrary, finite Heyting algebra. Fitting [3] introduced tableau systems for these logics

which, however, are not amenable to specialization to the MVMLs of certain frame classes, e.g. generalized symmetric

frames. We overcome this difficulty through the use of prefixes which keep explicit track of the many-valued accessibility

relation constructed on each branch. We prove soundness and completeness of the systems for the MVMLs of the classes

of all many-valued frames and all generalized symmetric many-valued frames. We prove that these systems provide

decision procedures and discuss and demonstrate their implementations. Further we derive the finite model property for

the two logics under consideration.
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1. Introduction

Many-valued modal logics (MVML) generalize the Kripke semantics of standard modal logic
1

by allowing

for many-valued propositional valuations and/or accessibility relations. This is very useful when applying

modal logic to reason about problems requiring a logical account of both modality and vagueness. Accordingly,

many-valued modal logics have been used to model and reason about problems in a wide range of settings

involving different kinds of gradation or vagueness. Fitting [1, 7] suggests that Heyting-valued Kripke models

provide natural models of the epistemic stances of committees of experts which elegantly capture the relations

of influence or dominance among committee members. In [7], he provides a MVML-based analysis of the

‘muddy children puzzle’. Many-valued modal logics are closely related to fuzzy description logics [8], widely

applied in the context of the semantic web [9]. In [10], MVML is applied to the task of reasoning about fuzzy

temporal relations. Many-valued generalizations of non-distributive modal logics have been employed to

model and reason about competition among scientific theories [11] and to capture certain phenomena of

socio-political competition [12]. In [13] many-valued modal logics are enlisted into a framework for reasoning

about vague-concepts and categorization.

The literature contains numerous different approaches to extending modal logic to a many-valued setting.

Some of the earliest proposals are [14, 15, 16, 17, 18]. All of these early works focus on many-valued worlds

and do not stray from crisp accessibility relations. In other words, the notion of a Kripke frame is not modified.

The first framework to generalize modal logic with both many-valued worlds and many-valued accessibility

relations (thus generalizing Kripke frames) arose in the early 1990’s, with a series of papers by Melvin Fitting

[1, 2]. The present paper is concerned with the particular approach to MVML established in [2]. There,

Fitting introduces ℋ-valued modal logics. More precisely, he defines an interpretation of modal formulas

PAAR’24: 9th Workshop on Practical Aspects of Automated Reasoning, July 2, 2024, Nancy, France

*
Corresponding author.

$ g.axelrod1@gmail.com (G. Axelrod); willem.conradie@wits.ac.za (W. Conradie)

� 0000-0002-1752-8069 (G. Axelrod); 0000-0001-9906-4132 (W. Conradie)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1
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via generalized Kripke models, in which both propositions and accessibility relations take on values from an

arbitrary finite Heyting algebra ℋ. A study of the proof theory of these logics was initiated by Fitting himself

when they were first introduced. Specifically, [2] gives a Gentzen sequent calculus for Kℋ
– the ℋ-valued

analogue of the basic modal logic K. Koutras et al. [19] introduce ℋ-frame generalizations of standard Kripke

frame properties such as seriality, reflexivity, symmetry and transitivity. These generalized frame properties

are parameterized by an arbitrary ℋ-value 𝑑, and for a given 𝑑, they define the logics Dℋ
𝑑 ,T

ℋ
𝑑 ,KBℋ

𝑑 and K4ℋ𝑑
– the ℋ-valued analogs of the basic modal logics D,T,KB and K4 respectively. They then go on to extend

Fitting’s sequent calculus for Kℋ
to sequent calculi for these logics. The sequent calculi in [2] and [19] rely on

a cut rule. In [3], Fitting defines a cut-free semantic tableau system for Kℋ
. Extending this system to cut-free

tableau systems for Tℋ
𝑑 ,KBℋ

𝑑 and K4ℋ𝑑 , parameterized by some ℋ-value 𝑑, is relatively straightforward, and is

done by the corresponding author in their master’s thesis. However, KBℋ
𝑑 requires that we introduce prefixes

to our tableaux. And, the resulting prefixed systems lend themselves naturally to defining decision procedures.

We now briefly survey some related work. In [20], Priest introduces tableau systems (as well as nice

philosophical applications) for certain four and three-valued crisp modal logics. His tableau system is a

prefixed one, which, along with the prefixed systems defined in [21], provide the underlying inspiration for the

prefixed system presented in this work. More recently, [22] presents what essentially amounts to a prefixed

tableau system for a fuzzy version of Halpern and Shoham’s Interval Temporal Logic. In [23, 24], a broad

basis for the study of MVMLs based on finite residuated lattices is established, thus generalizing Fitting’s

work. Since then, there has been much work on the axiomatizibility and decidability of various MVMLs.

Vidal has contributed much to this area, and good overviews and references can be found in [25, 26]. Much

of this recent work shifts focus from Fitting’s finite valued Heyting semantics to more fuzzy, real valued

semantics. The works most closely related to what we present here are [27, 28, 29], in that they focus on

Fitting’s framework. [27] provides a cut-free sequent calculus for Kℋ
, and as such, is essentially the first work

to provide a decidability result for this logic. [28] and [29] study tableaux for the crisp versions of the logics

we consider here. In particular, [28] provides prefixed tableau systems for such crisp logics with very general

modalities. It is not entirely clear how to adapt that work to the non-crisp setting, and the present paper may

be viewed as a step in that direction. Also very worth noting is the possibility of translating the logics we deal

with to appropriate first order many-valued logics. Questions regarding decision procedures for these logics

were studied by Hähnle [30, 31].

The paper is structured as follows. In Section 2 we provide the relevant background. Section 3 defines

(prefixed) tableaux and presents the system 𝑝𝒞Kℋ
. We go on to prove that 𝑝𝒞Kℋ

is sound wrt the class of

all ℋ-frames in Section 4. Section 5 proves the completeness of 𝑝𝒞Kℋ
by way of using the rules to construct

a decision procedure for Kℋ
. This also leads us to a finite model property for Kℋ

. Finally, in Section 6, we

modify 𝑝𝒞Kℋ
to obtain a prefixed tableau system (and resulting decision procedure and finite model property)

for the logic KBℋ
𝑑 .

2. Background

Analogous to the connection between Boolean algebras and classical propositional logic, Heyting algebras

(also called pseudo-Boolean algebras) model the algebraic structure of intuitionistic logic (see [32]). For a

detailed exposition of the theory of Heyting algebras and related topics, see [33]. One may approach defining

Heyting Algebras either in terms of orderings or purely algebraically. We choose the order theoretic approach.

A partially ordered set (𝐻,≤) is a lattice iff every two-element subset {𝑎, 𝑏} of 𝐻 has a supremum (or

join), denoted by 𝑎 ∨ 𝑏, and an infimum (or meet), denoted by 𝑎 ∧ 𝑏. If there exists a least and greatest

element of 𝐻 , then the lattice is said to be bounded. The greatest and least element of any bounded lattice

shall be denoted by 0 and 1 respectively. For arbitrary 𝐺 ⊆ 𝐻 , we define

⋀︀
𝐺 := inf 𝐺 and

⋁︀
𝐺 := sup𝐺. In

the case in which 𝐺 is finite, these objects always exist.

Definition 2.1. A Heyting algebra ℋ is a bounded lattice (𝐻,≤) with the property that for all 𝑎, 𝑏 ∈ 𝐻 ,

there exists a 𝑐 ∈ 𝐻 which is the greatest element of {𝑐′ ∈ 𝐻 | 𝑎∧ 𝑐′ ≤ 𝑏}, or equivalently, 𝑑 ≤ 𝑐 iff 𝑎∧ 𝑑 ≤ 𝑏



for every 𝑑 ∈ 𝐻 . Such a 𝑐 is unique, and we call it the pseudo-complement of 𝑎 relative to 𝑏 (and denote it

by 𝑎⇒ 𝑏).

Example 2.2. The simplest, non-Boolean Heyting algebra is ℋ3 = ({0, ℎ, 1},≤), where ≤ is a total order.

Finite Heyting algebras will serve as the truth value spaces of our logics. The syntax and semantics of the

logics we study are parameterized by the specific Heyting algebra we choose to act as the underlying truth value

space. So, let us once and for all fix an arbitrary finite Heyting algebra ℋ = (𝐻,≤). We continue to use ∧,∨,⇒
for the meet, join and relative pseudo-complement. We shall refer to elements of 𝐻 as ℋ-truth values2

and

include in our language a set of propositional constant 𝐻 = {𝑎 | 𝑎 ∈ 𝐻}, one for each element of 𝐻 . Let us

also fix some non-empty countable set Φ of propositional variables. The language for our MVML, which we

denote by ℒℋ(Φ), consists of finite strings constructed from the alphabet 𝐻 ∪ Φ ∪ {∧,∨,⊃,♢,□, (, )}3
. The

set of ℋ-valued modal formulas (or simply ‘formulas’ from now on), denoted 𝐹𝑟𝑚(ℒℋ(Φ)), is generated by

the following grammar:

𝜙 ::= 𝑎 |𝑝 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | 𝜙1 ⊃ 𝜙2 |□𝜙1 | ♢𝜙1

where 𝑎 ranges over ℋ-truth value and 𝑝 over propositional variables (these are our atomic formulas). For

𝜙 ∈ 𝐹𝑟𝑚(ℒℋ(Φ)), the modal degree, denoted 𝑀𝑑𝑒𝑔𝑟𝑒𝑒(𝜙), is the number of occurrences of the symbols ♢
and □ in 𝜙. Further, 𝑆𝑢𝑏(𝜙) denotes the set of all subformulas of 𝜙.

Formulas will be interpreted in ℋ-valued generalizations of standard Kripke structures. Namely, an ℋ-frame
is a tuple F = (𝑊,𝑅), where 𝑊 is a non-empty set of worlds (or states) and 𝑅 :𝑊 ×𝑊 → 𝐻 is a function

assigning ℋ-truth values to ordered pairs of worlds.

An ℋ-model is a structure M = ((𝑊,𝑅), 𝑉 ), where F = (𝑊,𝑅) is an ℋ-frame (we say that M is based

on frame F) and 𝑉 is a valuation on Φ ∪𝐻 . By this, we mean that 𝑉 : 𝑊 × (Φ ∪𝐻) → 𝐻 is a function

assigning ℋ-truth values to atomic formulas in each world, s.t. 𝑉 (s, 𝑎) = 𝑎 for all s ∈𝑊 and 𝑎 ∈ 𝐻 . That is,

propositional constants are always mapped by a valuation to the ℋ-truth values that they represent.

We can extend an ℋ-model’s valuation to all formulas in 𝐹𝑟𝑚(ℒℋ(Φ)) via a recursive definition.

Definition 2.3. Let M = ((𝑊,𝑅), 𝑉 ) be an ℋ-model. The extension of 𝑉 , 𝑉 :𝑊 × 𝐹𝑟𝑚(ℒℋ(Φ)) → 𝐻 , is

the unique function where for any s ∈𝑊 and 𝜙,𝜓 ∈ 𝐹𝑟𝑚(ℒℋ(Φ)), we have

• 𝑉 (s, 𝛾) = 𝑉 (s, 𝛾) for every 𝛾 ∈ Φ ∪𝐻 ,

• 𝑉 (s, (𝜙 ∧ 𝜓)) = 𝑉 (s, 𝜙) ∧ 𝑉 (s, 𝜓),

• 𝑉 (s, (𝜙 ∨ 𝜓)) = 𝑉 (s, 𝜙) ∨ 𝑉 (s, 𝜓),

• 𝑉 (s, (𝜙 ⊃ 𝜓)) = 𝑉 (s, 𝜙) ⇒ 𝑉 (s, 𝜓),

• 𝑉 (s,□𝜙) =
⋀︁

{𝑅(s, v) ⇒ 𝑉 (v, 𝜙) | v ∈𝑊},

• 𝑉 (s,♢𝜙) =
⋁︁

{𝑅(s, v) ∧ 𝑉 (v, 𝜙) | v ∈𝑊}.

Henceforth, we employ the harmless abuse of notation in which 𝑉 is used to denote both a valuation and

its extension. We say that 𝜙 is satisfied by M at s ∈𝑊 (denoted as M, s ⊩ 𝜙) iff 𝑉 (s, 𝜙) = 1. Further, 𝜙 is

globally satisfied by M (denoted as M ⊩ 𝜙) iff 𝑉 (s, 𝜙) = 1 for every s ∈𝑊 . We say M is a counter model
for 𝜙 iff M ⊮ 𝜙.

It should be noted that if ℋ is the Boolean algebra 2 consisting of two elements, then the MVML we have

introduced reduces to the standard two-valued modal logic. In this standard case, it is clear that some of our

2

We will often drop the ℋ and just speak of truth values.

3

In line with Fitting’s presentation, we use ∧,∨ to denote the meet and join operations in ℋ as well as symbols occurring in ℒℋ(Φ).
Context should make it clear exactly which objects we are referring to. Further, the use of an underline for elements of 𝐻 will help

differentiate between syntactic and semantic objects. This, in turn, allows us to differentiate between formulas such as (𝑎 ∧ 𝑡𝑛 ⊃ 𝜙)
vs (𝑎 ∧ 𝑡𝑛 ⊃ 𝜙). This becomes important in some tableau rules, for example see rule (𝑝K𝐹□).



connectives are redundant. However, in the general case, the connectives we have in our language are not

interdefinable. As such, we need to explicitly include them.

We introduce new symbols which have ‘negation-like’ semantics which will be crucial for our tableaux. Let

𝑇 and 𝐹 be two new formal symbols. A signed formula consists of a formula with either the symbol 𝑇 or 𝐹
prepended to it. Given some ℋ-model M = ((𝑊,𝑅), 𝑉 ) and s ∈𝑊 , we shall say that a signed formula is
satisfied by M at s iff it is 𝑇𝜙 and M, s ⊩ 𝜙; or it is 𝐹𝜙 and M, s ⊮ 𝜙.

Definition 2.4 (Validity). Let F = (𝑊,𝑅) be an ℋ-frame and 𝜙 ∈ 𝐹𝑟𝑚(ℒℋ(Φ)). We say that 𝜙 is valid in

F (denoted as F ⊩ 𝜙) iff for every ℋ-model M = (F, 𝑉 ) based on F, we have M ⊩ 𝜙. Let ℱ be some class of

ℋ-frames. 𝜙 is said to be valid in ℱ , or ℱ-valid (denoted as ℱ ⊩ 𝜙) iff F ⊩ 𝜙 for all F ∈ ℱ . In the case where

ℱ is the class of all ℋ-frames, we simply say that 𝜙 is valid. We define Λℱ to be {𝜙 ∈ 𝐹𝑟𝑚(ℒℋ) | ℱ ⊩ 𝜙},

and call it the logic of ℱ .

We denote the logic of all ℋ-frames by Kℋ
. In the context of standard modal logic, various other classes of

frames have been characterized in terms of conditions on the two-valued accessibility relation and extensively

studied. Classes of ℋ-frames which are characterized by many-valued generalizations of some of these

conditions are defined in [19]. These conditions on the many-valued accessibility relation are parameterized

by an arbitrary ℋ-truth value 𝑑. In the case of ‘many-valued symmetry’, we say that an ℋ-frame (𝑊,𝑅)
is 𝑑-symmetric iff 𝑑 ∧ 𝑅(s, v) = 𝑑 ∧ 𝑅(v, s) for every s, v ∈ 𝑊 . Letting Symm

ℋ
𝑑 denote the class of all

𝑑-symmetric ℋ-frames, we use KBℋ
𝑑 to denote

4 Λ
Symm

ℋ
𝑑

.

3. Prefixed Tableaux

Tableau systems were first introduced by Beth [35] and popularized by Smullyan [36]. They have since been

widely adapted to be used for various non-classical logics [31]. Fitting gives a detailed account of their use for

standard modal logics in [21], and this particular text motivated much of the work in this paper.

Before precisely defining prefixed tableaux, we need to define the relevant object language, i.e. the set

of strings that can occur in the derivations in our system. First and foremost, we will make use of signed

bounding implications, which, as the name suggests, provide a syntactic means by which we can ‘bound’ the

value of a formula. More precisely, a formula is a bounding implication iff it is of the form 𝑎 ⊃ 𝜓 or 𝜓 ⊃ 𝑎
for some 𝑎 ∈ 𝐻 and 𝜓 ∈ 𝐹𝑟𝑚(ℒℋ(Φ)).

For a formula 𝜙, it will also be useful to talk about the bounded subformulas of 𝜙, which are the bounding

implications of the form 𝑎 ⊃ 𝜓 or 𝜓 ⊃ 𝑎, where 𝑎 ∈ 𝐻 and 𝜓 ∈ 𝑆𝑢𝑏(𝜙)5
.

A signed bounding implication is simply a signed formula in which the formula is a bounding implication.

We denote the set of all signed bounding implications by 𝑆𝐵𝐼 , and say that 𝛽 ∈ 𝑆𝐵𝐼 bounds 𝜙 by 𝑎 iff 𝛽 is

of the form 𝑇 (𝑎 ⊃ 𝜙), 𝑇 (𝜙 ⊃ 𝑎), 𝐹 (𝑎 ⊃ 𝜙) or 𝐹 (𝜙 ⊃ 𝑎). We shall use ⊥ as an abbreviation for 𝐹 (0 ⊃ 1).
Our system expands on the tableau system defined by Fitting in [3]. There, the object language is 𝑆𝐵𝐼 . We

shall be concerned with an object language in which elements of 𝑆𝐵𝐼 are augmented with prefixes. Fixing

some countably infinite set of symbols Σ, a prefix is a tuple (𝑤, 𝜎), where 𝑤 ∈ Σ and 𝜎 ⊆ Σ × Σ ×𝐻 . A

prefixed signed bounding implication is a string of the form (𝑤, 𝜎)𝛽, consisting of a prefix (𝑤, 𝜎) prepended

to a signed bounding implication 𝛽. We denote the set of all prefixed signed bounding implication by 𝑝𝑆𝐵𝐼 ,

and this will play the role of object language for what we call prefixed tableaux.

The system in [3] is in the tradition of Smullyan [36], and Fitting presents his (unprefixed) tableaux as trees

where each node is labelled by a single element of 𝑆𝐵𝐼 . However, although not explicitly stated by Fitting, the

destructive nature of his modal rules requires that, technically, tableaux are more abstract objects than trees.

4

The names of the logics are in keeping with convention, as the definitions collapse to the standard case when 𝑑 = 1 and ℋ = 2. For

instance, KB2
1 is the same as the standard modal logic KB of symmetric Kripke frames. The names in standard modal logic derive

from the names for the axioms defining the frame properties. We are further justified in using these names since when we take these

axioms to the ℋ-valued setting, the generalized frame properties are still defined by them. [34] gives a good account of why this is so.

5

For any formula 𝜙, the set of all bounded subformulas of 𝜙 has at most 2× |𝐻| × |𝑆𝑢𝑏(𝜙)| elements. Hence, since 𝐻 is finite, there

is a finite number of bounded subformulas of 𝜙.



Specifically, a tableau in [3] is a collection in 𝒫(𝒫(𝑆𝐵𝐼)) (i.e., a set of sets of signed bounding implications).

We will use this abstract approach to define prefixed tableaux too. That is to say, the set of prefixed tableaux

for some formula will be defined recursively as a subset of 𝒫(𝒫(𝑝𝑆𝐵𝐼)) that results from applying a finite

sequence of permissible operations on some base tableau. The permissible operations are described via what

we call tableau rules. A tableau rule 𝜌 = (𝒩 , (𝒟1, . . . ,𝒟𝑛), side condition) consists of a numerator 𝒩 , a

finite list of denominators 𝒟1, . . . ,𝒟𝑛, and a side condition. Schematically, 𝜌 is presented as follows.

(𝜌)

𝒩
𝒟1 . . . 𝒟𝑛

side condition

The numerator, denominators and side condition of a tableau rule are expressions of the metalanguage. They

describe subsets of 𝑝𝑆𝐵𝐼 based on the membership of certain elements adhering to a particular syntactic

form and syntactic conditions stated in the side condition. An instantiation of the numerator and denom-

inator(s) of a rule are the sets that can result from a uniform substitution of sets, constants and formulas

for metasymbols in the rule, s.t. the side condition is satisfied. As mentioned, the purpose of a tableau rule

𝜌 = (𝒩 , (𝒟1, . . . ,𝒟𝑛), side condition) is to describe a family of operations that can be applied to elements of

𝒫(𝒫(𝑝𝑆𝐵𝐼)). To be more precise, let 𝑓 : 𝒫(𝒫(𝑝𝑆𝐵𝐼)) → 𝒫(𝒫(𝑝𝑆𝐵𝐼)). We say 𝑓 is described by 𝜌 iff for

all 𝑇 ∈ 𝒫(𝒫(𝑝𝑆𝐵𝐼)), if 𝑇 ̸= 𝑓(𝑇 ) then for some 𝑆 ∈ 𝑇 , 𝑆 is an instantiation of 𝒩 , 𝑓(𝑇 ) contains 𝑆1, . . . 𝑆𝑛
which are corresponding instantiations of 𝒟1, . . . ,𝒟𝑛 respectively, and 𝑇 ∖ {𝑆} = 𝑓(𝑇 ) ∖ {𝑆1, . . . , 𝑆𝑛}.

6

In most cases we will not make explicit reference to an operation described by a rule. If 𝑇 * = 𝑓(𝑇 ) for some

𝑇 ∈ 𝒫(𝒫(𝑝𝑆𝐵𝐼)) and 𝑓 described by 𝜌, we shall say that 𝑇 *
was derived from 𝑇 through an application of

𝜌. Sometimes, it will be useful to pick out the element of 𝑇 which acts as the instantiation of the numerator of

the rule. So, if 𝑆 ∈ 𝑇 but 𝑆 /∈ 𝑇 *
, we may say 𝜌 was applied to 𝑆 to derive 𝑇 *

.

Now, we call any finite collection of tableau rules, 𝒞, a tableau system.

Definition 3.1. Let 𝑋 be a finite subset of 𝑝𝑆𝐵𝐼 . The set of 𝒞-tableaux for 𝑋 is a subset of 𝒫(𝒫(𝑝𝑆𝐵𝐼))
and is defined recursively as follows.

• {𝑋} is a 𝒞-tableau for 𝑋

• Suppose 𝑇 is a 𝒞-tableau for 𝑋 . If 𝑇 * ∈ 𝒫(𝒫(𝑝𝑆𝐵𝐼)) can be derived from 𝑇 by applying some 𝜌 ∈ 𝒞,

then 𝑇 *
is a 𝒞-tableau for 𝑋 .

Further, the set of all 𝒞-tableaux is simply the set of all 𝑇 ∈ 𝒫(𝒫(𝑝𝑆𝐵𝐼)) s.t. 𝑇 is a 𝒞-tableau for some finite

𝑋 ⊆ 𝑝𝑆𝐵𝐼 . We call the sets in a 𝒞-tableau its branches7
.

Given some set 𝑆 ∈ 𝒫(𝑝𝑆𝐵𝐼), we shall say that 𝑆 is closed iff (𝑤,∅)⊥ ∈ 𝑆 for some 𝑤 ∈ Σ. Otherwise,

we say that 𝑆 is open. A tableau is closed iff all its branches are closed; otherwise it is open. We say that a

formula 𝜙 is a theorem of 𝒞 iff for some 𝑤 ∈ Σ, there exists a closed 𝒞-tableau for {(𝑤,∅)𝐹 (1 ⊃ 𝜙)}. In this

case we also say that 𝜙 is provable in 𝒞 (denoted as ⊢𝒞 𝜙), or that 𝑇 is a 𝒞-proof of 𝜙.

The unprefixed tableau systems introduced in [3] view the formulas in a branch as describing the valuation

at a specific world of a hypothetical model. The application of certain ‘modal’ rules corresponds to a change in

world with a concomitant loss of much of the information regarding the previous world. This ‘destructiveness’

makes basing a decision procedure upon this system difficult, and what is more, devising a system that is sound

and complete wrt e.g. symmetric frames is impossible. To do the former would require a system of bookkeeping

and backtracking. We now introduce “non-destructive” tableau systems with prefixes which take care of this

bookkeeping naturally inside the system itself and ensure that we never have to backtrack. They do so by

keeping track of all the worlds, past and present. For a prefix (𝑤, 𝜎), we think of 𝑤 ∈ Σ as denoting a world in

an ℋ-frame, and call𝑤 a world label. We think of (𝑤, 𝑣, 𝑡) ∈ 𝜎 ⊆ Σ×Σ×𝐻 as saying that the world denoted

6

Note that the identity operation on 𝒫(𝒫(𝑝𝑆𝐵𝐼)) is described by every rule.

7

The justification for this terminology will be made explicit in Section 5.1.



by 𝑣 is accessible from the world denoted by 𝑤 to degree 𝑡. We call (𝑤, 𝑣, 𝑡) a constraint. We shall use the

following convenient notation. For 𝛽 ∈ 𝑆𝐵𝐼 , 𝑠𝑓((𝑤, 𝜎)𝛽) := 𝛽; 𝑤𝑜𝑟𝑙𝑑((𝑤, 𝜎)𝛽) := 𝑤; 𝑐𝑜𝑛((𝑤, 𝜎)𝛽) := 𝜎;

and for a given set 𝑋 ⊆ 𝑝𝑆𝐵𝐼 , we let 𝑐𝑜𝑛𝑠(𝑋) :=
⋃︀

𝑥∈𝑋 𝑐𝑜𝑛(𝑥) and 𝑤𝑜𝑟𝑙𝑑𝑠(𝑋) := {𝑤𝑜𝑟𝑙𝑑(𝑥) | 𝑥 ∈ 𝑋}.

With prefixes in hand, we view branches of a tableau as describing an entire hypothetical satisfying model –

not just a valuation at a specific world. These intuitions are made precise as follows:

Definition 3.2. Let 𝑆 be a subset of 𝑝𝑆𝐵𝐼 and let M = ((𝑊,𝑅), 𝑉 ) be an ℋ-model. An interpretation
of 𝑆 in M is any map 𝐼 : 𝑤𝑜𝑟𝑙𝑑𝑠(𝑆) → 𝑊 s.t. if (𝑤, 𝑣, 𝑡) ∈ 𝑐𝑜𝑛𝑠(𝑆), then 𝐼 is defined for 𝑤 and 𝑣 (i.e.

𝑤, 𝑣 ∈ 𝑤𝑜𝑟𝑙𝑑𝑠(𝑆)) and 𝑅(𝐼(𝑤), 𝐼(𝑣)) = 𝑡. We say 𝑆 is satisfied under 𝐼 if for each (𝑤, 𝜎)𝛽 ∈ 𝑆, it is the

case that 𝛽 is satisfied by M at 𝐼(𝑤). Further, let ℱ be a class of ℋ-frames. We say 𝑆 is ℱ -satisfiable iff there

exists an ℋ-model M based on a frame from ℱ , and an interpretation 𝐼 of 𝑆 in M s.t. 𝑆 is satisfied under 𝐼 .

In the case where ℱ is the class of all ℋ-frames, we simply say that 𝑆 is satisfiable.

We proceed to study a prefixed tableau system for Kℋ
.

𝑝𝒞Kℋ :={𝑝⊥1, 𝑝⊥2, 𝑝⊥3, 𝑝⊥4, 𝑝⊥5, 𝑝𝐹≥, 𝑝𝑇≥, 𝑝𝐹≤, 𝑝𝑇≤, 𝑝𝑇∧, 𝑝𝐹∧, 𝑝𝑇∨, 𝑝𝐹∨,
𝑝𝑇⊃, 𝑝𝐹⊃, 𝑝K𝑇□, 𝑝K𝑇♢, 𝑝K𝐹□, 𝑝K𝐹♢}

where these rules are defined below. Note that in all the rules, the entire numerator of the rule, denoted by

𝒩 , is carried to the denominator(s) of the rule. That is to say, all the rules extend branches, without deleting

anything. While such extending rules are usually presented in the literature without placing the numerator in

the denominator, we nonetheless do so here in keeping with our earlier abstract definition of tableau rules.

Furthermore, we use 𝜎′ as an abbreviation for 𝑐𝑜𝑛𝑠(𝒩 ) 8
.

(𝑝⊥1)
𝑋; (𝑤, 𝜎)𝑇 (𝑎 ⊃ 𝑏)

𝒩 ; (𝑤,∅)⊥

Where 𝑎 ≰ 𝑏

(𝑝⊥2)
𝑋; (𝑤, 𝜎)𝐹 (𝑎 ⊃ 𝑏)

𝒩 ; (𝑤,∅)⊥

Where 𝑎 ≤ 𝑏

(𝑝⊥3)
𝑋; (𝑤, 𝜎)𝐹 (0 ⊃ 𝜙)

𝒩 ; (𝑤,∅)⊥

(𝑝⊥4)
𝑋; (𝑤, 𝜎)𝐹 (𝜙 ⊃ 1)

𝒩 ; (𝑤,∅)⊥ (𝑝⊥5)
𝑋; (𝑤, 𝜎)𝑇 (𝑎 ⊃ 𝜙); (𝑤, 𝜎′)𝑇 (𝜙 ⊃ 𝑏)

𝒩 ; (𝑤,∅)⊥

Where 𝑎 ≰ 𝑏

Table 1
Closing rules

(𝑝𝐹≥)

𝑋; (𝑤, 𝜎)𝐹 (𝑎 ⊃ 𝜙)

𝒩 ;
(𝑤, 𝜎′)𝑇 (𝜙 ⊃ 𝑡1)

. . . 𝒩 ;
(𝑤, 𝜎′)𝑇 (𝜙 ⊃ 𝑡𝑛)

Where 𝑡1, . . . , 𝑡𝑛 are all the maximal ℋ-truth values not

above 𝑎, and 𝑎 ̸= 0.

(𝑝𝐹≤)

𝑋; (𝑤, 𝜎)𝐹 (𝜙 ⊃ 𝑎)

𝒩 ;
(𝑤, 𝜎′)𝑇 (𝑢1 ⊃ 𝜙)

. . . 𝒩 ;
(𝑤, 𝜎′)𝑇 (𝑢𝑘 ⊃ 𝜙)

Where 𝑢1, . . . , 𝑢𝑘 are all the minimal ℋ-truth values not

below 𝑎, and 𝑎 ̸= 1.

(𝑝𝑇≥)

𝑋; (𝑤, 𝜎)𝑇 (𝑎 ⊃ 𝜙)

𝒩 ; (𝑤, 𝜎′)𝐹 (𝜙 ⊃ 𝑡𝑖)

Where 𝑡𝑖 is any maximal ℋ-truth value not above 𝑎, and

𝑎 ̸= 0.

(𝑝𝑇≤)

𝑋; (𝑤, 𝜎)𝑇 (𝜙 ⊃ 𝑎)

𝒩 ; (𝑤, 𝜎′)𝐹 (𝑢𝑖 ⊃ 𝜙)

Where 𝑢𝑖 is any minimal ℋ-truth value not below 𝑎, and

𝑎 ̸= 1.

Table 2
Reversal rules

8

In all the rules, the constraints introduced in the denominators extend 𝜎′ = 𝑐𝑜𝑛𝑠(𝒩 ). We could just as well instead extend the 𝜎 of

the numerator. However, the current approach is chosen as it makes the later termination result (Lemma 5.4) easier to prove.



(𝑝𝑇∧) 𝑋; (𝑤, 𝜎)𝑇 (𝑎 ⊃ (𝜙 ∧ 𝜓))
𝒩 ; (𝑤, 𝜎′)𝑇 (𝑎 ⊃ 𝜙); (𝑤, 𝜎′)𝑇 (𝑎 ⊃ 𝜓)

Where 𝑎 ̸= 0.

(𝑝𝐹∧) 𝑋; (𝑤, 𝜎)𝐹 (𝑎 ⊃ (𝜙 ∧ 𝜓))
𝒩 ; (𝑤, 𝜎′)𝐹 (𝑎 ⊃ 𝜙) 𝒩 ; (𝑤, 𝜎′)𝐹 (𝑎 ⊃ 𝜓)

Where 𝑎 ̸= 0.

(𝑝𝑇∨) 𝑋; (𝑤, 𝜎)𝑇 ((𝜙 ∨ 𝜓) ⊃ 𝑎)

𝒩 ; (𝑤, 𝜎′)𝑇 (𝜙 ⊃ 𝑎); (𝑤, 𝜎′)𝑇 (𝜓 ⊃ 𝑎)

Where 𝑎 ̸= 1.

(𝑝𝐹∨) 𝑋; (𝑤, 𝜎)𝐹 ((𝜙 ∨ 𝜓) ⊃ 𝑎)

𝒩 ; (𝑤, 𝜎′)𝐹 (𝜙 ⊃ 𝑎) 𝒩 ; (𝑤, 𝜎′)𝐹 (𝜓 ⊃ 𝑎)

Where 𝑎 ̸= 1.

(𝑝𝐹⊃)

𝑋; (𝑤, 𝜎)𝐹 (𝑎 ⊃ (𝜙 ⊃ 𝜓))

𝒩 ;
(𝑤, 𝜎′)𝑇 (𝑡1 ⊃ 𝜙);
(𝑤, 𝜎′)𝐹 (𝑡1 ⊃ 𝜓)

. . . 𝒩 ;
(𝑤, 𝜎′)𝑇 (𝑡𝑛 ⊃ 𝜙);
(𝑤, 𝜎′)𝐹 (𝑡𝑛 ⊃ 𝜓)

Where 𝑡1, . . . , 𝑡𝑛 are all the ℋ-truth values below 𝑎 except

0.

(𝑝𝑇⊃)

𝑋; (𝑤, 𝜎)𝑇 (𝑎 ⊃ (𝜙 ⊃ 𝜓))

𝒩 ;
(𝑤, 𝜎′)𝐹 (𝑡𝑖 ⊃ 𝜙)

𝒩 ;
(𝑤, 𝜎′)𝑇 (𝑡𝑖 ⊃ 𝜓)

Where 𝑡𝑖 is any ℋ-truth value below 𝑎 except 0.

Table 3
Propositional rules

(𝑝K𝑇□)

𝑋; (𝑤, 𝜎)𝑇 (𝑎 ⊃ □𝜙)
𝒩 ; (𝑣, 𝜎′)𝑇 (𝑎 ∧ 𝑡 ⊃ 𝜙)

Where 𝑣 is any member of Σ and 𝑡 any ℋ-truth value s.t.

(𝑤, 𝑣, 𝑡) ∈ 𝜎′
.

(𝑝K𝑇♢) 𝑋; (𝑤, 𝜎)𝑇 (♢𝜙 ⊃ 𝑎)

𝒩 ; (𝑣, 𝜎′)𝑇 (𝜙 ⊃ 𝑡⇒ 𝑎)

Where 𝑣 is any member of Σ and 𝑡 any ℋ-truth value s.t.

(𝑤, 𝑣, 𝑡) ∈ 𝜎′
.

(𝑝K𝐹□)

𝑋; (𝑤, 𝜎)𝐹 (𝑎 ⊃ □𝜙)
𝒩 ; (𝑣, 𝜎′ ∪ {(𝑤, 𝑣, 𝑡1)})
𝐹 (𝑎 ∧ 𝑡1 ⊃ 𝜙)

. . . 𝒩 ; (𝑣, 𝜎′ ∪ {(𝑤, 𝑣, 𝑡𝑛)})
𝐹 (𝑎 ∧ 𝑡𝑛 ⊃ 𝜙)

Where 𝑣 is any symbol of Σ that is not in 𝑤𝑜𝑟𝑙𝑑𝑠(𝒩 ), and 𝑡1, . . . , 𝑡𝑛 are all the ℋ-truth values s.t. 𝑎 ∧ 𝑡𝑖 ̸= 0.

(𝑝K𝐹♢)
𝑋; (𝑤, 𝜎)𝐹 (♢𝜙 ⊃ 𝑎)

𝒩 ; (𝑣, 𝜎′ ∪ {(𝑤, 𝑣, 𝑡1)})
𝐹 (𝜙 ⊃ 𝑡1 ⇒ 𝑎)

. . . 𝒩 ; (𝑣, 𝜎′ ∪ {(𝑤, 𝑣, 𝑡𝑛)})
𝐹 (𝜙 ⊃ 𝑡𝑛 ⇒ 𝑎)

Where 𝑣 is any symbol of Σ that is not in 𝑤𝑜𝑟𝑙𝑑𝑠(𝒩 ), and 𝑡1, . . . , 𝑡𝑛 are all the ℋ-truth values s.t. 𝑡𝑖 ⇒ 𝑎 ̸= 1.

Table 4
Modal rules

4. Soundness

Let ℱ be an arbitrary class of ℋ-frames. A 𝒞-tableau 𝑇 is ℱ-satisfiable iff at least one branch 𝑆 ∈ 𝑇 is

ℱ-satisfiable. Consider some rule 𝜌 ∈ 𝒞. We say 𝜌 preserves ℱ-satisfiability iff for every 𝒞-tableau 𝑇 , if 𝑇 is

ℱ-satisfiable and 𝑇 *
is a tableau that can be derived from 𝑇 via an application of 𝜌, then 𝑇 *

is ℱ-satisfiable.

To prove 𝒞 is sound wrt ℱ , it suffices to show that each rule of 𝒞 preserves ℱ-satisfiability.

Lemma 4.1. 𝜌 preserves ℱ-satisfiability for each 𝜌 ∈ 𝑝𝒞Kℋ
.

Proof. We need to show that for each such rule, if (an instantiation of) the numerator 𝒩 is ℱ-satisfiable, then

(the corresponding instantiation of) at least one of the denominators 𝒟 is ℱ-satisfiable.

Let 𝜌 ∈ 𝑝𝒞Kℋ
and suppose that the numerator 𝒩 of 𝜌 is ℱ-satisfiable. That is, there exists an ℋ-model

M = ((𝑊,𝑅), 𝑉 ) based on a frame from ℱ , and an interpretation 𝐼 of 𝒩 in M s.t. 𝒩 is satisfied under 𝐼 . We

now need to consider each rule individually. We will do so for 𝑝K𝐹□; leaving the other cases to the reader.

Case 𝜌 = 𝑝K𝐹□: Then 𝒩 = 𝑋; (𝑤, 𝜎)𝐹 (𝑎 ⊃ □𝜙) and so 𝐹 (𝑎 ⊃ □𝜙) is satisfied by M at 𝐼(𝑤). That is,

𝑉 (𝐼(𝑤), 𝑎 ⊃ □𝜙) ̸= 1, or equivalently, 𝑎 ≰
⋀︀
{𝑅(𝐼(𝑤), s) ⇒ 𝑉 (s, 𝜙) | s ∈𝑊}. Thus, for some s ∈𝑊 , we

have 𝑎 ∧𝑅(𝐼(𝑤), s) ≰ 𝑉 (s, 𝜙). Suppose 𝑅(𝐼(𝑤), s) = 𝑡𝑖 ∈ 𝐻 . Let 𝑣 ∈ Σ be any symbol that is not already



in 𝑤𝑜𝑟𝑙𝑑𝑠(𝒩 ). We extend the interpretation 𝐼 to 𝑣. Specifically, consider 𝐼 ′ := 𝐼 ∪ {(𝑣, s)}, which is an

interpretation of 𝒟 = 𝒩 ; (𝑣, 𝑐𝑜𝑛𝑠(𝒩 ) ∪ {(𝑤, 𝑣, 𝑡𝑖)})𝐹 (𝑎 ∧ 𝑡𝑖 ⊃ 𝜙) in M, and 𝒟 is satisfied under 𝐼 ′.

5. Completeness

We may now approach proving completeness in much the same way as is done in [3]. That is, we could define

the abstract notion of a maximal-consistent set of prefixed formulas and use such sets to construct a (possibly

infinite) canonical model
9
. Rather, we do something that was not easily achieved with those systems. We use

our prefixed system to describe a decision procedure that, given a formula 𝜙, must produce a tableau proof for

𝜙 if one exists and, if one does not, will give us the information necessary to construct a counter model for 𝜙.

This will also allow us to prove a finite frame property.

We use a labeled tree as the main data structure in the decision procedure for deriving a desired tableau. As

just mentioned, a desired tableau for a non-valid formula is one that provides enough information to construct

a counter model. This rough idea of ‘enough information’ is captured by the notion of downward saturation.

For 𝑆 ⊆ 𝑝𝑆𝐵𝐼 . We define the relation 𝑅𝑆 := {((𝑤, 𝑣), 𝑡) ∈ Σ2 ×𝐻 | (𝑤, 𝑣, 𝑡) ∈ 𝑐𝑜𝑛𝑠(𝑆)}.

Definition 5.1. Let 𝑆 ⊆ 𝑝𝑆𝐵𝐼 . 𝑆 is said to be downward saturated iff all of the following conditions hold:

1. If (𝑤, 𝑣, 𝑡) ∈ 𝑐𝑜𝑛𝑠(𝑆) for some 𝑤, 𝑣 ∈ Σ, 𝑡 ∈ 𝐻 , then 𝑤, 𝑣 ∈ 𝑤𝑜𝑟𝑙𝑑𝑠(𝑆). Further, 𝑅𝑆 is a partial

function from 𝑤𝑜𝑟𝑙𝑑𝑠(𝑆)2 to 𝐻 .

2. For each rule 𝜌 ∈ {𝑝⊥1, 𝑝⊥2, 𝑝⊥3, 𝑝⊥4, 𝑝⊥5}, 𝑆 is not an instantiation of the numerator of 𝜌.

3. If (𝑤, 𝜎)𝑇 (𝑎 ⊃ (𝜙 ∧ 𝜓)) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 × 𝐻 and truth value 𝑎 ̸= 0, then we have

(𝑤, 𝜎′)𝑇 (𝑎 ⊃ 𝜙) ∈ 𝑆 and (𝑤, 𝜎′)𝑇 (𝑎 ⊃ 𝜓) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

4. If (𝑤, 𝜎)𝐹 (𝑎 ⊃ (𝜙 ∧ 𝜓)) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 × 𝐻 and truth value 𝑎 ̸= 0, then we have

(𝑤, 𝜎′)𝐹 (𝑎 ⊃ 𝜙) ∈ 𝑆 or (𝑤, 𝜎′)𝐹 (𝑎 ⊃ 𝜓) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

5. If (𝑤, 𝜎)𝑇 ((𝜙 ∨ 𝜓) ⊃ 𝑎) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 × 𝐻 and truth value 𝑎 ̸= 1, then we have

(𝑤, 𝜎′)𝑇 (𝑎 ⊃ 𝜙) ∈ 𝑆 and (𝑤, 𝜎′)𝑇 (𝜓 ⊃ 𝑎) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

6. If (𝑤, 𝜎)𝐹 ((𝜙 ∨ 𝜓) ⊃ 𝑎) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 × 𝐻 and truth value 𝑎 ̸= 1, then we have

(𝑤, 𝜎′)𝐹 (𝜙 ⊃ 𝑎) ∈ 𝑆 or (𝑤, 𝜎′)𝐹 (𝜓 ⊃ 𝑎) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

7. If (𝑤, 𝜎)𝐹 (𝑎 ⊃ (𝜙 ⊃ 𝜓)) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2×𝐻 and truth value 𝑎, then for some 𝑡𝑖 ∈ 𝐻 s.t.

𝑡𝑖 ≤ 𝑎 and 𝑡𝑖 ̸= 0, we have (𝑤, 𝜎′)𝑇 (𝑡𝑖 ⊃ 𝜙) ∈ 𝑆 and (𝑤, 𝜎′)𝐹 (𝑡𝑖 ⊃ 𝜓) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

8. If (𝑤, 𝜎)𝑇 (𝑎 ⊃ (𝜙 ⊃ 𝜓)) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 ×𝐻 and truth value 𝑎, then for all 𝑡𝑖 ∈ 𝐻 s.t.

𝑡𝑖 ≤ 𝑎 and 𝑡𝑖 ̸= 0, we have (𝑤, 𝜎′)𝐹 (𝑡𝑖 ⊃ 𝜙) ∈ 𝑆 or (𝑤, 𝜎′)𝑇 (𝑡𝑖 ⊃ 𝜓) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

9. If (𝑤, 𝜎)𝑇 (𝑎 ⊃ □𝜙) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 ×𝐻 and truth value 𝑎, then for all 𝑣 ∈ Σ and 𝑡 ∈ 𝐻
s.t. (𝑤, 𝑣, 𝑡) ∈ 𝑐𝑜𝑛𝑠(𝑆), we have (𝑣, 𝜎′)𝑇 (𝑎 ∧ 𝑡 ⊃ 𝜙) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

10. If (𝑤, 𝜎)𝑇 (♢𝜙 ⊃ 𝑎) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 ×𝐻 and truth value 𝑎, then for all 𝑣 ∈ Σ and 𝑡 ∈ 𝐻
s.t. (𝑤, 𝑣, 𝑡) ∈ 𝑐𝑜𝑛𝑠(𝑆), we have (𝑣, 𝜎′)𝑇 (𝜙 ⊃ 𝑡⇒ 𝑎) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

11. If (𝑤, 𝜎)𝐹 (𝑎 ⊃ □𝜙) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 ×𝐻 and truth value 𝑎, then there exists some 𝑣 ∈ Σ
and 𝑡𝑖 ∈ 𝐻 s.t. 𝑎 ∧ 𝑡𝑖 ̸= 0, (𝑤, 𝑣, 𝑡𝑖) ∈ 𝑐𝑜𝑛𝑠(𝑆) and (𝑣, 𝜎′)𝐹 (𝑎 ∧ 𝑡𝑖 ⊃ 𝜙) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

12. If (𝑤, 𝜎)𝐹 (♢𝜙 ⊃ 𝑎) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 ×𝐻 and truth value 𝑎, then there exists some 𝑣 ∈ Σ
and 𝑡𝑖 ∈ 𝐻 s.t. 𝑡𝑖 ⇒ 𝑎 ̸= 1, (𝑤, 𝑣, 𝑡𝑖) ∈ 𝑐𝑜𝑛𝑠(𝑆) and (𝑣, 𝜎′)𝐹 (𝜙 ⊃ 𝑡1 ⇒ 𝑎) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

13. If (𝑤, 𝜎)𝐹 (𝑎 ⊃ 𝜙) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 × 𝐻 and truth value 𝑎 ̸= 0; and 𝜙 has one of the

following forms: 𝑝 (a propositional variable), 𝜓 ∨ 𝜃 or ♢𝜓. Then, for some 𝑡 which is a maximal truth

value not above 𝑎, (𝑤, 𝜎′)𝑇 (𝜙 ⊃ 𝑡) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

14. If (𝑤, 𝜎)𝐹 (𝜙 ⊃ 𝑎) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 × 𝐻 and truth value 𝑎 ̸= 1; and 𝜙 has one of the

following forms: 𝑝 (a propositional variable), 𝜓 ∧ 𝜃, 𝜓 ⊃ 𝜃 or □𝜓. Then, for some 𝑢 which is a minimal

truth value not below 𝑎, (𝑤, 𝜎′)𝑇 (𝑢 ⊃ 𝜙) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

9

See [37], in which this is done in the context of prefixed systems for standard modal logics.



15. If (𝑤, 𝜎)𝑇 (𝑎 ⊃ 𝜙) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 ×𝐻 and truth value 𝑎; and 𝜙 has one of the following

forms: 𝜓∨𝜃 or♢𝜓. Then, for all 𝑡 ∈ 𝐻 which are maximal truth values not above 𝑎, (𝑤, 𝜎′)𝐹 (𝜙 ⊃ 𝑡) ∈ 𝑆
for some 𝜎′ ⊆ Σ2 ×𝐻 .

16. If (𝑤, 𝜎)𝑇 (𝜙 ⊃ 𝑎) ∈ 𝑆 for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 × 𝐻 and truth value 𝑎; and 𝜙 has one of the

following forms: 𝜓 ∧ 𝜃, 𝜓 ⊃ 𝜃 or □𝜓. Then, for all 𝑢 ∈ 𝐻 which are minimal truth values not below 𝑎,

(𝑤, 𝜎′)𝐹 (𝑢 ⊃ 𝜙) ∈ 𝑆 for some 𝜎′ ⊆ Σ2 ×𝐻 .

We will mainly be concerned with this definition in the context in which 𝑆 is a branch of a 𝑝𝒞Kℋ
-tableau.

Then, Conditions (3) to (12) may be seen as asserting that the branch is closed under applications of the rules

𝑝𝑇∧, 𝑝𝐹∧, 𝑝𝑇∨, 𝑝𝐹∨, 𝑝𝑇⊃, 𝑝𝐹⊃, 𝑝K𝑇□, 𝑝K𝑇♢, 𝑝K𝐹□ and 𝑝K𝐹♢ respectively. Conditions (13) to (16) are

in a sense restricted closure conditions for the reversal rules. Essentially, the restrictions reflect the fact that we

will wish to block the indiscriminate application of reversal rules to branches so as to ensure the termination

of a procedure that constructs tableaux (which we do in Section 5.1).

Lemma 5.2. If 𝑆 ⊆ 𝑝𝑆𝐵𝐼 is downward saturated, then 𝑆 is satisfiable.

Proof. Suppose 𝑆 is downward saturated. Define the ℋ-frame (𝑊,𝑅) where 𝑊 := 𝑤𝑜𝑟𝑙𝑑𝑠(𝑆) and for all

𝑤, 𝑣 ∈𝑊 ,

𝑅(𝑤, 𝑣) :=

{︃
𝑅𝑆(𝑤, 𝑣) if 𝑅𝑆(𝑤, 𝑣) defined

0 otherwise

It follows from Condition (1) of downward saturation that 𝑅 : 𝑊 2 → 𝐻 is a well-defined function. Now,

consider an ℋ-model M𝑆 = ((𝑊,𝑅), 𝑉 ) where 𝑉 is any valuation s.t. for every 𝑤 ∈ 𝑊 and propositional

variable 𝑝,

⋁︀
{𝑎 ∈ 𝐻 | (𝑤, 𝜎)𝑇 (𝑎 ⊃ 𝜙) ∈ 𝑆 for some 𝜎 ⊆ Σ2 ×𝐻} ≤ 𝑉 (𝑤, 𝑝) ≤

⋀︀
{𝑏 ∈ 𝐻 | (𝑤, 𝜎)𝑇 (𝜙 ⊃

𝑏) ∈ 𝑆 for some 𝜎 ⊆ Σ2 ×𝐻} 10
. We call M𝑆 an ℋ-model induced by11 𝑆.

We proceed to prove, by induction on the structure of formulas, that for every formula 𝜙, 𝑃 (𝜙) holds. Where

𝑃 (𝜙) is the statement: For all 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 ×𝐻 , 𝑎 ∈ 𝐻 and 𝛽 that bound 𝜙 by 𝑎, if (𝑤, 𝜎)𝛽 ∈ 𝑆, then 𝛽 is

satisfied by M𝑆 at 𝑤. For the base cases and inductive cases, we need to consider the sub-cases depending on

the form of 𝛽, which could be 𝑇 (𝑎 ⊃ 𝜙), 𝑇 (𝜙 ⊃ 𝑎), 𝐹 (𝑎 ⊃ 𝜙) or 𝐹 (𝜙 ⊃ 𝑎). Though there are many, each

sub-case is quite routine, and we leave them to the reader.

Once we have established that 𝑃 (𝜙) holds for all formulas 𝜙, the staisfiablily of 𝑆 follows easily. For consider

the identity map 𝐼 :𝑊 →𝑊 . 𝐼 is an interpretation of 𝑆 in M𝑆 . Suppose (𝑤, 𝜎)𝛽 ∈ 𝑆 for some 𝑤 ∈ Σ and

𝜎 ⊂ Σ2 ×𝐻 , where 𝛽 ∈ 𝑆𝐵𝐼 . For some 𝑎 ∈ 𝐻 , 𝛽 must bound some formula 𝜙 by 𝑎. But since 𝑃 (𝜙) holds,

we can conclude that 𝛽 is satisfied by M𝑆 at 𝑤 = 𝐼(𝑤). Thus, 𝑆 is satisfied under 𝐼 .

5.1. Decision Procedure

Essentially, the decision procedure amounts to constructing a tableau by systematically applying rules until

either we have a closed tableau or a tableau in which a downward saturated branch exists. We use a labelled

tree as the data structure representing the tableau. This is possible since, as apposed to the unprefixed systems

of [3], none of our rules require us to discard elements in a branch. For us, a labeling of a tree T = (𝑁,𝐸) is

any function 𝑈 : 𝑁 → 𝑝𝑆𝐵𝐼 . A labeled tree is a pair (T, 𝑈) consisting of a tree and a labeling of that tree.

For a branch B in T, we let 𝑈(B) :=
⋃︀

𝑛{𝑈(𝑛)}, where 𝑛 runs over the set of nodes in B.

Let (T, 𝑈) be a labelled tree, and suppose {B𝑖}𝑖∈𝐼 are all of the branches of T. The tableau corresponding
to (T, 𝑈) (denoted 𝑇(T,𝑈)) is simply the collection {𝑈(B𝑖)}𝑖∈𝐼 12

. We will say that a branch B of T is closed

10

Such a 𝑉 must exist. For assuming the contrary, we must have some (𝑤, 𝜎)𝑇 (𝑎 ⊃ 𝜙) ∈ 𝑆 and (𝑤, 𝜎′)𝑇 (𝜙 ⊃ 𝑏) ∈ 𝑆 where 𝑎 ≰ 𝑏.
But this implies that 𝑆 is an instantiation of the numerator of 𝑝⊥5, contradicting the fact that 𝑆 is downward saturated.

11

Note that there may be multiple such models with distinct valuations.

12

For an arbitrary labelled tree (T, 𝑈), 𝑇(T,𝑈) is not necessarily a 𝑝𝒞Kℋ
-tableau, in the strict sense of Definition 3.1. However, the

labeled trees that will crop up in our decision procedure will have the property that 𝑇(T,𝑈) is in fact a 𝑝𝒞Kℋ
-tableau for {𝑈(𝑟)},

where 𝑟 is the root node of T (see Lemma 5.5).



iff 𝑈(B) is closed. Otherwise, we say that B is open. We will say that (T, 𝑈) is closed iff all the branches of

T are closed; otherwise, we say it is open. Let us also introduce the notion of applying tableau rules to labelled

trees. Essentially, the following definition allows us to talk about ‘applying a rule 𝜌 to labelled tree (T, 𝑈)’
as a shorthand for actually saying that we extend (T, 𝑈) s.t. the corresponding tableau is derivable via an

application of 𝜌 to 𝑇(T,𝑈). Suppose 𝑇(T,𝑈) is a 𝑝𝒞Kℋ
-tableau. Let 𝜌 ∈ 𝑝𝒞Kℋ

, and suppose 𝑇 *
(T,𝑈) is some

𝑝𝒞Kℋ
-tableau derived from 𝑇(T,𝑈) via an application of 𝜌. Then, any labeled tree (T*, 𝑈*) extending (T, 𝑈)

for which 𝑇(T*,𝑈*) = 𝑇 *
(T,𝑈) can be said to have been derived via an application of 𝜌 to (T, 𝑈). Further, If

B is a branch of T but not of T*
, we say that 𝜌 was applied to branch B.

procedure isValid(𝜙) returns true or false
Require: formula 𝜙
1: 𝛼 := 𝐹 (1 ⊃ 𝜙)
2: (T, 𝑈) := constructTableau(𝛼)

3: if (T, 𝑈) is closed then return true, else return false

constructTableau(𝛼) returns a labelled tree (T, 𝑈)

Require: 𝛼 ∈ 𝑆𝐵𝐼
1: Initialize a labeled tree (T, 𝑈) with root node 𝑟 and 𝑈(𝑟) := (𝑤0,∅)𝛼 ◁ Pick any 𝑤0 ∈ Σ
2: Mark 𝑟 as being unfinished ◁ From now on we will assume that any newly created node

is marked as unfinished by default

3: 𝑖 := 0
4: (T𝑖, 𝑈𝑖) := (T, 𝑈)
5: while there are unfinished nodes and (T, 𝑈) is not closed do
6: Pick some unfinished node 𝑛 and mark it as finished.

7: Assume 𝑈(𝑛) = (𝑤, 𝜎)𝛽
8: for each open branch B of T𝑖 containing 𝑛 do
9: We now proceed to extend or fork B depending on the form of 𝑈(𝑛).

10: In what follows, assume we only add a node labelled with (𝑢, 𝜎′)𝛽′
if (𝑢, 𝜎′′)𝛽′ /∈ 𝑈(B) for all 𝜎′′

11: Assume 𝑙 is the leaf of B.

12: Let 𝜎′ = 𝑐𝑜𝑛𝑠(𝑈(B))
13: if 𝑈(B) is an instantiation of the numerator of the rule

𝑝⊥1, 𝑝⊥2, 𝑝⊥3, 𝑝⊥4 or 𝑝⊥5 then
14: Extend B with a node labelled (𝑤,∅)⊥.

15: Continue to the next iteration

16: else if 𝛽 is 𝐹 (𝑎 ⊃ 𝜙) where 𝑎 ∈ 𝐻 and 𝜙 is of the form

𝑝 (a propositional variable) or 𝜓 ∨ 𝜃 or ♢𝜓 then
17: for each 𝑡 ∈ 𝑚𝑎𝑥({𝑐 ∈ 𝐻 | 𝑎 ≰ 𝑐}) do
18: Create a node 𝑛′, with 𝑈(𝑛′) = (𝑤, 𝜎′)𝑇 (𝜙 ⊃ 𝑡)
19: Add 𝑛′ as a child of 𝑙
20: end for
21: else if 𝛽 is 𝐹 (𝜙 ⊃ 𝑎) where 𝑎 ∈ 𝐻 , 𝑎 ̸= 1 and 𝜙 is of the form

𝑝 (a propositional variable) or 𝜓 ∧ 𝜃 or 𝜓 ⊃ 𝜃 or □𝜓 then. . .

22: else if 𝛽 is 𝑇 (𝑎 ⊃ 𝜙) where 𝑎 ∈ 𝐻 and 𝜙 is of the form 𝜓 ∨ 𝜃 or ♢𝜓 then
23: for each 𝑡 ∈ 𝑚𝑎𝑥({𝑐 ∈ 𝐻 | 𝑎 ≰ 𝑐}) do
24: Create a new node 𝑛′ with 𝑈(𝑛′) = (𝑤, 𝜎′)𝐹 (𝜙 ⊃ 𝑡)
25: Extend B with 𝑛′

26: end for
27: else if 𝛽 is 𝑇 (𝜙 ⊃ 𝑎) where 𝑎 ∈ 𝐻 and 𝜙 is of the form 𝜓 ∧ 𝜃 or 𝜓 ⊃ 𝜃 or □𝜓 then. . .

28: else if 𝛽 is of the form 𝑇 (𝑎 ⊃ (𝜙 ∧ 𝜓)) for some truth value 𝑎 ̸= 0 then. . .

29: else if 𝛽 is of the form 𝐹 (𝑎 ⊃ (𝜙 ∧ 𝜓)) for some truth value 𝑎 ̸= 0 then. . .

30: else if 𝛽 is of the form 𝑇 ((𝜙 ∨ 𝜓) ⊃ 𝑎) for some truth value 𝑎 ̸= 1 then. . .

31: else if 𝛽 is of the form 𝐹 ((𝜙 ∨ 𝜓) ⊃ 𝑎) for some truth value 𝑎 ̸= 1 then. . .



32: else if 𝛽 is of the form 𝐹 (𝑎 ⊃ (𝜙 ⊃ 𝜓)) then
33: for each 𝑡 ∈ {𝑐 ∈ 𝐻 | 𝑐 ≤ 𝑎 and 𝑐 ̸= 0} do
34: Create nodes 𝑛′ and 𝑛′′, with

𝑈(𝑛′) = (𝑤, 𝜎′)𝑇 (𝑡 ⊃ 𝜙) and 𝑈(𝑛′′) = (𝑤, 𝜎′)𝐹 (𝑡 ⊃ 𝜓)
35: Add 𝑛′ as a child of 𝑙 and 𝑛′′ as a child of 𝑛′

36: end for
37: else if 𝛽 is of the form 𝑇 (𝑎 ⊃ (𝜙 ⊃ 𝜓)) then
38: for each 𝑡 ∈ {𝑐 ∈ 𝐻 | 𝑐 ≤ 𝑎 and 𝑐 ̸= 0} do
39: Create nodes 𝑛′ and 𝑛′′, with

𝑈(𝑛′) = (𝑤, 𝜎′)𝐹 (𝑡 ⊃ 𝜙) and 𝑈(𝑛′′) = (𝑤, 𝜎′)𝑇 (𝑡 ⊃ 𝜓)
40: if this is the first iteration of this for loop then
41: Add 𝑛′ and 𝑛′′ as children of 𝑙
42: else
43: for each of the nodes 𝑚 added in the previous iteration of this for loop do
44: Add copies of 𝑛′ and 𝑛′′ as children of 𝑚
45: end for
46: end if
47: end for
48: else if 𝛽 is of the form 𝑇 (𝑎 ⊃ □𝜙) then
49: for each 𝑣 ∈ Σ and 𝑡 ∈ 𝐻 s.t. (𝑤, 𝑣, 𝑡) ∈ 𝜎′ do
50: Create a new node 𝑛′ with 𝑈(𝑛′) = (𝑣, 𝜎′)𝑇 (𝑎 ∧ 𝑡 ⊃ 𝜙)
51: Extend B with 𝑛′

52: end for
53: else if 𝛽 is of the form 𝑇 (♢𝜙 ⊃ 𝑎) then. . .

54: else if 𝛽 is of the form 𝐹 (𝑎 ⊃ □𝜙) then
55: Pick some 𝑣 ∈ Σ that does not already occur in 𝑤𝑜𝑟𝑙𝑑𝑠(𝑈(B)).
56: for each 𝑡 ∈ 𝐻 s.t. 𝑎 ∧ 𝑡 ̸= 0 do
57: Create a new node 𝑛′ with 𝑈(𝑛′) = (𝑣, 𝜎′ ∪ {(𝑤, 𝑣, 𝑡)})𝐹 (𝑎 ∧ 𝑡 ⊃ 𝜙)
58: Add 𝑛′ as a child of 𝑙
59: end for
60: Reactivate(𝑛)

61: else if 𝛽 is of the form 𝐹 (♢𝜙 ⊃ 𝑎) then. . .

62: end if
63: end for
64: Increment 𝑖 by 1

65: (T𝑖, 𝑈𝑖) := (T, 𝑈)
66: end while
67: return (T, 𝑈)

Reactivate(𝑛)

Require: Node 𝑛
1: Assume 𝑈(𝑛) = (𝑤, 𝜎)𝛽
2: for each open branch B′

of T containing 𝑛 do
3: Let 𝜎′ = 𝑐𝑜𝑛𝑠(𝑈(B′))
4: for each finished node 𝑚 in B′ do
5: if 𝑠𝑓(𝑈(𝑚)) is of the form 𝑇 (𝑎 ⊃ □𝜙) then
6: for each 𝑣 ∈ Σ and 𝑡 ∈ 𝐻 s.t. (𝑤, 𝑣, 𝑡) ∈ 𝜎′ do
7: Create a new node 𝑛′ with 𝑈(𝑛′) = (𝑣, 𝜎′)𝑇 (𝑎 ∧ 𝑡 ⊃ 𝜙)
8: Extend B′

with 𝑛′

9: end for
10: else if 𝑠𝑓(𝑈(𝑚)) is of the form 𝑇 (♢𝜙 ⊃ 𝑎) then. . .

11: end if
12: end for
13: end for



We omit some of the steps
13

, but the steps we do give illustrate the general theme: we are greedily applying

rules to a branch of the labeled tree (T, 𝑈) with the aim of making a specific condition of Definition 5.1 hold

for the set of labels in that branch. (T𝑖, 𝑈𝑖) denotes the labeled tree immediately after the 𝑖𝑡ℎ iteration of the

while loop. In other words, (T𝑖, 𝑈𝑖) is a snapshot of the continuously growing labeled tree (T, 𝑈), and there

may be moments during the course of execution of the for loop on line 8 where they are not the same thing
14

.

1 (𝑤0,∅)𝐹
(︀
1 ⊃ (□𝑝 ⊃ □♢𝑝)

)︀

2 (𝑤0,∅)𝑇
(︀
1 ⊃ □𝑝

)︀

3 (𝑤0,∅)𝐹
(︀
1 ⊃ □♢𝑝

)︀

6 (𝑤1, {(𝑤0, 𝑤1, 1)})𝐹
(︀
1 ⊃ ♢𝑝

)︀

8 (𝑤1, {(𝑤0, 𝑤1, 1)})𝑇
(︀
1 ⊃ 𝑝

)︀

10 (𝑤1, {(𝑤0, 𝑤1, 1)})𝑇
(︀
♢𝑝 ⊃ ℎ

)︀

7 (𝑤1, {(𝑤0, 𝑤1, ℎ)})𝐹
(︀
ℎ ⊃ ♢𝑝

)︀

9 (𝑤1, {(𝑤0, 𝑤1, ℎ)})𝑇
(︀
ℎ ⊃ 𝑝

)︀
.
.
.

4 (𝑤0,∅)𝑇
(︀
ℎ ⊃ □𝑝

)︀

5 (𝑤0,∅)𝐹
(︀
ℎ ⊃ □♢𝑝

)︀
.
.
.

Figure 5.1: Labeled tree constructed during execution of constructTableau

(︀
𝐹 (1 ⊃ (□𝑝 ⊃ □♢𝑝))

)︀
Example 5.3. Assume ℋ = ℋ3

, and 𝜙 = □𝑝 ⊃ □♢𝑝. Then isValid(𝜙) returns false. Let us see why by

going through the steps of the procedure. Line 2 of isValid(𝜙) invokes constructTableau(𝐹 (1 ⊃ 𝜙)). By

stepping through the iterations of the while loop, we can see how we construct the labeled tree shown in

Figure 5.1 above. (T, 𝑈) is used throughout the procedure to denote the current state of a labeled tree that

will grow as we progress. Line 1 of constructTableau initializes (T, 𝑈) to consist of only node 1, which

is labeled with (𝑤0,∅)𝐹
(︀
1 ⊃ 𝜙

)︀
and marked as unfinished in line 2. This concludes the 0𝑡ℎ iteration of the

while loop and (T0, 𝑈0) is set to the current state of (T, 𝑈).
The branch B1

0 containing only node 1 is a branch of T0 (Note, in this example we shall use B
𝑗
𝑖 to denote the

branch of tree T𝑖 with leaf node 𝑗). Node 1 is unfinished and clearly B1
0 is open, so we enter the 1𝑠𝑡 iteration

of the while loop. In line 6 we pick node 1 and then line 7 amounts to setting 𝑤 = 𝑤0, 𝜎 = ∅, 𝛽 = 𝐹
(︀
1 ⊃ 𝜙

)︀
,

according to the label of node 1. We then enter the for loop on line 8, and set B = B1
0 , which is the only open

branch of T0 containing node 1. On line 12 we set 𝜎′ = 𝑐𝑜𝑛𝑠(B) = ∅. The if condition on line 32 is met.

So, the steps in lines 33 to 36 are performed. This amounts to adding nodes 2, 3, 4 and 5, which reflects an

application of 𝑝𝐹⊃ to T. We now return to line 8, the beginning of the for loop over open branches of T0
15

containing node 1. However, there are no other open branches of T0 containing node 1 left to check, so we

exit the for loop. This ends the 1𝑠𝑡 iteration of the while loop, and line 65 sets (T1, 𝑈1) to the current state of

(T, 𝑈).
We return to the start of the while loop at line 5. (T1, 𝑈1) consists of the unfinished nodes 2, 3, 4 and 5,

and the open branches B3
1 and B5

1 . So we enter the 2𝑛𝑑 iteration of the while loop. Assuming we pick the

unfinished node 2 in line 6, the rest of the iteration amounts to performing an identity application of 𝑝K𝑇□ to

B3
1 .

13

Omission is indicated by ellipses.

14

As, for instance, will often be the case whenever we reach line 2 in Reactivate.

15

Note that we are concerned with branches in T𝑖, not those in T, which may be different at some point of the 𝑖𝑡ℎ iteration.



We return to the start of the while loop. (T2, 𝑈2) consists of the unfinished nodes 3, 4 and 5, and the open

branches B3
2 and B5

2 . So we enter the 3𝑟𝑑 iteration of the while loop. Suppose we pick node 3 in line 6. We

then enter the for loop on line 8, and set B = B3
2 , which is the only open branch of T2 containing node 3. Line

12 sets 𝜎′ = 𝑐𝑜𝑛𝑠(B) = ∅. The if condition on line 54 is met. So, the steps in lines 55 to 60 are performed.

Lines 55 to 59 amount to an application of 𝑝K𝐹□, which adds nodes 6 and 7 to T. In line 60, Reactivate

is called on node 3. In essence, Reactivate ensures that, after a new constraint is added to a branch, any

previous applications of 𝑝K𝑇□ and 𝑝K𝑇♢ that were applied to the branch are ‘reactivated’ so as to ensure

that Conditions (9) and (10) of downward saturation are maintained. In the current context, it leads us to

adding nodes 8 and 9 to T, reflecting (non-identity) applications of 𝑝K𝑇□.

We return to the start of the while loop at line 5. (T3, 𝑈3) consists of the unfinished nodes 4, 5, 6, 7, 8, and 9,

and the open branches B8
3 , B9

3 and B5
3 . So we enter the 4𝑡ℎ iteration of the while loop. Assuming we pick

node 6 in line 6, the rest of the iteration leads to us adding node 10, reflecting an application of 𝑝𝐹≥ to B8
3 .

We return to the start of the while loop at line 5. (T4, 𝑈4) consists of the unfinished nodes 4, 5, 7, 8, 9 and

10, and the open branches B10
4 , B9

4 and B5
4 . So we enter the 5𝑡ℎ iteration of the while loop. Assuming we

pick node 8 in line 6, the rest of the iteration performs no rule applications.

In the 6𝑡ℎ iteration of the while loop, assuming we pick node 10, no new nodes are added, as we perform an

identity application of 𝑝K𝑇♢ (since there are no (𝑤, 𝑣, 𝑡) ∈ 𝜎′ for 𝑤 = 𝑤1).

We carry on in this manner, picking unfinished nodes, until either no unfinished nodes are left or (T, 𝑈)
is closed. Consider the branch B = B10

6 . Notice that all the nodes in this branch have been finished after

iteration 6, and so no further iterations of the while loop will change this branch. Hence, this branch will be

present in the final labeled tree returned by constructTableau(𝐹 (1 ⊃ 𝜙)), and this is what leads isValid(𝜙)

to return false. And in fact, 𝑈(B) is downward saturated (A fact regarding open labeled trees constructed

by our procedure that will be proven in general for Proposition 5.6). So, as in the proof of Lemma 5.2, 𝑈(B)
induces an ℋ3

-model M𝑈(B), which can be represented as a labelled, weighted, directed graph as follows:

𝑤0 𝑤1 𝑉 (𝑤1, 𝑝) = 1
1

Where we exclude 0-weighted edges and the absence of a label for 𝑤0 indicates that the valuation of

propositions at that world can take on any value. As the reader can confirm, evaluating 𝜙 at 𝑤0 gives 0. And

so, this model is indeed a countermodel for 𝜙.

Also, observe that after each iteration 𝑖 of the while loop, (T𝑖, 𝑈𝑖) has resulted from a finite sequence of

𝑝𝒞Kℋ
-rule applications. As such, after termination, 𝑇(T,𝑈) is a 𝑝𝒞Kℋ

-tableau for {(𝑤0,∅)𝐹 (1 ⊃ 𝜙)}. As we

shall see, this observation is a special case of Lemma 5.5.

The following is apparent in general. No branch of T is ever shrunk during the execution of construct-

Tableau. Further, let B be a branch of the constructed tree. For all 𝑖 ∈ N, if the node 𝑛 was added to B during

the 𝑖𝑡ℎ iteration, then for every node 𝑛′ added to B in iteration 𝑗 ≤ 𝑖, we have 𝑐𝑜𝑛(𝑈(𝑛′)) ⊆ 𝑐𝑜𝑛(𝑈(𝑛)).
We use König’s Lemma [38] (see [36, p. 32]) to prove termination. Recall that König’s Lemma states: Every

infinite, finitely generated tree must contain at least one infinite branch. Where a tree is said to be finitely
generated iff every node has a finite number of children.

Proposition 5.4. For all formulas 𝜙, isValid(𝜙) terminates.

Proof. Assume isValid(𝜙) does not terminate. We derive a contradiction. isValid(𝜙) does not terminate only

if the while loop in constructTableau(𝐹 (1 ⊃ 𝜙)) goes on forever. And this can only be the case if we are

constructing an infinite tree T. Each tableau rule has only a finite number of denominators, and so it is not

hard to see that T is finitely generated. Thus, by König’s Lemma, T must have an infinite branch B. The

procedure only adds a node to a branch if its label does not already occur in that branch (see line 10). Hence,

𝑈(B) must be infinite. Further, it should be noted that 𝑠𝑓(𝑥) is a signed bounded subformula of 𝜙 for all

𝑥 ∈ 𝑈(B).



For each 𝑘 ∈ N, let us define 𝐴𝑘 := {𝑥 ∈ 𝑈(B) | 𝑐𝑜𝑛(𝑥) has at most 𝑘 elements}, and 𝐵𝑘 := {𝑥 ∈
𝑈(B) | 𝑐𝑜𝑛(𝑥) has exactly 𝑘 elements}. Firstly, we can argue by induction that |𝑤𝑜𝑟𝑙𝑑𝑠(𝐴𝑘)| ≤ 𝑘 + 1 for

every 𝑘 ∈ N.

Now consider an arbitrary 𝑘 ∈ N. We show that 𝐵𝑘 is finite. Since 𝑤𝑜𝑟𝑙𝑑𝑠(𝐴𝑘) is finite, 𝑤𝑜𝑟𝑙𝑑𝑠(𝐵𝑘)
(which is a subset of 𝑤𝑜𝑟𝑙𝑑𝑠(𝐴𝑘)) is finite. Let 𝑥, 𝑥′ ∈ 𝐵′

𝑘. So, |𝑐𝑜𝑛(𝑥)| = |𝑐𝑜𝑛(𝑥′)|, where 𝑥 = 𝑈(𝑛) and

𝑥′ = 𝑈(𝑛′) for some nodes 𝑛, 𝑛′ in B. Without loss of generality, suppose 𝑛 was added to B after 𝑛′. Then

𝑐𝑜𝑛(𝑥′) ⊆ 𝑐𝑜𝑛(𝑥) and so we must have 𝑐𝑜𝑛(𝑥) = 𝑐𝑜𝑛(𝑥′). Thus, 𝑐𝑜𝑛(𝑥) is the same for every 𝑥 ∈ 𝐵𝑘;

call it 𝜎𝑘. We have 𝑥 ∈ 𝐵𝑘 iff 𝑥 is of the form (𝑤, 𝜎𝑘)𝛽 where 𝑤 ∈ 𝑤𝑜𝑟𝑙𝑑𝑠(𝐵𝑘) and 𝛽 is a signed bounded

subformula of 𝜙. There are only finitely many such 𝑥. Thus, 𝐵𝑘 must be finite.

Note that the step in line 6 of constructTableau is nondeterministic in the sense that there may be

multiple unfinished nodes to pick from. Any method of picking such a node will yield a terminating and

correct procedure
16

. For the sake of simplifying this proof, let us assume that we pick an unfinished node with

a label that has the maximum 𝑀𝑑𝑒𝑔𝑟𝑒𝑒 among unfinished nodes. Under this assumption, it is not too hard to

see that as 𝑘 increases,

∑︀
𝑥∈𝐵𝑘

𝑀𝑑𝑒𝑔𝑟𝑒𝑒(𝑥) decreases. Thus, there must exist some 𝑘 for which all elements

of 𝐵𝑘 have 𝑀𝑑𝑒𝑔𝑟𝑒𝑒 0. But this means that 𝐵𝑘′ = ∅ for all 𝑘′ > 𝑘. Therefore 𝑈(B) = 𝐵0 ∪ . . .∪𝐵𝑘 , where

𝐵0, . . . , 𝐵𝑘 are each finite. And so 𝑈(B) must be finite, which is contrary to what we established earlier.

Let 𝑖, 𝑗 ∈ N and suppose 𝑖 ≤ 𝑗. We have 𝑈𝑖 ⊆ 𝑈𝑗 and so for all nodes 𝑛 in T𝑖, 𝑈𝑖(𝑛) = 𝑈𝑗(𝑛). As such, we

will usually just write 𝑈(𝑛), where 𝑈 is the final labeling. The next useful property follows from the fact that

branches are only extended and/or split from the leaf node. For all branches B𝑗 of T𝑗 , there exists a unique

branch B𝑖 of T𝑖 s.t. B𝑖 is a subpath of B𝑗 starting at the root. And, 𝑈(B𝑖) ⊆ 𝑈(B𝑗).

Lemma 5.5. Let 𝛼 ∈ 𝑆𝐵𝐼 . For the labeled tree (T, 𝑈) returned by constructTableau(𝛼), 𝑇(T,𝑈) is a

𝑝𝒞Kℋ
-tableau for {(𝑤0,∅)𝛼}.

Proof. We can prove that the following is a loop invariant for the while loop performed by construct-

Tableau(𝛼): 𝑇(T𝑖,𝑈𝑖) is a 𝑝𝒞Kℋ
-tableau for{(𝑤0,∅)𝛼}.

Then, since the while loop terminates, the labeled tree returned by constructTableau(𝛼) is (T𝑘, 𝑈𝑘) for

some 𝑘 ∈ N. And the required result follows from the loop invariant.

Proposition 5.6. For all formulas 𝜙, isValid(𝜙) returns true iff 𝜙 is valid.

Proof. The forward implication follows from Lemma 5.5 and soundness.

For the converse implication, suppose isValid(𝜙) does not return true. Since the procedure terminates,

the while loop performed by constructTableau(𝐹 (1 ⊃ 𝜙)) ends after 𝑘 iterations for some 𝑘 ∈ N, and

it returns (T𝑘, 𝑈𝑘). But since isValid(𝜙) returns false, (T𝑘, 𝑈𝑘) is not closed. Thus, (T𝑘, 𝑈𝑘) contains an

open branch B and each node in B is marked as finished. Note that B being open implies that Bi is open

for each 1 ≤ 𝑖 ≤ 𝑘. We claim that each condition of Definition 5.1 holds for 𝑈(B). This should not be

surprising, since the applications of rules in constructTableau are essentially guided by the aim of ensuring

that this claim holds. If 𝑈(B) is in fact downward saturated, then, by Lemma 5.2, 𝑈(B) is satisfiable. But

(𝑤0,∅)𝐹 (1 ⊃ 𝜙) ∈ 𝑈(B), and hence 𝜙 cannot be valid. For illustrative purposes, let us confirm here that

Condition (9) holds:

Suppose (𝑤, 𝜎)𝑇 (𝑎 ⊃ □𝜙) ∈ 𝑈(B) for some 𝑤 ∈ Σ, 𝜎 ⊆ Σ2 ×𝐻 and truth value 𝑎. So, for some node 𝑛
in B, 𝑈(𝑛) = (𝑤, 𝜎)𝑇 (𝑎 ⊃ □𝜙). Since each node in B is marked as finished, 𝑛must have been picked during

some iteration 1 ≤ 𝑖 ≤ 𝑘. Let 𝑣 ∈ Σ, 𝑡 ∈ 𝐻 and suppose (𝑤, 𝑣, 𝑡) ∈ 𝑐𝑜𝑛𝑠(𝑈(B)). There exists a minimal

1 ≤ 𝑗 ≤ 𝑘 s.t. (𝑤, 𝑣, 𝑡) ∈ 𝑐𝑜𝑛𝑠(𝑈(B𝑗)). We have two cases. If 𝑗 < 𝑖, then (𝑤, 𝑣, 𝑡) ∈ 𝑐𝑜𝑛𝑠(𝑈(B𝑗)) ⊆
𝑐𝑜𝑛𝑠(𝑈(B𝑖−1)), and the steps in lines 48 to 52 performed for B𝑖−1 ensure that (𝑣, 𝜎′)𝑇 (𝑎 ∧ 𝑡 ⊃ 𝜙) ∈ 𝑈(B)
for some 𝜎′ ⊆ Σ2 ×𝐻 . If 𝑗 ≥ 𝑖, then 𝑛 has already been marked as finished by the time we get to iteration 𝑗.
Further, iteration 𝑗 must involve an application of 𝑝K𝐹□ or 𝑝K𝐹♢ for B𝑗−1, and so the call to Reactivate

16

Not all such methods are equally efficient though, since the unfinished node we pick at a given stage can dramatically influence the

subsequent size of the constructed tableau.



for B𝑗−1 ensures that (𝑣, 𝜎′ ∪ {(𝑤, 𝑣, 𝑡)})𝑇 (𝑎 ∧ 𝑡 ⊃ 𝜙) ∈ 𝑈(B) for some 𝜎′ ⊆ Σ2 × 𝐻 . In either case,

(𝑣, 𝜎′′)𝑇 (𝑎 ∧ 𝑡 ⊃ 𝜙) ∈ 𝑈(B) for some 𝜎′′ ⊆ Σ2 ×𝐻 . So, Condition (9) holds for 𝑈(B).

Corollary 5.7. 𝑝𝒞Kℋ
is (weakly) complete wrt the class of all ℋ-frames.

Proof. We prove the contrapositive. Suppose ⊬𝑝𝒞Kℋ 𝜙. That is, taking any 𝑤 ∈ Σ, there does not exist a closed

𝑝𝒞Kℋ
-tableau for (𝑤,∅)𝐹 (1 ⊃ 𝜙). By Lemma 5.5, constructTableau(𝐹 (1 ⊃ 𝜙)) returns the labelled tree

(T, 𝑈), where 𝑇(T,𝑈) is a 𝑝𝒞Kℋ
-tableau for {(𝑤0, 𝜎)𝐹 (1 ⊃ 𝜙)}. This implies that isValid(𝜙) cannot possibly

return true, as such an eventuality relies on (T, 𝑈) being closed, which would imply that 𝑇(T,𝑈) is a closed

𝑝𝒞Kℋ
-tableau for (𝑤0,∅)𝐹 (1 ⊃ 𝜙). Thus, by Proposition 5.6, we can conclude that 𝜙 is not valid.

Propositions 5.4 and 5.6 amount to saying that isValid is a decision procedure for the logic Kℋ
. A concrete

implementation has been written in python and is provided as a package on PyPi. The source, along with

documentation, is available on GitHub (https://github.com/WeAreDevo/Many-Valued-Modal-Tableau).

The decision procedure also suggests a finite frame property, which we present now. Let us say that an

ℋ-frame F = (𝑊,𝑅) is finite iff the set of worlds 𝑊 is finite. A class of ℋ-frames ℱ is of finite character iff

each ℋ-frame in ℱ is finite. And, Λ ⊆ 𝐹𝑟𝑚(ℒℋ(Φ)) is said to have the finite frame property iff Λ = Λℱ
for some class of frames ℱ of finite character.

Corollary 5.8. Kℋ
has the finite frame property, and hence the finite model property.

Proof. Consider the class ℱ of all finite ℋ-frames. We claim that Kℋ = Λℱ . Clearly Kℋ ⊆ Λℱ (since

ℱ is a subclass of the class of all ℋ-frames). To show Λℱ ⊆ Kℋ
, consider a formula 𝜙 /∈ Kℋ

. We argue

that 𝜙 /∈ Λℱ . Since 𝜙 /∈ Kℋ
, 𝜙 is not valid. So, as in the second part of the proof for Proposition 5.6,

constructTableau(𝐹 (1 ⊃ 𝜙)) returns a labeled tree containing an open branchB, where𝑈(B) is downward

saturated. 𝑈(B) induces an ℋ-model M𝑈(B) which is a counter model for 𝜙. M𝑈(B) is based on an ℋ-frame

(𝑊,𝑅) where 𝑊 = 𝑤𝑜𝑟𝑙𝑑𝑠(𝑈(B)). The only members of 𝑤𝑜𝑟𝑙𝑑𝑠(𝑈(B)) are the initial world 𝑤0, along

with a distinct world 𝑣 introduced by each application of 𝑝K𝐹□ or 𝑝K𝐹♢. But the number of applications

of 𝑝K𝐹□ or 𝑝K𝐹♢ is bounded above by a finite function of 𝑀𝑑𝑒𝑔𝑟𝑒𝑒(𝜙) and |𝐻|. Hence 𝑤𝑜𝑟𝑙𝑑𝑠(𝑈(B)) is

finite. And since M𝑈(B) is a counter model for 𝜙, we must have 𝜙 /∈ Λℱ .

6. Tableau System for KBℋ
𝑑

In this subsection, we briefly consider simple modifications of the rules 𝑝K𝐹□ and 𝑝K𝐹♢, from which we

obtain a prefixed tableau system for KBℋ
𝑑 for all 𝑑 ∈ 𝐻 . Let us fix an arbitrary 𝑑 ∈ 𝐻 . We proceed to argue

that the tableau system

𝑝𝒞KBℋ
𝑑 :={𝑝⊥1, 𝑝⊥2, 𝑝⊥3, 𝑝⊥4, 𝑝⊥5, 𝑝𝐹≥, 𝑝𝑇≥, 𝑝𝐹≤, 𝑝𝑇≤, 𝑝𝑇∧, 𝑝𝐹∧, 𝑝𝑇∨, 𝑝𝐹∨,

𝑝𝑇⊃, 𝑝𝐹⊃, 𝑝K𝑇□, 𝑝K𝑇♢, 𝑝KB𝐹□𝑑, 𝑝KB𝐹♢𝑑}

is sound and complete wrt Symm
ℋ
𝑑 . 𝑝KB𝐹□𝑑 and 𝑝KB𝐹♢𝑑 are defined as follows:

(𝑝KB𝐹□𝑑)

𝑋; (𝑤, 𝜎)𝐹 (𝑎 ⊃ □𝜙)
𝒩 ; (𝑣, 𝜎′ ∪
{(𝑤, 𝑣, 𝑡1), (𝑣, 𝑤, 𝑡11)})
𝐹 (𝑎 ∧ 𝑡1 ⊃ 𝜙)

. . . 𝒩 ; (𝑣, 𝜎′ ∪
{(𝑤, 𝑣, 𝑡1), (𝑣, 𝑤, 𝑡𝑘1

1 )})
𝐹 (𝑎 ∧ 𝑡1 ⊃ 𝜙)

. . . 𝒩 ; (𝑣, 𝜎′ ∪
{(𝑤, 𝑣, 𝑡𝑛), (𝑣, 𝑤, 𝑡1𝑛)})
𝐹 (𝑎 ∧ 𝑡𝑛 ⊃ 𝜙)

. . . 𝒩 ; (𝑣, 𝜎′ ∪
{(𝑤, 𝑣, 𝑡𝑛), (𝑣, 𝑤, 𝑡𝑘𝑛

𝑛 )})
𝐹 (𝑎 ∧ 𝑡𝑛 ⊃ 𝜙)

Where 𝑣 is any symbol of Σ that is not in 𝑤𝑜𝑟𝑙𝑑𝑠(𝒩 ), 𝑡1, . . . , 𝑡𝑛 are all the ℋ-truth values s.t. 𝑎∧ 𝑡𝑖 ̸= 0, and for each 𝑖 ∈ {1, . . . , 𝑛},

{𝑡1𝑖 , . . . , 𝑡𝑘𝑖
𝑖 } = {𝑡 ∈ 𝐻 | 𝑑 ∧ 𝑡𝑖 = 𝑑 ∧ 𝑡}.

(𝑝KB𝐹♢𝑑)

https://github.com/WeAreDevo/Many-Valued-Modal-Tableau


𝑋; (𝑤, 𝜎)𝐹 (♢𝜙 ⊃ 𝑎)

𝒩 ; (𝑣, 𝜎′ ∪
{(𝑤, 𝑣, 𝑡1), (𝑣, 𝑤, 𝑡11)})
𝐹 (𝜙 ⊃ 𝑡1 ⇒ 𝑎)

. . . 𝒩 ; (𝑣, 𝜎′ ∪
{(𝑤, 𝑣, 𝑡1), (𝑣, 𝑤, 𝑡𝑘1

1 )})
𝐹 (𝜙 ⊃ 𝑡1 ⇒ 𝑎)

. . . 𝒩 ; (𝑣, 𝜎′ ∪
{(𝑤, 𝑣, 𝑡𝑛), (𝑣, 𝑤, 𝑡1𝑛)})
𝐹 (𝜙 ⊃ 𝑡𝑛 ⇒ 𝑎)

. . . 𝒩 ; (𝑣, 𝜎′ ∪
{(𝑤, 𝑣, 𝑡𝑛), (𝑣, 𝑤, 𝑡𝑘𝑛

𝑛 )})
𝐹 (𝜙 ⊃ 𝑡𝑛 ⇒ 𝑎)

Where 𝑣 is any symbol of Σ that is not in𝑤𝑜𝑟𝑙𝑑𝑠(𝒩 ), 𝑡1, . . . , 𝑡𝑛 are all the ℋ-truth values s.t. 𝑡𝑖 ⇒ 𝑎 ̸= 1, and for each 𝑖 ∈ {1, . . . , 𝑛},

{𝑡1𝑖 , . . . , 𝑡𝑘𝑖
𝑖 } = {𝑡 ∈ 𝐻 | 𝑑 ∧ 𝑡𝑖 = 𝑑 ∧ 𝑡}.

Proposition 6.1. 𝑝𝒞KBℋ
𝑑 is sound wrt Symmℋ

𝑑 .

Proof. It suffices to show that each rule in 𝑝𝒞KBℋ
𝑑 preserves Symm

ℋ
𝑑 -satisfiability. Let 𝜌 ∈ 𝑝𝒞KBℋ

𝑑 and suppose

that the numerator 𝒩 of 𝜌 is Symm
ℋ
𝑑 -satisfiable. That is, there exists an ℋ-model M = ((𝑊,𝑅), 𝑉 ) based on a

frame from Symm
ℋ
𝑑 , and an interpretation 𝐼 of 𝒩 in M s.t. 𝒩 is satisfied under 𝐼 . We wish to show that at least

one of the denominators 𝒟 is Symm
ℋ
𝑑 -satisfiable. We only need to consider the case in which 𝜌 = 𝑝KB𝐹□𝑑

or 𝜌 = 𝑝KB𝐹♢𝑑. The other cases follow from Lemma 4.1, with ℱ = Symm
ℋ
𝑑 . So consider 𝜌 = 𝑝KB𝐹□𝑑.

Then 𝒩 = 𝑋; (𝑤, 𝜎)𝐹 (𝑎 ⊃ □𝜙) and so 𝐹 (𝑎 ⊃ □𝜙) is satisfied by M at 𝐼(𝑤). Thus, for some s ∈ 𝑊 , we

have 𝑎 ≰ 𝑅(𝐼(𝑤), s) ⇒ 𝑉 (s, 𝜙). Suppose 𝑅(𝐼(𝑤), s) = 𝑡𝑖 ∈ 𝐻 and 𝑅(s, 𝐼(𝑤)) = 𝑡 ∈ 𝐻 . Clearly 𝑎 ∧ 𝑡𝑖 ̸= 0.

Let 𝑣 ∈ Σ be any symbol that is not already in 𝑤𝑜𝑟𝑙𝑑𝑠(𝒩 ). We extend the interpretation 𝐼 to 𝑣. Specifically,

consider 𝐼 ′ := 𝐼 ∪ {(𝑣, s)}. 𝐼 ′ is an interpretation of 𝒟 = 𝒩 ; (𝑣, 𝜎′ ∪ {(𝑤, 𝑣, 𝑡𝑖), (𝑣, 𝑤, 𝑡)})𝐹 (𝑎 ∧ 𝑡𝑖 ⊃ 𝜙) in

M. The argument for 𝜌 = 𝑝KB𝐹♢𝑑 is similar.

Let us introduce the notion of 𝑝𝒞KBℋ
𝑑 -saturation. Say that 𝑆 ⊆ 𝑝𝑆𝐵𝐼 is downward 𝑝𝒞KBℋ

𝑑 -saturated iff

𝑆 is downward saturated (Definition 5.1), and

1’. For all 𝑤, 𝑣 ∈ Σ, 𝑡 ∈ 𝐻 , if (𝑤, 𝑣, 𝑡) ∈ 𝑐𝑜𝑛𝑠(𝑆), then (𝑣, 𝑤, 𝑡′) ∈ 𝑐𝑜𝑛𝑠(𝑆) for some 𝑡′ ∈ ℋ s.t.

𝑡 ∧ 𝑑 = 𝑡′ ∧ 𝑑.

If 𝑆 is downward 𝑝𝒞KBℋ
𝑑 -saturated, we may use the same approach as in Lemma 5.2 to construct/induce an

ℋ-model M𝑆 and an interpretation 𝐼 of 𝑆 in M𝑆 s.t. 𝑆 is satisfied under 𝐼 . In addition, since 𝑆 satisfies (1’), it is

clear that the model M𝑆 we construct is in fact based on a frame from Symm
ℋ
𝑑 . Hence, 𝑆 is Symm

ℋ
𝑑 -satisfiable

whenever 𝑆 is downward 𝑝𝒞KBℋ
𝑑 -saturated.

Then, suppose we modify constructTableau by replacing applications of 𝑝K𝐹□ and 𝑝K𝐹♢ with ap-

plications of 𝑝KB𝐹□𝑑 and 𝑝KB𝐹♢𝑑 respectively. With only slight modifications to the arguments given

previously, we can show that the new version of isValid is a decision procedure for KBℋ
𝑑 . And from this we

get the following results.

Proposition 6.2. 𝑝𝒞KBℋ
𝑑 is (weakly) complete wrt Symmℋ

𝑑 .

Corollary 6.3. KBℋ
𝑑 has the finite frame property

17
, and hence the finite model property.
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