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Abstract
Natty is a new proof assistant in an early stage of development. It can read input written in a controlled natural

language that looks like mathematical English with a restricted grammar and vocabulary. It translates this input to

a series of formulas of classical higher-order logic. It can export these formulas to files in the standard THF format,

or can attempt to prove them itself using a built-in automatic prover based on the higher-order superposition

calculus. The built-in prover clausifies formulas incrementally to preserve as much structure as possible as it

performs inferences. Although Natty is small (less than 2500 lines of OCaml code), its performance seems to be

competitive with established provers such as E and Vampire in proving some basic arithmetic identities involving

induction over natural numbers. In addition, the THF files that it generates for arithmetic identities may serve as

a useful test set for other higher-order provers.
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1. Introduction

Natty is a new natural-language proof assistant with an embedded automatic prover based on higher-

order superposition. An input file for Natty is written in a controlled natural language [1, 2] that

looks like mathematical English with a restricted grammar and vocabulary. It may contain a series of

axioms, definitions, and theorems, which may optionally include proofs written in natural language.

Natty translates this input to a series of formulas of classical higher-order logic, each representing an

entire theorem or a proof step. Natty then attempts to prove these formulas using its embedded prover,

reporting success or failure to the user.

Natty is an early work in progress, and its capabilities are limited at this time. It is at least able to

read a natural-language input file that defines the natural numbers using the Peano axioms and asserts

a series of basic theorems about the naturals, such as that addition and multiplication are associative

and commutative. Natty’s embedded prover can prove most of these theorems in less than 1 second per

theorem on a typical machine. Many of these proofs require a higher-order induction step over the

natural numbers, which Natty can infer automatically. Additionally, some theorems in this input file

contain hand-written proofs. Natty can translate each step in these proofs to a separate formula, and

can verify almost all of these steps automatically.

Natty can also export theorems and proof steps to files in the standard THF (Typed Higher-order

Form) format [3]. This is useful for comparing performance between Natty and other provers, and in

fact THF files with textbook theorems about natural numbers may form an interesting test set in their

own right.

Today, Natty cannot do much more than this. However the program is under active development,

and our goal is to evolve it into a system that can be used for verifying mathematics in arbitrary

domains. In the months to come, we plan to extend its parser, logic, and prover to be adequate for

defining the integers and rationals and for verifying results in elementary number theory such as the

Fundamental Theorem of Arithmetic, i.e. that each positive integer has a unique prime factorization.

More mathematics will follow after that.
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Natty is publicly available [4] under a permissive open source license. It is a relatively small program,

currently consisting of only about 2,500 lines of OCaml code.

Any discussion of Natty will inevitably draw comparisons with Naproche [5], another natural-

language proof assistant that has been under development for a number of years. Broadly speaking

our goals are similar to those of Naproche: we want to build a proof assistant in which the user writes

theorems and proofs in controlled natural language rather than interactively applying tactics as in

assistants such as Isabelle [6] and Lean [7]. One difference between our systems is that Natty is based

on higher-order logic, while Naproche uses first-order Morse-Kelley set theory. Another is that Natty

contains an embedded prover that we hope will be able to handle all proof obligations, unlike Naproche

which uses E [8] as an external prover.

2. Natural-language input

Natty reads source files written in the Natty language, a controlled natural language for writing

mathematics. A file in this language has the extension .n, and may contain type declarations, constant

declarations, axioms, definitions and theorems. To illustrate, here is the beginning of a file nat.n that

defines the natural numbers axiomatically using the Peano axioms and then asserts a series of theorems

about the naturals, loosely following the development in [9].

Axiom. There exists a type N with an element 0 : N and a function s : N→N such that

a. There is no n : N such that s(n) = 0.
b. For all n, m : N, if s(n) = s(m) then n = m.
c. Let P : N→B. If P(0) is true, and P(k) implies P(s(k)) for all k : N, then

P(n) is true for all n : N.

Definition. Let 1 : N = s(0).

Lemma. Let a : N. Suppose that a ̸= 0. Then there is some b : N such that a = s(b).

Axiom. There is a binary operation + : N→N→N such that for all n, m : N,
a. n + 0 = n.
b. n + s(m) = s(n + m).

Theorem. Let a, b, c : N.

1. If a + c = b + c, then a = b.
2. (a + b) + c = a + (b + c).
...

Listing 1: Beginning of nat.n

The Axiom keyword introduces a series of type declarations, constant declarations, and/or axioms.

We see that the first Axiom block above includes a type declaration for N, constant declarations for

0 and s, and three axioms. The Definition keyword introduces a new constant and declares that it

is equal to some other value. The Theorem and Lemma keywords are synonyms, and introduce one or

more theorems. Each theorem in a single block may be individually numbered.

Notice that Unicode characters such as N, B and ̸= are allowed and in fact encouraged in Natty

source files. Our goal in designing the Natty language is for the user to be able to write in a way that

resembles textbook mathematics as closely as possible, within the limitations of plain text and the

Unicode character set.

Also notice that each constant or variable in the source file above has a type such as N, N → N, or

N → N → N (a curried function type). These reflect the fact that Natty is based on strongly typed

higher-order logic. The type B, visible in axiom (c) above, is predefined in Natty and represents the

booleans.

At the moment, the user must always specify a type when declaring a constant or variable in a Natty

source file. In the future we intend to implement at least some level of type inference so that types may



sometimes be omitted.

We also see that in the file above addition is introduced axiomatically, rather than by definition in

terms of lower-level concepts. In the current system, axioms such as these are the only practical method

for introducing new functions. This is unfortunate, since an erroneous axiom may make the entire input

inconsistent. In the future, we intend to implement a mechanism that lets the user declare inductive

types and define functions recursively over those types. Then the user will not need to introduce new

axioms for each new type or function. Both Isabelle [10] and HOL Light [11, 12] include this sort of

inductive type mechanism.

Further down in nat.nwe introduce multiplication axiomatically, then assert several related theorems:

Axiom. There is a binary operation · : N→N→N such that for all n, m : N,

a. n · 0 = 0.
b. n · s(m) = (n · m) + n.

Theorem. Let a, b, c : N.

1. a · 0 = 0 = 0 · a.
2. a · 1 = a = 1 · a.
3. c(a + b) = ca + cb.
4. (ab)c = a(bc).
5. s(a) · b = ab + b.
...

Listing 2: Multiplication

Notice above that Natty will implicitly multiply (using the · operator) variables that appear in adjacent

succession, as in the expression (ab)c. It distinguishes this situation from function application, as in

the expression s(a), by using type information: a has type N but s has type N → N. This implicit

multiplication syntax is convenient, and we are not aware of any other proof assistant that offers it.

Further down in nat.n we see that several theorems are accompanied by hand-written proofs.

Listing 3 shows one such theorem, which asserts that multiplication of natural numbers can be cancelled

on the right. This theorem is too difficult for Natty (at this time) to prove automatically in its entirety,

so the hand-written proof allows Natty to verify the theorem by checking one proof step at a time.

Theorem. Let a, b, c : N. If c ̸= 0 and ac = bc then a = b.

Proof. Let

G : N→B = { x : N | for all y, z : N, if z ̸= 0 and xz = yz then x = y }.

Let b, c : N with c ̸= 0 and 0 · c = bc. Then bc = 0. Since c ̸= 0, we must have b = 0.
So 0 = b, and hence 0 ∈ G.

Now let a : N, and suppose that a ∈ G. Let b, c : N, and suppose that c ̸= 0 and
s(a) · c = bc. Then ca + c = bc. If b = 0, then either s(a) = 0 or c = 0, which is
a contradiction. Hence b ̸= 0. By Lemma 1 there is some p : N such that b = s(p).
Therefore ca + c = s(p) · c, and we see that ca + c = cp + c. It follows that ca = cp,
so ac = pc. By hypothesis it follows that a = p. Therefore s(a) = s(p) = b.
Hence s(a) ∈ G, and we deduce that x ∈ G for all x : N.

Listing 3: Proof of right cancellation of multiplication

At the top of this proof we see an example of Natty’s set comprehension syntax. In Natty a set is

identified with a function whose codomain is B, the booleans. This is a common set representation in

higher-order logic. So in fact the set comprehension {𝑥 : 𝜏 | 𝜑} denotes exactly the higher-order term

𝜆𝑥 : 𝜏 . 𝜑, where 𝜑 has type B, though the casual user should not need to think about this much.

Notice that in the proof some steps include a justification such as By Lemma 1 or By hypothesis.

The current implementation of Natty ignores such justifications. However, in the future we intend to



use them as strong hints to the automatic prover about which assumptions it should use in verifying a

proof step.

The expected workflow of a user using Natty is as follows. The user can create a source file and

enter axioms and theorems, then run Natty, which will attempt to prove all theorems automatically. If

the proof of any theorem fails, the user must edit the source file to provide a proof, and then on the

next run Natty will attempt to prove each proof step in turn. If it cannot prove any step, the user must

edit the source file again and make the step smaller. In the near future we plan to build an interactive

environment for Natty (probably as an extension for Visual Studio Code) that will make this process

easier. The Naproche component in the Isabelle/jEdit IDE [13] serves a similar purpose.

3. Logic

Natty is founded on classical higher-order logic with rank-1 polymorphism, boolean extensionality,

functional extensionality, and choice, with Henkin semantics. This is essentially the same logic used in

proof assistants such as Isabelle/HOL [6] and HOL Light [12], by automatic higher-order provers such

as recent versions of E [14], Vampire [15], and Zipperposition [16], and by the THF specification [3].

We will not describe this logic here. A standard presentation (though without rank-1 polymorphism) is

given by Andrews [17].

In fact, the current implementation of Natty does not use the full power of this logic. In the current

system the equality operator ≈ and the quantifiers ∀ and ∃ have polymorphic types, but user-defined

functions may not be polymorphic. Natty’s development of the natural numbers in nat.n does not

require extensionality or choice. Finally, as we discuss in our section on Natty’s proof procedure below,

Natty can make few higher-order inferences at this time.

Higher-order logic is nevertheless useful as a foundation even in this early stage of development. For

example, it lets us express the Peano induction axiom in a natural way, without using an axiom schema

as would be needed in first-order logic. As we have already seen, we can express sets as functions with

codomain B, which is an elegant formulation that does not require any set theory axioms. The strong

type system allows Natty to perform useful type checking on the user’s behalf, and may even make

inference more efficient: for example, Natty’s unifier will not even attempt to unify two terms with

distinct types.

In Natty’s logic the usual constants ⊤, ⊥, ¬, ∧, ∨, →, ∀, ∃, and ≈ are predefined. Of these, only

≈ is accessible via a similar symbol (i.e. the ordinary equals sign =) in Natty source files. To express

formulas involving the other logical constants, the user must use natural-language equivalents, e.g.

a = 3 or b = 4 for the formula 𝑎 ≈ 3 ∨ 𝑏 ≈ 4.

In higher-order logic terms and formulas are identified, and we will generally use these words as

synonyms. We use the syntax 𝜑[𝜓/𝑥] to denote the result of substituting 𝜓 for the variable 𝑥 in 𝜑.

4. Translation into logic

In this section we will describe how Natty translates an input file to a series of formulas of higher-order

logic.

4.1. Parsing and type checking

Natty first parses the input file, following a mostly context-free grammar for its controlled natural

language. It implements the parser using the parser combinator library MParser [18], which is patterned

after Haskell’s Parsec library [19]. We have found parser combinators to be a convenient and powerful

tool for implementing this sort of natural-language parser.

We will not present Natty’s grammar here. A summary of it can be found in the file grammar.ebnf
in the Natty source distribution [4]. The grammar is likely to evolve quickly as we enhance Natty to

handle more kinds of mathematical statements.



Natty’s parser outputs a list of statements, each of which is a type declaration, a constant declaration,

an axiom, a definition, or a theorem. A theorem that includes a natural-language proof will contain

parsed proof steps. Each proof step is one of the following.

Assert(formula) : A step such as “And so x > 4”, asserting that a formula is true.

Let(var list, type) : A step such as “Let x, y: N”, introducing new arbitrary values of a certain

type.

LetVal(var, type, formula) : A step such as “Let x = 2 + 2”, defining a local constant with a certain

value.

Assume(formula) : A step such as “Suppose that f(y) = 0”, introducing an assumption for some

part of the proof.

IsSome(var, type, formula) : A step such as “there is some p : N such that b = s(p)”,

introducing a value that is asserted to exist.

As a next step, Natty type checks all statements. It checks that every constant symbol appearing in

an axiom, definition, or theorem has been declared, and that all function applications apply a function

to a value of appropriate type. A theorem’s proof steps are not type checked in this phase; that will

happen later, after a proof structure is inferred. Type checking is fairly easy, since Natty does not yet

perform any type inference and does not yet allow any form of polymorphism for variables or constants

defined by the user.

At this point Natty’s translation process is essentially complete for axioms, definitions, and theorems

without proofs. However Natty must now translate every natural-language proof into a series of

formulas to be proven, which is the subject of the following sections.

4.2. Inferring proof structure

After Natty has produced a series of proof steps, it will arrange them into a tree representing the block
structure of the proof. This tree will indicate the scope of each variable and assumption in the proof. In

the tree the top-level node represents the entire proof, and every other node is a proof step. Every node

has a sequence of zero or more children. Assert steps never have children; other types of steps usually

do. A preorder traversal of the tree will always produce all proof steps in their original order.

Before we present the algorithm for inferring block structure, it will be helpful to see an example of

a tree that it may produce. Recall the proof of cancellation of multiplication that we saw in Listing 3

above. When run with the -d (debug) option, Natty will print out the structure that it infers for this

proof:

let_val G : (N→B) = 𝜆x:N.∀y:N.∀z:N.(z ̸= 0→ xz = yz→ x = y)
let b, c : N
assume c ̸= 0 ∧ 0 · c = bc
assert bc = 0
assert c ̸= 0
assert b = 0
assert 0 = b

assert G(0)
let a : N
assume G(a)
let b, c : N
assume c ̸= 0 ∧ s(a) · c = bc
assert ca + c = bc
assert b = 0→ (s(a) = 0 ∨ c = 0) ∧ (s(a) = 0 ∨ c = 0→⊥)
assert b ̸= 0
is_some p : N : b = s(p)
assert ca + c = s(p) · c
assert ca + c = cp + c



assert ca = cp
assert ac = pc
assert a = p
assert s(a) = s(p) ∧ s(p) = b

assert G(s(a))
assert ∀x:N.G(x)

assert ∀a:N.∀b:N.∀c:N.(c ̸= 0→ ac = bc→ a = b)

Listing 4: Inferred proof structure

This tree illustrates all of the proof step types that Natty uses. The root node represents the entire

proof and is not shown. It has two children: the let_val step at the top, and the final step which asserts

the theorem that is being proven.

Also notice that in this tree instances of the set membership operator ∈ appear as function application,

which is logically equivalent since sets are identified with functions. For example, 0 ∈ G appears here

as G(0).

The tree structure indicates where each introduced assumption will be discharged, and where each

introduced variable’s scope will end. In a natural-language proof, this information is usually implicit. For

example, the proof in Listing 3 introduces an assumption “suppose that c ̸= 0 and s(a) · c = bc.”

Later on, the proof asserts “Hence s(a) ∈ G”. This assertion must not fall within the scope of the

assumption, for then it would be conditional and would be too weak to participate in the final induction

step. In fact this assumption must be discharged immediately before this assertion is made. In Listing 4,

we see that the assertion (which appears as G(s(a))) is correctly outside of the scope of the assumption.

To construct the structure for a proof, Natty takes the steps parsed from the user-provided proof and

appends a final step asserting the formula of the theorem that is being proven. It then infers the proof

structure using a recursive algorithm that applies the following heuristics:

• A LetVal, Let or IsSome proof step 𝑆 encloses a scope that is as small as possible, subject to

these constraints:

– It must extend far enough to enclose all proof steps that refer to variables that 𝑆 introduces.

– It must extend far enough to enclose the scopes of all its children.

• An Assume proof step’s scope extends to the end of the scope of its nearest enclosing LetVal,

Let or IsSome step.

• An Assert proof step never has children, so there is no need to infer a scope for it.

The effects of these heuristics are visible in Listing 4. For example, the second occurrence of the

step let b, c : N encloses a scope that extends only to the assertion s(a) = s(p) ∧∧∧ s(p) =
b, because that is the last step that uses either of the variables b or c. That forces the scope of the

assumption c ̸= 0 ∧ s(a) · c = bc to end as well, so the assertion G(s(a)) correctly falls outside

that assumption.

These heuristics seem promising, however we have only tested them on the three proofs in nat.n.

We hope they will work well for future proofs. In the worst case we may find that we need to introduce

some way for proof authors to specify block structure explicitly in some cases.

4.3. Generating formulas

After Natty has inferred a proof’s structure, it will generate a series of formulas representing the logical

deductions made in each step in the proof. Each of these formulas will be independent, in the sense

that it can be proven by Natty (or another prover) without the presence of the other proof steps as

given hypotheses. The conjunction of these formulas will imply the theorem statement, so that if Natty

proves them all then the theorem is proven.

Each Assert step (and also each IsSome step, which is another kind of assertion) will generate a

formula, and other steps will transform these formulas in various ways. Each generated formula will



capture the proof state at the moment that an assertion is made. This proof state will reflect both the

steps that enclose the assertion in the proof structure, and also the steps that precede it in the proof.

Let us first consider the effect of enclosing proof steps. Broadly speaking:

• If a step Let([𝑥], 𝜏) encloses an assertion 𝜑, then the assertion will be transformed to ∀𝑥 : 𝜏 .𝜑,

because the proof is asserting that 𝜑 is true for any 𝑥.

• If a step LetVal(𝑥, 𝜏, 𝜓) encloses an assertion 𝜑, then the assertion will be transformed to

𝜑[𝜓/𝑥], substituting the constant value of 𝑥 into the assertion.
1

• If a step Assume(𝜓) encloses an assertion 𝜑, then the assertion will be transformed to 𝜓 → 𝜑.

• If a step IsSome(𝑥, 𝜏, 𝜓) encloses an assertion 𝜑, then the assertion will be transformed to

𝜓 → 𝜑, because the proof is asserting that 𝜑 is true in the presence of an 𝑥 with the given

property. In addition, the IsSome step will generate its own formula asserting that the given 𝑥
exists.

We will make these ideas more precise in the definition of generated formulas below.

Now let us consider the effect of preceding proof steps. Any step in a natural-language proof may

conceivably use the results of any previous steps in the proof. In some cases a proof author may

explicitly indicate a previous step that is being used, but very often this will be implicit. And so when

we generate a formula representing an assertion 𝜑, we could conceivably include all the results of all

steps 𝑆1 . . . 𝑆𝑛 that occurred anywhere previously in the proof. This would yield a formula such as

𝑆1 → 𝑆2 → . . .→ 𝑆𝑛 → 𝜑.

A disadvantage of such an approach is that the generated formulas could become very large for steps

that occur late in a large proof. In fact, most proof steps depend only on the previous step and possibly

some other recent or important steps. So we might choose to include a select subset of previous steps

in each generated formula.

In fact Natty takes this approach and only includes certain previous steps in each formula. If a

node’s children are a sequence of assertions 𝜑1 . . . 𝜑𝑛 then Natty includes each of these assertions as an

assumption when proving the others, generating the sequence of formulas 𝜑1, 𝜑1 → 𝜑2, 𝜑1 → 𝜑2 →
𝜑3, . . . , (𝜑1 → ...→ 𝜑𝑛).

However only the conclusion of this sequence, namely the formula 𝜑𝑛, is used as a known fact in

other parts of the proof. In other words, the formulas 𝜑1 . . . 𝜑𝑛−1 are treated as local, used only as

helpers for proving the conclusion 𝜑𝑛.

This approach dramatically cuts down on the size of generated formulas. It seems to capture the

relevant facts needed for proving each proof step in the proofs we have verified. However, it is unclear

whether it will be adequate for larger or more complex proofs. If it is not, we may need to adapt or

abandon it, or provide a mechanism whereby the user can explicitly identify previous proof steps to be

used in certain cases.

With these ideas in mind, we can now formally define the formulas that are generated from a proof

structure tree. For each tree node, we will define the formulas generated by the node and also the node’s

conclusion, which is also a formula. Also, for any sequence of nodes (which will always be the children

of a parent node), we will define the formulas generated by the sequence. These notions are defined via

mutual recursion as follows:

• A node Assume(𝜑) generates the formula 𝜑. Its conclusion is 𝜑.

• A node Let([𝑥], 𝜏) generates the formulas ∀𝑥 : 𝜏 . 𝜑1, . . . ,∀𝑥 : 𝜏 . 𝜑𝑛, where 𝜑1, . . . , 𝜑𝑛 are

generated by the sequence of its children. Its conclusion is ∀𝑥 : 𝜏 . 𝜑, where 𝜑 is the conclusion

of its last child.

1

Alternatively we could transform the assertion to ∀𝑥 : 𝜏 . 𝑥 = 𝜓 → 𝜑. It is not clear which alternative is best; we intend to

experiment with this in our implementation.



• A node LetVal(𝑥, 𝜏, 𝜓) generates the formulas 𝜑1[𝜓/𝑥], . . . , 𝜑𝑛[𝜓/𝑥], where 𝜑1, . . . , 𝜑𝑛
are generated by the sequence of its children. Its conclusion is 𝜑[𝜓/𝑥], where 𝜑 is the conclusion

of its last child.

• A node IsSome(𝑥, 𝜏, 𝜓) generates the formulas ∃𝑥 : 𝜏 . 𝜓, 𝜓 → 𝜑1, . . . , 𝜓 → 𝜑𝑛, where

𝜑1, . . . , 𝜑𝑛 are generated by the sequence of its children. Its conclusion is the conclusion of its

last child.

• For a sequence of nodes 𝑆1, . . . , 𝑆𝑛, let 𝜑1, . . . , 𝜑𝑛 be the conclusions of each node in the

sequence. For each formula 𝜓𝑖𝑗 generated by a node 𝑆𝑖, the sequence generates the formula

𝜑1 → ...→ 𝜑𝑖−1 → 𝜓𝑖𝑗 .

• The top-level node, representing the entire proof, generates the formulas generated by its sequence

of children. Its conclusion is the conclusion of its last child (which is always the theorem being

proven).

Theorem. Given a tree of proof steps for a theorem, the conjunction of the formulas generated by the
tree’s root node implies that the theorem is true.

Proof. A proof sketch is as follows. By induction on the depth of the proof step tree, we can show that

the conjunction of the formulas generated by any node implies that node’s conclusion, and that the

conjunction of the formulas generated by any sequence implies the conclusion of the last node in the

sequence. The conclusion of the root node is the theorem statement, so the result follows.

5. Proof calculus

Natty’s proof calculus is a pragmatic, incomplete variant of the higher-order superposition calculus

o𝜆Sup developed recently by Bentkamp et al. [20] As such, it operates on the same clauses used in that

calculus. We will review the relevant definitions of terms, literals, and clauses here.

In o𝜆Sup, a term is defined as a 𝛽𝜂-equivalence class of 𝜆-terms, which are in turn 𝛼-equivalence

classes of raw 𝜆-terms. We adopt these notions. In most situations Natty stores formulas in 𝛽𝜂-reduced

form. o𝜆Sup also defines a 𝛽𝜂𝑄𝜂-normal form of 𝜆-terms by applying a rewrite rule 𝑄𝜂 to ensure that

the quantifiers ∀∀∀ and ∃∃∃ are only applied to 𝜆-terms. We have not implemented this rule in Natty at this

time.

A literal is an equation 𝑠 ≈ 𝑡 or disequation 𝑠 ̸≈ 𝑡 of terms. Equality is not ordered, so 𝑠 ≈ 𝑡 is the

same as 𝑡 ≈ 𝑠. Literals are purely equational, so a non-equational formula 𝜑 must be encoded as 𝜑 ≈⊤⊤⊤
and ¬𝜑 as 𝜑 ≈⊥⊥⊥.

A clause is a finite multiset of literals 𝐿1 ∨ . . . ∨ 𝐿𝑛 representing a disjunction.

Starting with this section of the paper, we print logical symbols in bold (as in [20]) to distinguish

them from the syntax of literals and clauses.

o𝜆Sup defines the notion of a green subterm of a 𝜆-term, and many rules in o𝜆Sup operate only on

green subterms. Essentially a green subterm is at a position where a first-order inference could take

place. We adopt the notion of green subterms; see [20], section 3 for a definition. As in o𝜆Sup, we write

𝐶⟨𝑡⟩ to denote a clause 𝐶 with a green subterm 𝑡.
Bentkamp et al. also define blue subterms, which are like green subterms but may also occur at some

positions under quantifiers. We will sometimes use these too; see [20], section 3.7 for a definition. We

write 𝐶⎷𝑡⌄ to denote a clause 𝐶 with a blue subterm 𝑡.
o𝜆Sup specifies that the input set of clauses must be preprocessed by two rewrite rules ∀∀∀≈ and ∃∃∃≈

to eliminate quantified variables in certain higher-order contexts. This is required for completeness,

however we have not implemented this preprocessing in Natty at this time.

As in o𝜆Sup, Natty’s calculus is parameterized by a strict term order ≺ that must be well-founded,

total on ground terms, stable under grounding substitutions, and also satisfy certain other conditions

listed in Definition 15 in [20]. We will not repeat these conditions here. ⪯ is the reflexive closure of ≺.



We will describe the specific term order that Natty uses below. As is common practice, the term order

≺ is lifted to literals and clauses via the multiset encoding described in [21], section 2.4.

As in o𝜆Sup, a fluid term is either a variable applied to one or more arguments, or a 𝜆-expression 𝑡
such that for some substitution 𝜎, 𝑡𝜎 is no longer a 𝜆-expression due to 𝜂-reduction. As suggested in

[20], section 5, Natty assumes that any non-ground 𝜆-expression is fluid.

o𝜆Sup also defines which positions are eligible in a clause with respect to a substitution 𝜎. We will

adopt this notion as well. The definition of an eligible position in o𝜆Sup is slightly complicated due to

the possibility of selected literals. Natty does not support literal selection, which simplifies this notion

a bit. Consider a literal 𝐿 to be maximal in a clause 𝐶 with respect to 𝜎 if 𝐿𝜎 is maximal in 𝐶𝜎 with

respect to the term ordering ≺. Then essentially a green position is eligible in 𝐶 with respect to 𝜎 if it

can be reached by descending the term structure of a maximal literal while never passing through a

term 𝑠 in an equation 𝑠 ≈ 𝑡 where 𝑠𝜎 ⪯ 𝑡𝜎. See [20], section 3.3 for a precise definition.

In the rules below, csu(𝑡, 𝑢) refers to the complete set of unifiers between two terms 𝑡 and 𝑢.

5.1. Generating rules

Natty generates new clauses using the two following rules. A side condition marked with an asterisk (*)

will be relaxed by Natty in some circumstances, as discussed in a following section.

Superposition:

𝐷⏞  ⏟  
𝐷′ ∨ 𝑡 ≈ 𝑡′ 𝐶⟨𝑢⟩
(𝐷′ ∨ 𝐶⟨𝑡′⟩)𝜎

Sup 𝜎 ∈ csu(𝑡, 𝑢)

(i) 𝑢 is not fluid

(ii) 𝑢 is not a variable

(iii) 𝑡𝜎 ̸⪯ 𝑡′𝜎
(iv) the position of 𝑢 is eligible in 𝐶 w.r.t. 𝜎 (*)

(v) 𝐶𝜎 ̸⪯ 𝐷𝜎
(vi) 𝑡 ≈ 𝑡′ is maximal in 𝐷 w.r.t. 𝜎

(vii) 𝑡𝜎 is not a fully applied Boolean logical symbol

(viii) if 𝑡′𝜎 =⊥⊥⊥, 𝑢 is at the top level of a positive literal

The clauses 𝐶 and 𝐷 must have no free variables in common.

This is a slightly simplified form of the superposition rule from o𝜆Sup. The most notable difference

is that o𝜆Sup may perform superposition into a variable 𝑢 in some circumstances, but our rule never

does. (This presumably breaks completeness, but our pragmatic calculus is not complete anyway.) Also,

our condition (vii) only excludes fully applied Boolean logical symbols (i.e. ⊤⊤⊤, ⊥⊥⊥, ¬¬¬, ∧∧∧, ∨∨∨, →→→), whereas

the corresponding condition in o𝜆Sup excludes all logical symbols in this context. We relaxed this

condition because we found that a superposition step with a fully applied quantifier (∀∀∀ or ∃∃∃) can be an

important inference in some proofs.

Equality resolution:
𝐶 ′ ∨ 𝑢 ̸≈ 𝑢′

𝐶 ′𝜎
ERes 𝜎 ∈ csu(𝑢, 𝑢′)

(i) 𝑢 ̸≈ 𝑢′ is maximal in 𝐶 w.r.t. 𝜎

This is a slightly simplified form of the equality resolution rule from o𝜆Sup. (Natty does not actually

implement the side condition (i) at this time, but we will implement that soon.)

Natty should also include an equality factoring rule, which is necessary for first-order completeness.

However, we have not implemented one yet.



5.2. Clausifying rules

Natty uses these rules to clausify formulas as described in a following section. We have written them

with a double line to indicate that they could be applied destructively (i.e. discarding the parent formula)

while retaining completeness. However, we will see later that Natty does not always apply these rules

destructively.

Outer clausification:
𝑠 ≈⊤⊤⊤ ∨ 𝐶
oc(𝑠) ∨ 𝐶 OC

𝑠 ≈⊥⊥⊥ ∨ 𝐶
oc(¬¬¬𝑠) ∨ 𝐶 OC

This rule is a variant of the OuterClaus rule in [22]. However, unlike that rule it never splits a clause

into two. The function oc is defined on formulas as follows:

oc(𝑠∨∨∨ 𝑡) = (𝑠 ≈⊤⊤⊤ ∨ 𝑡 ≈⊤⊤⊤)

oc(𝑠→→→ 𝑡) = (𝑠 ≈⊥⊥⊥ ∨ 𝑡 ≈⊤⊤⊤)

oc(𝑠 ≈≈≈ 𝑡) = (𝑠 ≈ 𝑡)

oc(∀∀∀𝑥.𝑠) = (𝑠[𝑦/𝑥] ≈⊤⊤⊤)

oc(∃∃∃𝑥.𝑠) = (𝑠[k(𝑦)/𝑥] ≈⊤⊤⊤)

oc(¬¬¬(𝑠∧∧∧ 𝑡)) = (𝑠 ≈⊥⊥⊥ ∨ 𝑡 ≈⊥⊥⊥)

oc(¬¬¬(𝑠 ≈≈≈ 𝑡)) = (𝑠 ̸≈ 𝑡)

oc(¬¬¬(∀∀∀𝑥.𝑠)) = (𝑠[k(𝑦)/𝑥] ≈⊥⊥⊥)

oc(¬¬¬(∃∃∃𝑥.𝑠)) = (𝑠[𝑦/𝑥] ≈⊥⊥⊥)

In the equations above, k is a new constant, 𝑦 is a variable not appearing in 𝑠 or the adjacent clause

𝐶 , and 𝑦 represents all free variables appearing in ∃∃∃𝑥.𝑠 or ¬¬¬(∀∀∀𝑥.𝑠).

Splitting:
𝑠 ≈⊤⊤⊤ ∨ 𝐶
sp(𝑠, 𝐶)

Split

𝑠 ≈⊥⊥⊥ ∨ 𝐶
sp(¬¬¬𝑠, 𝐶) Split

This rule is derived from the same OuterClaus rule in [22], and splits clauses into two. The function

sp is defined on formulas as follows:

sp(𝑠∧∧∧ 𝑡, 𝐶) = {𝑠 ≈⊤⊤⊤ ∨ 𝐶, 𝑡 ≈⊤⊤⊤ ∨ 𝐶}
sp(¬¬¬(𝑠∨∨∨ 𝑡), 𝐶) = {𝑠 ≈⊥⊥⊥ ∨ 𝐶, 𝑡 ≈⊥⊥⊥ ∨ 𝐶}
sp(¬¬¬(𝑠→→→ 𝑡), 𝐶) = {𝑠 ≈⊤⊤⊤ ∨ 𝐶, 𝑡 ≈⊥⊥⊥ ∨ 𝐶}

5.3. Contracting rules

Natty includes additional rules that can rewrite, subsume, and simplify clauses. It also includes rules

that delete propositional tautologies and AC tautologies [8, 23] that can be proven from the associativity

and commutativity axioms for operators that are known be associative and commutative. All of these

rules are similar to those found in other superposition-based provers such as E [8]. For reasons of

limited space, we omit a detailed presentation of these rules here.

6. Proof procedure

In this section we describe Natty’s automatic prover, which finds proofs constructed from the inference

rules outlined in the previous sections. Natty is broadly similar to other superposition-based provers,

but its mechanisms for selecting the next given clause and for performing clausification are somewhat

unusual. We will first describe some fundamental building blocks including Natty’s term ordering and

unification mechanism, and then move on to discussing its full proof procedure.



6.1. Term ordering

As mentioned above, the calculus o𝜆Sup requires a term ordering that satisfies certain technical

conditions listed in Definition 15 in [20]. Because Natty uses the superposition rule from this calculus,

it inherits these term ordering requirements. In section 3.9 of their paper, Bentkamp et al. suggest a

concrete term ordering that satisfies their requirements. To compare two higher-order terms, they map

each of them to a first-order term using a certain encoding, then use the transfinite Knuth-Bendix order

[24] to compare the resulting first-order terms using certain weights. Natty uses this suggested term

ordering and implements this mapping scheme and the Knuth-Bendix order. Instead of using the ordinal

number 𝜔 for the weights of the symbols ∀1∀1∀1 and ∃1∃1∃1, Natty simply uses a large integer constant, which

is effectively equivalent. Natty gives all other constant symbols a weight of 1, except unary function

symbols which have a weight of 2. (We assigned this weight because it seems to facilitate certain helpful

reductions in proofs about the natural numbers. However, these weight values are certainly subject to

further experimentation.)

6.2. Unification

A complete higher-order prover must perform full higher-order unification, which is challenging and

expensive because it is only semi-decidable, and because two terms may have an infinite number of

unifiers that are not instances of one another. Natty is a pragmatic, incomplete prover and in fact

its unification procedure is almost entirely first-order. Natty performs first-order unification using

a simple recursive procedure including an occurs check. In addition, it can unify two lambda terms

if the variables bound by the lambdas occur in exactly the same positions in those terms, and the

remaining subterms of the lambda terms are unifiable. An example of such terms is the pair 𝜆𝑥.𝑓(𝑥, 𝑦)
and 𝜆𝑧.𝑓(𝑧, 4). This is the entire extent of Natty’s unification capabilities today.

Despite these limitations, Natty can actually perform useful unifications in which a variable will

become bound to a higher-order term. For example, consider the Peano axiom of induction over the

natural numbers:

∀∀∀𝑃 : (N→→→ B).(𝑃 (0)→→→∀∀∀𝑘 : N.(𝑃 (𝑘)→→→ 𝑃 (𝑠(𝑘)))→→→∀∀∀𝑛 : N.𝑃 (𝑛))

In higher-order logic, the final consequent ∀∀∀𝑛 : N . 𝑃 (𝑛) is represented as ∀∀∀(𝜆𝑛 : N . 𝑃 (𝑛)). But

this then 𝜂-reduces to simply ∀∀∀(𝑃 ). Now suppose that we are trying to prove the simple identity

∀∀∀𝑎 : N . 0 + 𝑎 ≈≈≈ 𝑎. In higher-order logic, this is represented as ∀∀∀(𝜆𝑎 : N . 0 + 𝑎 ≈≈≈ 𝑎). This now

unifies trivially with the consequent ∀∀∀(𝑃 ), yielding the substitution 𝜎 = {𝑃 ↦→ 𝜆𝑎 : N . 0 + 𝑎≈≈≈ 𝑎}. In

Natty, superposition between the goal and this induction axiom finds this substitution and substitutes it

into the axiom, which allows the proof by induction to proceed. This all works without any special

higher-order unification machinery. And so Natty does not need a special process for instantiating

induction axioms with abstractions from goal clauses, as is found in E [14] and Zipperposition [16].

6.2.1. Allowing inductive inferences

However, regarding the useful superposition inference we just described, a word of caution is in order.

The restrictions of the superposition rule would not normally allow this superposition step to proceed.

The goal is negated, so in this example we are performing superposition with (∀∀∀𝑎 : N.0+𝑎≈≈≈ 𝑎) ≈⊥⊥⊥ on

the left, and the induction axiom on the right. If we have not clausified the induction axiom, restriction

(viii) will not allow the superposition since ∀∀∀(𝑃 ) is not at the top level of a literal. We could clausify

the induction axiom until ∀∀∀(𝑃 ) becomes a positive literal. The clausified axiom will have this form:

¬¬¬𝑃 (0) ∨¬¬¬∀∀∀𝑘 : N.(𝑃 (𝑘)→→→ 𝑃 (𝑠(𝑘))) ∨∀∀∀(𝑃 )

But then restriction (iv) will not allow the superposition since the literal ∀∀∀(𝑃 ) will not be maximal

after the substitution 𝜎 is applied. The substitution will ground all literals, and then according to the

Knuth-Bendix ordering the literal with largest weight will be maximal, namely the second of the three



literals. One might hope that further clausification steps could cause ∀∀∀(𝑃 ) to become maximal (e.g.

after the clause splits in two), but experiments with Natty show that this is not the case.

Now, we very much want to allow this superposition step, so Natty makes an exception. It considers

a formula to be inductive if it has the form ∀∀∀𝑥 : 𝜏 . 𝑢, where 𝜏 is a function type with codomain B. If the

right formula in a superposition is inductive, then Natty does not enforce the eligibility restriction (iv).

6.3. Main loop

The input to Natty’s automatic prover is a formula to be proved, plus a set of formulas that are known.

The known formulas are either axioms or are theorems that appeared earlier in the input file and have

already been proved.

Like most other superposition-based provers, Natty negates the goal, then searches for a contradiction

by saturating the set of input formulas. Because the proof calculus works on equational clauses, Natty

initially converts each input formula to a clause of the form 𝜑 = ⊤⊤⊤, or to 𝜑 =⊥⊥⊥ for an input formula

of the form ¬¬¬𝜑. Unlike in some other provers, no clausification steps (i.e. applications of the rules OC

or Split) are performed at this time.

Natty’s main loop is modeled after the main loop in E [8], which is itself a variation of the DISCOUNT

loop used in an earlier system of that name [25]. Like E, Natty keeps clauses in two sets containing

processed and unprocessed clauses, respectively. In its main loop, it repeatedly selects a given clause from

the unprocessed set and adds it the processed set. As it does so, it performs all possible simplifications

of the given clause using clauses from the processed set. Furthermore, it back-simplifies clauses in the

processed set using the given clause, and sends them back to the unprocessed set if they have changed.

In this way, Natty maintains the invariant that all processed clauses are always reduced with respect to

each other.

We will not provide pseudocode for Natty’s main loop or discuss it more, because it is so similar to

that of E. Instead, we will discuss Natty’s mechanisms for given clause selection and for clausification,

which are less similar to other provers.

6.4. Given clause selection

Most other superposition-based provers select given clauses in a weighted round-robin fashion from

two or more priority queues. Each queue orders the available unprocessed clauses according to some

characteristic function. One basic scheme used by some provers has two priority queues. One queue is

a LIFO, which orders clauses by age, so that at any given moment the oldest available clause will be

picked next. A second queue orders clauses by weight, which may be a simple count of the symbols in

a clause or which may be a weighted sum of those symbols. In this queue the clause with the smallest

weight will be picked next. Many variations of this scheme are possible. In [26], Schulz and Möhrmann

present various selection heuristics and the results of experiments they performed to see which of them

might work best.

Natty uses a different, experimental given clause selection mechanism. In Natty there is only a single

priority queue, ordering all unprocessed clauses using a single cost function. Unlike in most systems,

where clauses are selected based on their size (or weight), Natty’s cost function reflects the changes in
size that have occurred during the proof steps that have derived a clause. It is based on the intuition

that many proofs involve only a small number (perhaps just one or even zero) of non-obvious or “uphill”

steps that may increase the size of the formula to be proved, combined with a larger number of “easy” or

“downhill” steps that reduce the formula size and bring the proof toward a close. For example, applying

mathematical induction will usually increase the formula size and can be considered an uphill step,

whereas applying a theorem that simplifies a formula is a downhill step that decreases the formula size.

Natty’s cost function is designed to penalize the uphill steps, and find proofs that go downhill most of

the time.

To be more specific, Natty assigns a cost to each clause as follows. First, recall that the Knuth-Bendix

ordering assigns a weight to each clause, defined as the sum of the weights of all of its symbols. As



we saw before, Natty gives all symbols a weight of 1, except unary function symbols which have a

weight of 2. Let 𝑤(𝐶) be the total weight of clause 𝐶 , computed as in the Knuth-Bendix ordering except

considering the quantifier symbols ∀∀∀ and ∃∃∃ to have weight 0. (This is because e.g. prefixing a universal

quantifier to a formula does not really change its essence, and we do not want to count that as an uphill

step.)

Now we can describe how costs are calculated. Each input clause has cost 0. Suppose that a new

clause 𝐸 is derived from clauses 𝐷 and 𝐶 by superposition, where 𝐷 and 𝐶 are on the left and right in

the superposition rule. We will compute two values 𝛿(𝐸) and 𝑘(𝐸), both of which will be stored in

memory along with 𝐸. 𝛿(𝐸) represents E’s cost relative to its right parent 𝐶 , and 𝑘(𝐸) represents its

absolute cost, which will be used for ranking it in the priority queue.

𝛿(𝐸) is computed as follows. If 𝑤(𝐸) < 𝑤(𝐶), then 𝛿(𝐸) = 0.01. If 𝑤(𝐸) = 𝑤(𝐶), then 𝛿(𝐸) =
0.02. Otherwise, 𝛿(𝐸) = 1.0.

𝑘(𝐸) is computed to be 𝛿(𝐸) + 𝑖, where 𝑖 is the cost that is inherited from the parents 𝐷 and 𝐶 , and

is computed as follows. Let 𝐴 be a set of clauses containing 𝐷, 𝐶 , and all ancestors of 𝐷 or 𝐶 in the

graph of inferences. Then 𝑖 =
∑︀

𝑋∈𝐴 𝛿(𝑋). To put it differently, 𝑖 is the total cost of the proof that

derived 𝐷 and 𝐶 . Natty computes it by performing a depth-first search to find all ancestors of 𝐷 and 𝐶 .

One might ask why we compare the weight of the new clause 𝐸 with the weight of 𝐶 , and not with

𝐷. One reason is that the superposition restriction 𝐶𝜎 ̸⪯ 𝐷𝜎 generally ensures that 𝐶 will be larger,

and in some cases 𝐷 may be quite small, e.g. an identity such as ∀∀∀𝑥 : N . 0 + 𝑥≈≈≈ 𝑥.

In searching for a proof, Natty only considers clauses whose costs fall under a fixed limit. By default,

this limit is 1.3, meaning that Natty will only find a proof that contains at most one uphill step (i.e.

a step costing 1.0). Any induction step will cost 1.0, so a proof by induction is not allowed to make

any more uphill steps at all. Nevertheless, Natty can prove many identities about the natural numbers

inductively within this cost limit.

Before considering superposition inferences between two clauses, Natty precomputes the cost 𝑖 that

will be inherited from those clauses, which is the minimum cost that any derived clause will have. If

this 𝑖 exceeds the fixed cost limit, Natty will not even look for possible inferences between the clauses.

This optimization may make searches for proofs whose cost is near the limit significantly faster than in

a search with an unbounded cost.

6.5. Clausification

If we start with a clause containing a single formula and exhaustively apply the inference rules OC and

Split until no more applications are possible, we will eventually reach clause normal form. This process

is called clausification. If the starting formula is first order, clause normal form will be a conjunction of

disjunctions of atomic formulas. During the process of clausification, all quantifiers will be eliminated

and new Skolem constants will be introduced for quantifiers that are effectively existential.

All provers must perform clausification in some way. Some provers such as E immediately clausify

every formula at the beginning of the proof process. Even if a prover does this, higher-order inferences

may create new formulas later on that are not in clause normal form. E will immediately clausify such

formulas as soon as they appear.

Unfortunately, completely clausifying a formula will often create a large number of small clauses

whose relationship to the original formula is difficult to understand. As a result, even if a refutation is

found, the generated proof may be cryptic. A further disadvantage of immediate clausification is that it

destroys high-level formula structure that may be useful for inferring higher-level proof steps, such as

by unifying with the antecedent of a complex theorem.

Natty attempts to preserve formula structure as much as possible when generating inferences.

However, the clausification rules OC and Split present a fundamental dilemma that all provers must

deal with somehow. If a prover applies these rules destructively, then formula structure is lost. On the

other hand, if it applies them non-destructively, it will introduce clauses that are redundant and in fact

equivalent. This may lead to many duplicate inferences if the redundant clauses remain present.



Natty attempts to resolve this dilemma through a process of dynamic clausification, which works as

follows. Suppose that it is time to compute all possible superpositions between clauses 𝐷 and 𝐶 on

the left and right. Natty will apply the rule OC to 𝐷 and 𝐶 repeatedly as many times as is possible,

generating two sequences of clauses𝐷1, . . . , 𝐷𝑚 and 𝐶1, . . . , 𝐶𝑛. (Recall that OC never splits a clause.)

All of these clauses are kept in memory.

Now Natty must look for superposition inferences. Every possible inference will involve some

equational literal from 𝐷, and some green subterm from 𝐶 . Natty will consider all possible pairs

(𝐷𝑖, 𝐶𝑗), where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. It will look for superposition inferences between 𝐷𝑖 and

𝐶𝑗 , but only considering those literals that first appeared in 𝐷𝑖, i.e. were not already present in 𝐷𝑖−1.

Similarly, it will only consider green subterms that first appeared in 𝐶𝑗 . In this way, any superposition

inference that is generated between a literal from 𝐷 and a subterm from 𝐶 will use the earliest 𝐷𝑖 and

𝐶𝑗 in which it is possible to make that inference, preserving as much formula structure as is possible.

Finally, when all possible inferences between 𝐷 and 𝐶 have been found, Natty will discard the

sequences 𝐷1, . . . , 𝐷𝑚 and 𝐶1, . . . , 𝐶𝑛 from memory. They will be regenerated again when necessary.

We believe this dynamic clausification process is actually fairly cheap, since most subterms between

the dynamically generated formulas are shared in memory.

In this way, each clause in the generated set actually serves as a representative of all the clauses that

can be generated from it using the rule OC.

When Natty adds a clause 𝐶 to the processed set, it looks for a way to split the clause by applying

OC zero or more times and then applying the rule Split. If this is possible, it will apply this rule

non-destructively, creating two new clauses and retaining the original clause 𝐶 . Any particular clause

will only be split at most once. The newly created clauses will have a 𝛿 value of 0, so their costs will be

the same as that of the parent clause. For that reason, they will soon be pulled from the priority queue

and also enter the processed set, at which point they may split again. In this way, all clauses of the

normal form of the original clause will be generated in a short time. There may be a fair number of

such clauses, but none of them will be equivalent to any other.

This scheme seems to work reasonably well, but the non-destructive splitting may still sometimes

cause an undesirable level of redundancy between active clauses. We intend to experiment more with

variations of this scheme that may allow splitting to be destructive in some cases.

7. Performance

We evaluated Natty’s performance versus that of E 3.0.08, Vampire 4.8, and Zipperposition 2.1 in proving

theorems and proof steps exported to THF files from nat.n. As we saw above, this file defines the

natural numbers axiomatically and then asserts various elementary theorems about them. Many of

these theorems require proofs by induction. We ran E with the --auto option, and built Vampire from

the v4.8HO4Sledgahammer tag (dated October 19, 2023) containing higher-order improvements not yet

merged into its master branch. We ran all of these provers in a mode that used a single strategy.

nat.n contains 18 theorems. Of these, 3 include hand-written natural-language proofs, because they

are too difficult for Natty to prove automatically. Natty generates a total of 43 proof steps from these

proofs.

We ran the four provers on all the exported theorems, and then again separately on all the exported

proof steps. We used a 5-second time limit for all proof attempts. This limit is much shorter than is

typical in competitive evaluations of automatic theorem provers, but we choose it to reflect Natty’s

intended use as a prover that can be used interactively and quickly.

The results are in Table 1 and Table 2. We show individual results for theorems, but only aggregate

results for proof steps. The average times in the tables only reflect theorems or proof steps that were

actually proved, and are unaffected by failed proof attempts. The tables also show the PAR-2 score,

which is the average time over all attempts, in which a failed attempt is assigned twice the time limit.

We think Natty’s performance at this early stage is promising. It was able to prove almost as many

theorems as any prover, and it proved the most proof steps of any of the provers. The comparison may



Table 1
Theorems

conjecture Natty E Vampire Zipperposition

thm 1 a ̸= 0 → ∃b:N.a = s(b) 0.03 0.00 0.00 timeout
thm 2.1 a + c = b + c → a = b 0.05 0.20 timeout 0.02
thm 2.2 (a + b) + c = a + (b + c) 0.03 0.05 timeout 0.37
thm 2.3 0 + a = a ∧ a = a + 0 0.03 0.00 timeout 0.45
thm 2.4 s(a) + b = s(a + b) 0.03 0.01 timeout 0.58
thm 2.5 a + b = b + a 0.04 0.00 timeout 0.51
thm 2.6 a + s(b) ̸= 0 0.03 0.00 0.01 0.01
thm 2.7 a + s(b) ̸= a 0.15 0.01 0.01 0.34
thm 2.8 a + b = 0 → a = 0 ∧ b = 0 0.65 0.00 0.01 0.03
thm 3.1 a · 0 = 0 ∧ 0 = 0 · a 0.07 0.00 timeout timeout
thm 3.2 a · 1 = a ∧ a = 1 · a 0.07 0.01 timeout timeout
thm 3.3 c · (a + b) = ca + cb 0.21 0.03 timeout timeout
thm 3.4 (ab) · c = a · (bc) gave up 0.02 timeout timeout
thm 3.5 s(a) · b = ab + b gave up timeout timeout 2.13
thm 3.6 ab = ba 0.13 0.01 timeout 2.03
thm 3.7 (a + b) · c = ac + bc 0.20 0.00 timeout 0.05
thm 3.8 ab = 0→ a = 0 ∧ b = 0 3.57 0.04 timeout 0.12
thm 4 c ̸= 0 → ac = bc → a = b timeout timeout timeout timeout

proved (of 18) 15 16 4 12
average time 0.35 0.02 0.01 0.55
PAR-2 score 1.96 1.13 7.78 3.70

Table 2
Proof steps

Natty E Vampire Zipperposition

proved (of 43) 41 40 39 40
average time 0.24 0.01 0.02 0.18
PAR-2 score 0.70 0.70 0.95 0.87

not be entirely fair, since the other provers may have been designed mostly to solve difficult problems

after running for longer periods of time using a portfolio of strategies, not easy problems in just a few

seconds. Still, Natty seems adequate for its intended use case. Furthermore, we could certainly optimize

its performance more. For example, it is not currently performing any term indexing at all.

8. Future work

We do not have space here to list all the enhancements we would like make to Natty, but here are

some of our plans. A major goal for the near future is to move beyond the natural numbers and prove

theorems about the integers. To do this, we will need some sort of overloading, polymorphism, or type

classes to handle e.g. the fact that addition on naturals and on the integers will have the same name

and syntax but will be two different functions. Before long we will also need some way to define types

inductively, or to define new types as isomorphic to equivalence classes of an existing type.

An interactive environment where the user can edit a proof and get feedback on it in real time is also

a high priority.
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