
TPTP World Infrastructure for Non-classical Logics
Alexander Steen1, Geoff Sutcliffe2

1University of Greifswald, Germany
2University of Miami, USA

Abstract
The TPTP World is a well established infrastructure that supports research, development, and
deployment of Automated Theorem Proving (ATP) systems. Until now the TPTP World has focused
on classical logic, while many real-world applications of ATP also require non-classical reasoning. This
paper describes the latest extensions to the TPTP World, providing languages, problems, solutions,
and infrastructure for non-classical logics. These are the keys steps towards releasing TPTP v9.0.0,
with normal modal logic problems.

Keywords
TPTP World, Non-classical logic

1. Introduction

The TPTP World [1] is a well established infrastructure that supports research, development,
and deployment of Automated Theorem Proving (ATP) systems. The TPTP World includes the
TPTP problem library [2], the TSTP solution library [3], standards for writing ATP problems and
reporting ATP solutions [4, 5], tools and services for processing ATP problems and solutions [3],
and it supports the CADE ATP System Competition (CASC) [6]. Various parts of the TPTP
World have been deployed in a range of applications, in both academia and industry. The web
page www.tptp.org provides access to all components.

Until now the TPTP World has focused on classical logic, while many real-world applications
of ATP also require non-classical reasoning [7]. These applications include artificial intelligence
(e.g., knowledge representation [8], planning [9], multi-agent systems [10]), philosophy (e.g.,
formal ethics [11], metaphysics [12]), natural language semantics (e.g., generalized quantifiers [13],
modalities [14]), and computer science (e.g., software and hardware verification [15]). This paper
describes the latest extension of the TPTP World, providing languages and infrastructure for
reasoning in non-classical logics [16, 17]. The non-classical logics supported so far are normal
modal [18], alethic modal [19], deontic [20], epistemic [21], doxastic [22], and instant-based
temporal [23]. In this paper the languages and infrastructure are exemplified in normal modal
logic [24], as will be used in TPTP v9.0.0. This paper extends [25] – there has been significant
progress and development in the last two years:

• The classical connectives □ and ♢ now have both long and short forms in the TPTP syntax
(see Section 3).

• The property names in logic specifications have been improved, and another property has
been added (see Section 3.1).

• The collection of non-classical problems for the TPTP has made substantial progress (see
Section 4).

• The ATP systems have been used to generate solutions for the problems, saved in the
TSTP (see Section 5).

• The TPTP format for Kripke interpretations has stabilized (see Section 5).

PAAR’24: 9th Workshop on Practical Aspects of Automated Reasoning, July 2, 2024, Nancy, France
$ alexander.steen@uni-greifswald.de (A. Steen); geoff@cs.miami.edu (G. Sutcliffe)
� 0000-0001-8781-9462 (A. Steen); 0000-0001-7116-9338 (G. Sutcliffe)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC
BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://www.tptp.org
mailto:alexander.steen@uni-greifswald.de
mailto:geoff@cs.miami.edu
https://orcid.org/0000-0001-8781-9462
https://orcid.org/0000-0001-7116-9338
https://creativecommons.org/licenses/by/4.0

• Tools for processing non-classical logic problems and solutions have been significantly
advanced (see Section 6).

• The ATP systems and tools for non-classical logic have been added to SystemOnTPTP
(see Section 6.4).

Paper structure: Section 2 provides a review of the classical TPTP languages, as a foundation
for Section 3 that described the TPTP languages. Section 4 describes the collection of non-
classical problems for the TPTP problem library, and Section 5 the collection of solutions to
such problems in the TSTP solution library. Section 6 gives an overview of ATP systems and
tools for non-classical logics. Section 7 concludes, including plans for further development of the
non-classical TPTP World.

2. The Classical TPTP Languages

The TPTP languages for first-order clause normal form (CNF) [26], full first-order form (FOF) [2],
typed-first order form (TFF) [27, 28], and typed higher-order form (THF) [29, 30] are by now
well known and documented. An overview that is relevant to this paper is provided in [25],
and the detailed syntax of the languages is given in an extended BNF1 [31]. The TPTP has a
hierarchy of languages that underlie the non-classical languages. The languages are:

• Clause normal form (CNF), which is the “assembly language” of many modern ATP systems.
• First-order form (FOF), which hardly needs introduction.
• Typed first-order form (TFF), which adds types and type signatures, with monomorphic

(TF0) and polymorphic (TF1) variants.
• Typed extended first-order form (TXF), which adds Boolean terms, Boolean variables

as formulae, tuples, conditional expressions, and let expressions. TXF has monomorphic
(TX0) and polymorphic (TX1) variants.

• Typed higher-order form (THF), which adds higher-order notions including curried type
declarations, lambda terms, partial application, and connectives as terms. THF has
monomorphic (TH0) and polymorphic (TH1) variants.

A brief summary of the syntax is provided here.
Problems and solutions are built from annotated formulae of the form . . .
language(name, role, formula, source, useful_info)

The languages supported are cnf (clause normal form), fof (first-order form), tff (typed first-
order form), and thf (typed higher-order form). The role, e.g., axiom, lemma, conjecture, defines
the use of the formula. In a formula, terms and atoms follow Prolog conventions – functions
and predicates start with a lowercase letter or are ’single quoted’, and variables start with an
uppercase letter. The language also supports interpreted symbols that either start with a $,
e.g., the truth constants $true and $false, or are composed of non-alphabetic characters, e.g.,
integer/rational/real numbers such as 27, 43/92, -99.66. The logical connectives in the TPTP
language are !, ?, ~, |, &, =>, <=, <=>, and <~>, for the mathematical connectives ∀, ∃, ¬, ∨, ∧,
⇒, ⇐, ⇔, and ⊕ respectively. Equality and inequality are expressed as the infix operators = and
!=. The source and useful_info are optional.

The typed first-order form (TFF) language adds types and type declarations. Predicate
and function symbols can be declared before their use, with type signatures that specify the
types of their arguments and result. An expression (t1 ∗ . . . ∗ tn) > $o is the type of an n-ary
predicate, where the i-th argument is of type ti, and it returns a Boolean. Analogously, and
expression (t1 ∗ . . . ∗ tn) > t is the type of a function that returns a term of type t. TFF supports
arithmetic (which requires types, i.e., arithmetic is not supported in CNF or FOF). The typed

1www.tptp.org/TPTP/SyntaxBNF.html

https://www.tptp.org/TPTP/SyntaxBNF.html

higher-order form (THF) extends TFF with higher-order notions, including the curried form
of type declarations, lambda terms with a lambda binder ^ for λ, application with @, a choice
binder @+ for ϵ, and a description binder @- for ι.

As a simple example, here is an example of a monomorphic typed extended first-order (TX0)
annotated formula. The type declarations for inhabitant, is_knave, and says are as expected,
and can be seen in the TPTP problem PUZ081_8.p2. It expresses one of the axioms of the
“Knights and Knaves” puzzles [32], that for every inhabitant I and utterance S, if I is a knave
(knaves always lie) and I says S then S is not true.

tff(leaf_knaves_lie,axiom,
! [I: inhabitant,S: $o] :

((is_knave(I) & says(I,S)) => ~ S),
file('PUZ081_8.p',knaves_lie),
[description('Knaves always lie'), relevance(0.9)]).

3. The Non-classical TPTP Languages

The new non-classical typed form (NTF) family of TPTP languages for non-classical logics
has two top level variants based on the classical typed extended first-order (TXF) and typed
higher-order (THF) languages. They are the non-classical typed extended first-order form (NXF),
and the non-classical typed higher-order form (NHF). As with TXF and THF, NXF and NHF
have monomorphic (NX0, NH0) and polymorphic (NX1, NH1) subvariants. All constructs of the
underlying TXF and THF languages are available in the NXF and NHF languages.

The non-classical connectives of NTF have the form {$name}. Examples are {$box} (□ in logic
texts), {$dia} (♢ in logic texts), {$possible}, {$necessary}, {$obligatory}, {$permissible},
{$knows}, {$believes}, etc. A connective can be parameterized to reflect more complex non-
classical connectives, e.g., in multi-modal logics where the modal operators are indexed [33], in
epistemic logics where the knowledge operators can specify the agents under consideration [21],
and in dynamic logics [34] where the connectives are parameterized with (complex) programs.
The form is {$name(param1,. . .,paramn)}. If the connective is indexed the index is given as the
first parameter prefixed with a #, e.g., {$knows(#manuel)} @ (nothing)3. All other parameters
are key-value assignments, e.g., to list the agents of common knowledge the form might be
{$common($agents:=[alice,bob,claire])}.

In NXF the non-classical connectives are applied in a mixed higher-order-applied/first-order-
functional style, with the connectives applied using @ to a ()ed list of arguments.4 In NHF the
non-classical connectives are applied using @ in usual higher-order style with curried function
applications. There are also short form unary connectives for unparameterised {$box} and {$dia}:
[.] and <.>, e.g., {$box} @ (p) can be written [.] p. Full specification of the connectives and
their use in formulae is in the BNF starting at <nxf_atom> and <thf_defined_atomic>.

The TPTP language extension for non-classical connectives is arguably conservative: It only
adds one uniform construct to both TXF and THF, i.e., {$name(param1,. . .,paramn)}, that
is uniformly applied to arguments using @. Of course, a simpler and more concise syntax
could be envisioned when only focusing on syntactically simple logics (like modal logics with
its unary box operators). The presented extension however aims at providing a future-proof
syntax that can represent logics with arbitrary n-ary operators that themselves may carry
non-trivial parameters (like programs in PDL, or groups of agents in epistemic logic). In
addition the syntax makes clear the distinction between object-logic and meta-logic syntax:
An expression {$knows(#manuel)} @ (nothing) is clearly presented as the unary connective

2tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=PUZ&File=PUZ081_8.p
3As in www.youtube.com/watch?v=ISD86-oM4Ow
4This slightly unusual form was chosen to reflect the first-order functional style, and by making the application
explicit the formulae can be parsed in Prolog – a long standing principle of the TPTP languages [35].

https://tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=PUZ&File=PUZ081_8.p
https://www.youtube.com/watch?v=ISD86-oM4Ow

{$knows(#manuel)} applied to one argument, rather than a binary expression $knows applied to
the parameter (index) #manuel and the (only) real argument nothing. This addresses at least
two problems of the latter (syntactically somewhat simpler) approach: Non-classical connectives
may have optional parameters (the latter approach would have connectives occuring with varying
number of arguments), and expressions like #manuel are not part of the object-logic term/formula
language, hence cannot be given a meaningful type (the latter approach would require to assign
to them a type in order to be well-typed, as they occur at term-level).

As non-classical consequence relations may be more complex than the standard classical one
(e.g., in modal logics where consequence may be global or local), the roles of annotated formulae
can have subroles (e.g., local or global). In modal logic problems, the conjecture is local
by default, i.e., is to be proved in only one local world, but can be given the subrole global to
indicate it is to be proved in all worlds. By default axioms are global in modal logics, i.e., hold
in all worlds, but if the conjecture is local then axioms can have the subrole local to indicate
they hold in only the one world where the conjecture is being proved.

Figure 1 shows an example NX0 problem in alethic modal logic (the formulae with the logic
role is explained next), and Figure 2 shows the axiom and conjecture formulae in NX0. Note
how the conjecture defaults to being proved in one local world. The rotten_banana_here holds
in only that local world while the other axioms hold in all worlds.

%--
tff(semantics,logic,

$alethic_modal ==
[$domains == $constant,

$designation == $rigid,
$terms == $local,
$modalities == $modal_system_M]).

tff(fruit_type,type, fruit: $tType).
tff(apple_decl,type, apple: fruit).
tff(banana_decl,type, banana: fruit).
tff(healthy_decl,type, healthy: fruit > $o).
tff(rotten_decl,type, rotten: fruit > $o).

%----Apples are different from bananas
tff(apple_not_banana,axiom,

apple != banana).

%----All fruit are necessarily healthy
tff(necessary_healthy_fruit_everywhere,axiom,

! [F: fruit] : ({$necessary} @ (healthy(F)))).

%----All fruit are possibly not rotten
tff(fruit_possibly_not_rotten,axiom,

! [F: fruit] : ({$possible} @ (~ rotten(F)))).

%----Bananas are rotten in the conjecture's (local) world
tff(rotten_banana_here,axiom-local,

rotten(banana)).

%----Prove it's possible for apples to be healthy and bananas not rotten
tff(possible_fruit,conjecture,

({$possible} @ (healthy(apple) & ~ rotten(banana)))).
%--

Figure 1: NX0 example

%--
thf(apple_not_banana,axiom,

apple != banana).

thf(necessary_healthy_fruit_everywhere,axiom,
! [F: fruit] : ({$necessary} @ (healthy @ F))).

thf(fruit_possibly_not_rotten,axiom,
! [F: fruit] : ({$possible} @ (~ (rotten @ F)))).

thf(rotten_banana_here,axiom-local,
rotten @ banana).

thf(not_true,conjecture,
({$possible} @ ((healthy @ apple) & ~ (rotten @ banana)))).

%--

Figure 2: NH0 formulae

3.1. Logic Specification

In non-classical logics the same language can be used for formulae while different logics are used
for reasoning. It is therefore necessary to provide (meta-) information that specifies the logic to
be used. A TPTP annotated formula with the role logic is used for this, with a logic specification
as the formula. A logic specification consists of a defined logic (family) name identified with a
list of properties5. It is assumed that there is a single logic specification specifying all relevant
properties. However, if it should prove to be convenient in practice, future developments may
allow the logic specification to be split over multiple annotated formulae with the role logic. The
$domains property specifies whether each quantification domain is constant, varying, cumulative,
or decreasing, across the accessibility relation. The $designation property specifies whether
symbols are interpreted rigidly, i.e., interpreted as the same domain element in every world, or
flexibly, i.e., possibly interpreted as different domain elements in different worlds. The $terms
property specifies whether interpretation is local to the current world or global to all worlds.
The $modalities property specifies properties of the connectives, either as a well-known logic
system, e.g., the modal system S5, or as axiom schemes, e.g., the modal axiom 5 as in [36].
Further details of the logic specifications are in [25]. Figure 1 includes a logic specification in
NXF, which specifies:

• $alethic_modal - Alethic modal logic [37] is being used.
• $domains == $constant - The domains are the same in all worlds.
• $designation == $rigid - The interpretation of symbols is the same in all worlds.
• $terms == $local - All terms are interpreted in the local world.
• $modalities == $modal_system_M - This modality is built from:

– The distribution axiom K: □(A → B) → (□A → □B)

– The M axiom: □A → A, i.e., the accessibility relation is reflexive.

4. TPTP Problems

The TPTP problem library of test problems for ATP systems has been extended in v9.0.0 to
include problems in the NX0 and NH0 languages. To start with, monomodal normal modal logic
problems are being collected, including problems from (the citations are just some examples)
books [38, 18, 39, 40], conference and journal papers [41, 42, 43, 44], and use cases [45, 46].

5The property names have been improved since their presentation in [25]

Each problem file in the TPTP problem library has three parts: a header, optional includes, and
annotated formulae. The header section contains information for users, formatted as comments
identifying and describing the problem, providing information about occurrences of the problem
in the literature and elsewhere, providing semantic and syntactic characteristics of the problem,
and finally comments and bugfix information. The include section contains include directives
for axiom files to avoid duplication of formulae in commonly used axiomatizations. Annotated
formulae are described in Section 4.

The headers of the NX0 and NH0 problems include relevant augmented information. Figure 3
shows the Syntax and SPC (Specialist Problem Class6) fields for the problem in Figure 1. The
relevant new information is:

• The number of non-classical connectives, indexed and unindexed. For example, as shown
in Figure 3, the problem in Figure 1 has three non-indexed connectives and no indexed
connectives, written “3 {.}; 0 {#}” in the header field.

• The SPC field has values for non-classical logic problems. For example, as shown in Figure 3,
the SPC of the problem in Figure 1 is NX0_THM_NEQ_NAR – it’s in the NX0 language, is a
theorem, and there is no use of equality or arithmetic.

%--
% Syntax : Number of formulae : 10 (2 unt; 5 typ; 0 def)
% Number of atoms : 12 (1 equ)
% Maximal formula atoms : 2 (2 avg)
% Number of connectives : 10 (3 ~; 0 |; 1 &)
% (0 <=>; 0 =>; 0 <=; 0 <~>)
% (3 {.}; 0 {#})
% Maximal formula depth : 3 (2 avg)
% Maximal term depth : 1 (1 avg)
% Number of FOOLs : 3 (3 fml; 0 var)
% Number of types : 2 (1 usr)
% Number of type conns : 2 (2 >; 0 *; 0 +; 0 <<)
% Number of predicates : 5 (2 usr; 0 prp; 1-2 aty)
% Number of functors : 2 (2 usr; 2 con; 0-0 aty)
% Number of variables : 2 (2 !; 0 ?; 2 :)
% SPC : NX0_THM_NEQ_NAR
%--

Figure 3: NX0 header fields

The files in the Documents directory have been augmented:

• The TFFSynopsis, THFSynopsis, and OverallSynopsis files give the numbers of non-
classical logic problems.

• The ProblemAndSolutionStatistics file gives the numbers of non-classical connectives
in each problem.

TPTP v9.0.0 contains 147 NTF problems. There are 12 GRA (graph theory) problems, 12 LCL
(logic calculi) problems, 7 PHI (philosophy) problems, 10 PLA (planning) problems, and 106 SYO
(syntactic) problems. Fifteen problems are in the NH0 language, 132 in the NX0 language. Fifty
problems are propositional, 91 are first-order without equality, and 6 are first-order with equality.
Eight-four of the problems are known to be theorems, 43 countersatisfiable, and 20 have unknown
status.

6The problems in the TPTP library are divided into Specialist Problem Classes (SPCs) – classes of problems that
are homogeneous wrt recognizable logical, language, and syntactic characteristics.

5. TSTP Solutions

The TSTP solution library of solutions from ATP systems will be updated to include the results
of running the ATP systems KSP, nanoCoP-M, MleanCoP, and Leo-III (see Section 6.2) on the
NX0 and NH0 problems in the TPTP problem library. The TPTP format for derivations [4] can
immediately be used for writing derivations in non-classical logic. The new TPTP format for
interpretations [47] can be used to write Kripke models [48]. However, at the time of writing,
none of the solutions in the TSTP solution library are in the TPTP format using NX0 or NH0,
because none of the ATP systems output their solutions in NX0 or NH0. The task of writing
postprocessors that translate ATP systems’ native proofs and models to the TPTP format might
be future work, but providing those reduces the incentive for system developers to output TPTP
format natively. That said . . .

5.1. TSTP Derivations

Leo-III outputs its proofs of NXF/NHF problems in TPTP format, but the proofs are in the
language of the embedded problems, i.e., TF0 or TH0 (see Section 6.1). It is also often the case
that the proof includes one large step resulting from a call to an underlying ATP system, e.g.,
E [49]. The NX0/NH0 input can be grafted onto Leo-III’s proofs, and the details of the proof
from underlying ATP added in. This has been done by hand for the proof of the problem in
Figure 1, and the result is shown in Figure 4 (the type declarations are omitted for brevity). In
this case the underlying ATP system was E. Details on the proof construction process of Leo-III,
including a description of its proof search procedure, can be found in the literature [50, 51]

5.2. TSTP Interpretations

The new TPTP format for interpretations, as used for writing Kripke interpretations, deserves
some introduction. Interpretations are captured in interpretation-formulae, which are written in
TXF syntax. For interpretations of classical logic formulae the semantics is the standard classical
semantics of TXF. In contrast, for Kripke interpretations the semantics is that of modal logic
enriched with four new defined symbols:

• A defined type $world is used for the worlds of the interpretation. Different constants of
type $world are known to be unequal (but as yet no ATP systems implement that, so it’s
necessary to encode that explicitly using inequalities or the $distinct predicate).

• A defined predicate $accessible_world of type ($world * $world) > $o is used to specify
the accessibility relation between worlds.

• A defined predicate $in_world of type ($world * $o) > $o is used to specify the interpreta-
tions in the worlds.

• A defined constant $local_world of type $world > $o is used to specify the world in which
the conjecture was found to not hold (in case the interpretation represents a countermodel).

A Kripke interpretation-formula is a conjunction of a specification of the worlds, explication of
the distinctness of the worlds (until that is built into ATP systems and tools), the accessibility
relation, specification of the local world if any, and, for each world, its Tarskian interpretation (also
in the new TPTP format for interpretations). The logic specification of the problem is included
to specify that the interpretation is for formulae of that logic. This information is needed when
processing an interpretation, e.g., in verification (see Section 6.3). The interpretation-formula
does not provide this information because it underspecifies the logic in use, e.g., it’s usually not
possible to see whether the interpretation exemplifies modal system K or modal system S5 – in
both cases the interpretation could interpret the accessibility relation as an equivalence relation
(this is required for S5 but it is also OK for K). The interpretation-formula is preceded by the
necessary type declarations.

%--
tff(reflexive_M,axiom,

! [X1: '$world'] : '$accessible_world'(X1,X1)).

tff(necessary_healthy_fruit_everywhere,axiom,
! [F: fruit] : ({$necessary} @ (healthy(F)))).

tff(fruit_possibly_not_rotten,axiom,
! [F: fruit] : ({$possible} @ (~ rotten(F)))).

tff(possible_fruit,conjecture,
({$possible} @ (healthy(apple) & ~ rotten(banana)))).

tff(possible_fruit_expanded,conjecture,
? [X1: '$world'] :

('$accessible_world'('$local_world',X1) & healthy(X1,apple) & ~ rotten(X1,banana)),
inference(expand,[status(thm)],[possible_fruit])).

tff(necessary_healthy_fruit_everywhere_expanded,plain,
! [X1: '$world',X2: fruit,X3: '$world'] :

('$accessible_world'(X1,X3) => healthy(X3,X2)),
inference(expand,[status(thm)],[necessary_healthy_fruit_everywhere])).

tff(fruit_possibly_not_rotten_expanded,plain,
! [X1: '$world',X2: fruit] :
? [X3: '$world'] :

('$accessible_world'(X1,X3) & ~ rotten(X3,X2)),
inference(expand,[status(thm)],[fruit_possibly_not_rotten])).

tff(c_0_4,negated_conjecture,
~ ? [X1: '$world'] :

('$accessible_world'('$local_world',X1) & healthy(X1,apple) & ~ rotten(X1,banana)),
inference(assume_negation,[status(cth)],[possible_fruit_expanded])).

tff(c_0_7,negated_conjecture,
! [X4: '$world'] :

(~ '$accessible_world'('$local_world',X4) | ~ healthy(X4,apple) | rotten(X4,banana)),
inference(fof_nnf,[status(thm)],[c_0_4])).

tff(c_0_5,plain,
! [X8: '$world',X9: fruit,X10: '$world'] :

(~ '$accessible_world'(X8,X10) | healthy(X10,X9)),
inference(fof_nnf,[status(thm)],[necessary_healthy_fruit_everywhere_expanded])).

tff(c_0_12,plain,
! [X1: '$world',X2: fruit] : healthy(X1,X2),
inference(spm,[status(thm)],[c_0_5,reflexive_M])).

tff(c_0_13,plain,
! [X5: '$world',X6: fruit] :

('$accessible_world'(X5,esk1_2(X5,X6)) & ~ rotten(esk1_2(X5,X6),X6)),
inference(skolemize,[status(esa)],[fruit_possibly_not_rotten_expanded])).

tcf(c_0_14,negated_conjecture,
! [X1: '$world'] :

(rotten(X1,banana) | ~ '$accessible_world'('$local_world',X1)),
inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_7,c_0_12])])).

tcf(c_0_15,plain,
! [X1: '$world',X2: fruit] : '$accessible_world'(X1,esk1_2(X1,X2)),
inference(split_conjunct,[status(thm)],[c_0_13])).

tcf(c_0_16,plain,
! [X1: '$world',X2: fruit] : ~ rotten(esk1_2(X1,X2),X2),
inference(split_conjunct,[status(thm)],[c_0_13])).

tcf(c_0_17,negated_conjecture,
! [X2: fruit] : rotten(esk1_2('$local_world',X2),banana),
inference(spm,[status(thm)],[c_0_14,c_0_15])).

cnf(c_0_18,negated_conjecture,
$false,
inference(spm,[status(thm)],[c_0_16,c_0_17]),
[proof]).

%--

Figure 4: NX0 proof example

The problem in Figure 1 can be made into a non-theorem by changing the {$possible} in
the conjecture to {$necessary}. Figure 5 shows the worlds and the first world’s Tarskian
interpretation for a Kripke (counter)model (the type declarations are omitted for brevity) of the
modified problem. The second world is the same except that bananas are not rotten. Note that
the quantification semantics of subformulae in the second argument of the $in_world predicate
such as ? [DP: d_fruit] : (DP = d_apple) is not classical but instead that of modal logic with
varying domains, i.e., the quantification is over the domain elements that exist in w1, i.e., the
subformulae requires that the domain element d_apple exists in w1. Outside of the $in_world
predicate classical quantification is used. The model was found – after embedding to classical
logic – by Nitpick [52], and manually transformed into TPTP format.

%--
tff(semantics,logic,

$alethic_modal ==
[$domains == $constant,

$designation == $rigid,
$terms == $local,
$modalities == $modal_system_M]).

tff(d_fruit_type,type,d_fruit: $tType).
tff(d2fruit_decl,type, d2fruit: d_fruit > fruit).
tff(d_apple_decl,type,d_apple: d_fruit).
tff(d_banana_decl,type,d_banana: d_fruit).

tff(w1_decl,type,w1: $world).
tff(w2_decl,type,w2: $world).

tff(fruity_worlds,interpretation,
%----There are two worlds, w1 and w2

((! [W: $world] : (W = w1 | W = w2)
%----The conjecture was disproved in world w1

& $local_world = w1
%----World accessibility is reflexive, and ws is accessible from w1

& $accessible_world(w1,w1) %----Logic is M
& $accessible_world(w2,w2)
& $accessible_world(w1,w2))

%----Tarskian interpretation in world w1
& $in_world(w1,

%----There are two fruit in the domain, apple and banana
((! [F: fruit] : ? [DF: d_fruit] : F = d2fruit(DF)

& ! [DF: d_fruit] : (DF = d_apple | DF = d_banana)
& $distinct(d_apple,d_banana)

%----The local domain elements
& ? [DP: d_fruit] : (DP = d_apple)
& ? [DP: d_fruit] : (DP = d_banana)

%----The type-promotion is reflexive
& ! [DF1: d_fruit,DF2: d_fruit] :

(d2fruit(DF1) = d2fruit(DF2) => DF1 = DF2))
%----The constant apple is interpreted as the domain element

& (apple = d2fruit(d_apple)
%----The constant banana is interpreted as the domain element

& banana = d2fruit(d_banana))
%----Apples and bananas are healthy

& (healthy(d2fruit(d_apple))
& healthy(d2fruit(d_banana))

%----Apples are not rotten, bananas are rotten in the local world w1
& ~ rotten(d2fruit(d_apple))
& rotten(d2fruit(d_banana)))))

%--

Figure 5: NX0 Kripke (counter)model example

6. Software Support

TPTP World software support for non-classical logics has been developed, and continues to be
developed, for access to and manipulation of problems, ATP systems, solutions, and process-
ing tools. All the software is freely available from GitHub7, and mostly available for use in
SystemOnTPTP (see Section 6.4).

6.1. Parsers and Printers

The TPTP4X utility and the BNF-based suite of parsers [31] can parse NXF and NHF formulae.
TPTP4X parses problems and solutions, can apply various transformations, and pretty-prints
the formulae. The BNF-based parsers offer stricter parsing than TPTP4X, can present the parse
trees in various forms, but cannot transform or pretty-print the formulae.

In addition to the TPTP World’s own tools, a suite of tools that can parse and manipulate
NXF and NHF formulae is available in the Leo-III framework [51]. The tptp-utils tool [53]
can read formulae in all the TPTP languages, including NXF and NHF. It does syntax checking,
translations, generation of parse trees, (basic) linting, and pretty-printing. For NXF and
NHF in particular, it can sanity check logic specifications for modal logics. It comes with a
complete definition of abstract syntax trees for the internal representation. Its underlying parser
written in Scala, which is also used by Leo-III, is available as the stand-alone parsing library
scala-tptp-parser [54].

In order to support existing ATP systems that do not (yet) read TPTP NX0 or NH0 formulae,
some syntax translators have been implemented to convert NX0 formulae into the systems’ native
syntaxes. Thus far front-end translators have been implemented for KSP, nanoCoP-M, and
MleanCoP. Thankfully this has been quite easy, and implemented in sed. In a related effort, the
NTFLET Logic Embedding Tool [55] does a shallow embedding of NXF problems into TXF or
THF, and NHF problems into THF [56, 57, 58, 59]. By default NTFLET produces TX0 or TH0,
but it can optionally produce polymorphic TH1 or TX1 (which can be significantly shorter if the
input problem contains many user types). Currently NTFLET supports a range of modal logics,
a range of first-order quantified hybrid logics [60], public announcement logic [61, 62], and two
different dyadic deontic logics [63, 64]. Any TPTP-compliant TXF/THF ATP system can be
added as a backend to NTFLET to form an ATP system for NXF/NHF (see Section 6.2).

6.2. ATP Systems

ATP for non-classical logics is a well established endeavour (particularly for propositional
non-classical logics), but there are significantly fewer ATP systems available than for classical
logics. The ATP systems that we know of are KSP [65, 44], nanoCoP-M [66], MleanCoP [67],
MetTeL2 [68], Leo-III [51], LoTREC [69], and MSPASS [70]. As noted in Section 6.1, translators
have been implemented from the TPTP syntax to the native syntaxes of KSP, nanoCoP-M, and
MleanCoP, so that those systems can attempt the NX0 problems in the TPTP problem library.

There have been successful efforts that translate/embed non-classical logic into a classical logic,
and apply a classical logic ATP system [71, 72, 73, 58, 74] (i.e., including that used in Leo-III).
However, none of them (other than Leo-III) provide full generality. Leo-III can be used on NXF
and NHF problems natively, via the embedding approach described in Section 6.1. As noted
there, any TPTP-compliant TXF/THF ATP system can replace Leo-III as a backend after the
embedding, thus offering a suite of system variants. A comparative study of the performance of
these systems is given in [75].

7github.com/TPTPWorld

https://github.com/TPTPWorld

6.3. Verifiers and Viewers

The GDV derivation verifier [76] can verify such proofs in TPTP format. GDV does structural
verification, e.g., checking that the derivation is acyclic, origin verification, i.e., checking that the
leaves of the derivation are (derivable) from the problem formulae, inference verification using
trusted ATP systems, e.g., checking that an inferred formula is a theorem of the parents, and
completeness verification, e.g., checking that the root of a refutation is false. As there are no ATP
systems that output TPTP format proofs for non-classical problems yet, it has been tested with
examples created by hand. GDV is available as a standalone tool, and also in SystemOnTSTP
(see Section 6.4).

The AGMV model verifier [47] can verify Kripke models in TPTP format. AGMV does syntax
and type checking, verifies that the interpretation-formula is satisfiable using a trusted model
finder, and verifies that the problem formulae are theorems of the interpretation-formula using
a trusted theorem prover. AGMV has been tested with examples created by hand. AGMV is
available as a standalone tool, and also in SystemOnTSTP (see Section 6.4).

The IDV Interactive Derivation Viewer [77] is able to display NX0 derivations in TPTP format.
Figure 6 shows the derivation in Figure 4. The pointer is hovering over the node c_0_12, whose
formula shown in the lefthand panel, expresses that in all worlds all fruit are healthy. The red
and blue coloring shows the ancestors and descendants of the node in the derivation. IDV is
available in SystemOnTSTP (see Section 6.4).

Figure 6: IDV view of the proof in Figure 4

The IIV Interactive Interpretation Viewer [47, 78] is able to display the Tarskian interpretation
of a world in a Kripke model in TPTP format. Figure 7 shows the interpretation of world w1 in
Figure 5. The pointer is hovering over the node d_banana. The red $o ancestor indicates that
rotten has a boolean result type. The blue $true descendant indicates that the interpretation
of rotten for the domain element d_banana is true, and the blue $o descendant indicates that
the domain type is boolean. IIV is available in SystemOnTSTP (see Section 6.4). A wrapper to
view the worlds and accessibility relationship of a Kripke model is being developed, which will
be linked to IIV to view a chosen world’s Tarskian interpretation.

Figure 7: IIV view of the interpretation of world w1 in Figure 5

6.4. Online

The TPTP World has three online interfaces that provide access to ATP systems and tools
[79, 80]: SystemB4TPTP8 for preparing formulae (often problems) for systems and tools,
SystemOnTPTP9 for submitting formulae to ATP systems, and SystemOnTSTP10 for processing
solutions (often derivations or models) from systems and tools. SystemB4TPTP includes
access to TPTP4X, the BNF-based parsers, the KSP-to-TPTP translator, and NTFLET (see
Section 6.1). SystemOnTPTP includes the ATP systems KSP, nanoCoP-M, MleanCoP, and
Leo-III. SystemOnTSTP includes GDV, AGMV, IDV, IIV, and the InterpretByATP tool for
evaluating a formula wrt an interpretation (including Kripke interpretations).

The TPTP2T tool for listing problems and solutions with specified syntactic and semantic
characteristics is available in a separate interface11. It can be used, e.g., to list NX0 problems
that are theorems, contain equality, and are easy to prove.

7. Conclusion

This paper describes the latest extensions to the TPTP World, providing languages, problems,
solutions, and infrastructure for non-classical logics. The topics covered are the TPTP languages
for writing non-classical problems and solutions, non-classical problems for the TPTP problem
library, solutions to such problems in the TSTP solution library, and ATP systems and tools for
non-classical logics. These are the keys steps towards releasing TPTP v9.0.0, with normal modal
logic problems.

Ongoing and future work includes:

• Collecting lots more problems in non-classical logics.
• Working with ATP system developers to upgrade their systems to natively read problems

written in NXF and NHF, and to produce proofs and models in TPTP format.
• Optimizing the NTFLET embeddings to automatically recognize language fragments for

which TXF embedding is possible.
• Producing a complete interactive viewer for Kripke interpretations written in TPTP-format.

8tptp.org/cgi-bin/SystemB4TPTP
9tptp.org/cgi-bin/SystemOnTPTP
10tptp.org/cgi-bin/SystemOnTSTP
11tptp.org/cgi-bin/TPTP2T

https://tptp.org/cgi-bin/SystemB4TPTP
https://tptp.org/cgi-bin/SystemOnTPTP
https://tptp.org/cgi-bin/SystemOnTSTP
https://tptp.org/cgi-bin/TPTP2T

• Standardizing the embedding of further specific non-classical logics in NXF/NHF (including
choosing connective names, and allowed parameters of the logic specification).

• A non-classical division of CASC.

References

[1] G. Sutcliffe, The TPTP Problem Library and Associated Infrastructure. From CNF to TH0,
TPTP v6.4.0, Journal of Automated Reasoning 59 (2017) 483–502.

[2] G. Sutcliffe, The TPTP Problem Library and Associated Infrastructure. The FOF and CNF
Parts, v3.5.0, Journal of Automated Reasoning 43 (2009) 337–362.

[3] G. Sutcliffe, The TPTP World - Infrastructure for Automated Reasoning, in: E. Clarke,
A. Voronkov (Eds.), Proceedings of the 16th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, number 6355 in Lecture Notes in Artificial
Intelligence, Springer-Verlag, 2010, pp. 1–12.

[4] G. Sutcliffe, S. Schulz, K. Claessen, A. Van Gelder, Using the TPTP Language for Writing
Derivations and Finite Interpretations, in: U. Furbach, N. Shankar (Eds.), Proceedings of
the 3rd International Joint Conference on Automated Reasoning, number 4130 in Lecture
Notes in Artificial Intelligence, Springer, 2006, pp. 67–81.

[5] G. Sutcliffe, The SZS Ontologies for Automated Reasoning Software, in: G. Sutcliffe,
P. Rudnicki, R. Schmidt, B. Konev, S. Schulz (Eds.), Proceedings of the LPAR Workshops:
Knowledge Exchange: Automated Provers and Proof Assistants, and the 7th International
Workshop on the Implementation of Logics, number 418 in CEUR Workshop Proceedings,
2008, pp. 38–49.

[6] G. Sutcliffe, The CADE ATP System Competition - CASC, AI Magazine 37 (2016) 99–101.
[7] A. Steen, C. Benzmüller, What are Non-classical Logics and Why Do We Need Them? An

Extended Interview with Dov Gabbay and Leon van der Torre, Künstliche Intelligenz (2024).
DOI: 10.1007/s13218-023-00824-7.

[8] L. Giordano, V. Gliozzi, N. Olivetti, G. Pozzato, C. Schwind, Non-classical Logics for
Knowledge Representation and Reasoning, Intelligenza Artificiale 5 (2011) 127–131.

[9] A. Liberman, A. Achen, R. Rendsvig, Dynamic Term-modal Logics for First-order Epistemic
Planning, Artificial Intelligence 286 (2020). DOI: 10.1016/j.artint.2020.103305.

[10] C. Cachin, D. Lehnherr, T. Studer, Modal and Justification Logics for Multi-agent Systems,
in: A. Herzig, J. Luo, P. Pardo (Eds.), Proceedings of the 5th International Conference on
Logic and Argumentation, number 14156 in Lecture Notes in Computer Science, Springer-
Verlag, 2023, pp. 3–8.

[11] C. Benzmüller, X. Parent, L. van der Torre, Designing Normative Theories for Ethical
and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support, Artificial
Intelligence 287 (2020) Article 103348.

[12] C. Benzmüller, B. Woltzenlogel Paleo, The Inconsistency in Gödel’s Ontological Argument:
A Success Story for AI in Metaphysics, in: S. Kambhampati (Ed.), Proceedings of the 25th
International Joint Conference on Artificial Intelligence, AAAI Press, 2016, pp. 936–942.

[13] J. van Benthem, Towards a Computational Semantics, in: P. Gärdenfors (Ed.), Generalized
Quantifiers, volume 31 of Studies in Linguistics and Philosophy, 1987. DOI: 10.1007/978-94-
009-3381-1_2.

[14] A. Kratzer, What ’must’ and ’can’ Must and Can Mean, Linguistics and Philosophy 1
(1977) 337–355.

[15] R. Bryant, A Methodology for Hardware Verification Based on Logic Simulation, Journal of
the Association for Computing Machinery 38 (1991) 299–328.

[16] G. Priest, An Introduction to Non-Classical Logic: From If to Is, Cambridge University
Press, 2008.

[17] L. Goble, The Blackwell Guide to Philosophical Logic, Wiley-Blackwell, 2001.

[18] M. Fitting, R. Mendelsohn, First-Order Modal Logic, Kluwer, 1998.
[19] G. Schurz, Alethic Modal Logics and Semantics, in: D. Jacquette (Ed.), A Companion to

Philosophical Logic, Wiley, 2006, pp. 442–477.
[20] R. Hilpinen, Deontic Logic: Introductory and Systematic Readings, D. Reidel, 1971.
[21] H. van Ditmarsch, J. Halpern, W. van der Hoek, B. Kooi, Handbook of Epistemic Logic,

College Publications, 2015.
[22] J. Hintikka, Knowledge and Belief - An Introduction to the Logic of the Two Notions, Texts

in Philosophy, Cornell University Press, 1962.
[23] V. Goranko, A. Rumberg, Temporal Logic, in: E. Zalta (Ed.), Stanford Encyclopedia of

Philosophy, Stanford University, 2022.
[24] P. Blackburn, J. van Benthem, F. Wolther, Handbook of Modal Logic, number 3 in Studies

in Logic and Practical Reasoning, Elsevier Science, 2006.
[25] A. Steen, D. Fuenmayor, T. Gleißner, G. Sutcliffe, C. Benzmüller, Automated Reasoning

in Non-classical Logics in the TPTP World, in: B. Konev, C. Schon, A. Steen (Eds.),
Proceedings of the 8th Workshop on Practical Aspects of Automated Reasoning, number
3201 in CEUR Workshop Proceedings, 2022, p. Online.

[26] G. Sutcliffe, C. Suttner, The TPTP Problem Library: CNF Release v1.2.1, Journal of
Automated Reasoning 21 (1998) 177–203.

[27] G. Sutcliffe, S. Schulz, K. Claessen, P. Baumgartner, The TPTP Typed First-order Form
with Arithmetic, in: N. Bjørner, A. Voronkov (Eds.), Proceedings of the 18th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning, number 7180
in Lecture Notes in Artificial Intelligence, Springer-Verlag, 2012, pp. 406–419.

[28] J. Blanchette, A. Paskevich, TFF1: The TPTP Typed First-order Form with Rank-1
Polymorphism, in: M. Bonacina (Ed.), Proceedings of the 24th International Conference on
Automated Deduction, number 7898 in Lecture Notes in Artificial Intelligence, Springer-
Verlag, 2013, pp. 414–420.

[29] G. Sutcliffe, C. Benzmüller, Automated Reasoning in Higher-Order Logic using the TPTP
THF Infrastructure, Journal of Formalized Reasoning 3 (2010) 1–27.

[30] C. Kaliszyk, G. Sutcliffe, F. Rabe, TH1: The TPTP Typed Higher-Order Form with
Rank-1 Polymorphism, in: P. Fontaine, S. Schulz, J. Urban (Eds.), Proceedings of the 5th
Workshop on Practical Aspects of Automated Reasoning, number 1635 in CEUR Workshop
Proceedings, 2016, pp. 41–55.

[31] A. Van Gelder, G. Sutcliffe, Extending the TPTP Language to Higher-Order Logic with
Automated Parser Generation, in: U. Furbach, N. Shankar (Eds.), Proceedings of the 3rd
International Joint Conference on Automated Reasoning, number 4130 in Lecture Notes in
Artificial Intelligence, Springer-Verlag, 2006, pp. 156–161.

[32] R. Smullyan, What is the Name of This Book? The Riddle of Dracula and Other Logical
Puzzles, Prentice-Hall, 1978.

[33] M. Baldoni, Normal Multimodal Logics: Automatic Deduction and Logic Programming
Extensions, Ph.D. thesis, Universita degli studi di Torino, Torino, Italy, 1998.

[34] D. Harel, D. Kozen, J. Tiuryn, Dynamic Logic, MIT Press, 2000.
[35] G. Sutcliffe, J. Zimmer, S. Schulz, TSTP Data-Exchange Formats for Automated Theorem

Proving Tools, in: W. Zhang, V. Sorge (Eds.), Distributed Constraint Problem Solving and
Reasoning in Multi-Agent Systems, number 112 in Frontiers in Artificial Intelligence and
Applications, IOS Press, 2004, pp. 201–215.

[36] J. Garson, Modal Logic, in: E. Zalta (Ed.), Stanford Encyclopedia of Philosophy, Stanford
University, 2018.

[37] C. Menzel, Alethic Modalities, in: R. Audi (Ed.), The Cambridge Dictionary of Philosophy,
Cambridge University Press, 2015, p. 22.

[38] G. Forbes, Modern Logic. A Text in Elementary Symbolic Logic, Oxford University Press,
1994.

[39] R. Girle, Modal Logics and Philosophy, Acumen Publishers, 2000.

[40] T. Sider, Logic for Philosophy, Oxford University Press, 2010.
[41] R. Reiter, What Should a Database Know?, Journal of Logic Programming 14 (1992)

127–153.
[42] L. Fariñas del Cerro, A. Herzig, D. Longin, O. Rifi, Belief Reconstruction in Cooperative

Dialogues, in: F. Giunchiglia (Ed.), Proceedings of the 8th International Conference on
Artificial Intelligence: Methodology, SYstems, and Applications, number 1480 in Lecture
Notes in Computer Science, Springer-Verlag, 1998, pp. 254–266.

[43] M. Stone, Towards a Computational Account of Knowledge, Action and Inference in
Instructions, Journal of Language and Computation 1 (2000) 231–246.

[44] F. Papacchini, C. Nalon, U. Hustadt, C. Dixon, Efficient Local Reductions to Basic Modal
Logic, in: A. Platzer, G. Sutcliffe (Eds.), Proceedings of the 28th International Conference on
Automated Deduction, number 12699 in Lecture Notes in Computer Science, Springer-Verlag,
2021, pp. 76–92.

[45] C. Benzmüller, B. Woltzenlogel Paleo, Automating Gödel’s Ontological Proof of God’s
Existence with Higher-order Automated Theorem Provers, in: T. Schaub (Ed.), Proceedings
of the 21st European Conference on Artificial Intelligence, 2014, pp. 93–98.

[46] M. Mishra, A. Ravishankar Sarma, Tolerating Inconsistencies: A Study of Logic of Moral
Conflicts, Bulletin of the Section of Logic 51 (2022) 177–195.

[47] A. Steen, G. Sutcliffe, P. Fontaine, J. McKeown, Representation, Verification, and Visual-
ization of Tarskian Interpretations for Typed First-order Logic, in: R. Piskac, A. Voronkov
(Eds.), Proceedings of 24th International Conference on Logic for Programming Artificial
Intelligence and Reasoning, number 94 in EPiC Series in Computing, EasyChair Publications,
2023, pp. 369–385.

[48] S. Kripke, Semantical Considerations on Modal Logic, Acta Philosophica Fennica 16 (1963)
83–94.

[49] S. Schulz, S. Cruanes, P. Vukmirović, Faster, Higher, Stronger: E 2.3, in: P. Fontaine (Ed.),
Proceedings of the 27th International Conference on Automated Deduction, number 11716
in Lecture Notes in Computer Science, Springer-Verlag, 2019, pp. 495–507.

[50] A. Steen, Extensional Paramodulation for Higher-order Logic and its Effective Implementa-
tion Leo-III, Ph.D. thesis, Free University of Berlin, Berlin, Germany, 2018.

[51] A. Steen, C. Benzmüller, Extensional Higher-Order Paramodulation in Leo-III, Journal of
Automated Reasoning 65 (2021) 775–807.

[52] J. Blanchette, T. Nipkow, Nitpick: A Counterexample Generator for Higher-Order Logic
Based on a Relational Model Finder, in: M. Kaufmann, L. Paulson (Eds.), Proceedings of
the 1st International Conference on Interactive Theorem Proving, number 6172 in Lecture
Notes in Computer Science, Springer-Verlag, 2010, pp. 131–146.

[53] A. Steen, tptp-utils v1.1, 2021. DOI: 10.5281/zenodo.5877564.
[54] A. Steen, Scala TPTP Parser v1.5, 2021. DOI: 10.5281/zenodo.5578872.
[55] A. Steen, An extensible logic embedding tool for lightweight non-classical reasoning (short

paper), in: B. Konev, C. Schon, A. Steen (Eds.), Proceedings of the 8th Workshop on
Practical Aspects of Automated Reasoning, number 3201 in CEUR Workshop Proceedings,
2022, p. Online.

[56] C. Benzmüller, L. Paulson, Quantified Multimodal Logics in Simple Type Theory, Logica
Universalis 7 (2013) 7–20.

[57] C. Benzmüller, T. Raths, HOL Based First-order Modal Logic Provers, in: K. McMillan,
A. Middeldorp, A. Voronkov (Eds.), Proceedings of the 19th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning, number 8312 in Lecture Notes
in Computer Science, Springer-Verlag, 2013, pp. 127–136.

[58] T. Gleißner, A. Steen, C. Benzmüller, Theorem Provers for Every Normal Modal Logic,
in: T. Eiter, D. Sands (Eds.), Proceedings of the 21st International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, number 46 in EPiC Series in
Computing, EasyChair Publications, 2017, pp. 14–30.

[59] T. Gleißner, A. Steen, The MET: The Art of Flexible Reasoning with Modalities, in:
C. Benzmüller, F. Ricca, X. Parent, D. Roman (Eds.), Proceedings of the 2nd International
Joint Conference on Rules and Reasoning, number 11092 in Lecture Notes in Computer
Science, 2018, pp. 274–284.

[60] C. Areces, B. ten Cate, Hybrid Logics, in: P. Blackburn, J. van Benthem, F. Wolter
(Eds.), Handbook of Modal Logic, number 3 in Studies in Logic and Practical Reasoning,
North-Holland, 2007, pp. 821–868.

[61] H. van Ditmarsch, W. van de Hoek, B. Kooi, Dynamic Epistemic Logic, Springer, 2007.
[62] E. Pacuit, Dynamic Epistemic Logic I: Modeling Knowledge and Belief, Philosophy Compass

8 (2013) 798–814.
[63] J. Carmo, A. Jones, Completeness and Decidability Results for a Logic of Contrary-to-duty

Conditionals, Journal of Logic and Computation 23 (2013).
[64] L. Åqvist, Deontic Logic, in: D. Gabbay, F. Guenthner (Eds.), Handbook of Philosophical

Logic, volume 8, Springer, 2002, pp. 147–264.
[65] C. Nalon, U. Hustadt, C. Dixon, KSP: Architecture, Refinements, Strategies and Experi-

ments, Journal of Automated Reasoning 64 (2020) 461–484.
[66] J. Otten, The nanoCoP 2.0 Connection Provers for Classical, Intuitionistic and Modal

Logics, in: A. Das, S. Negri (Eds.), Proceedings of the 30th International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, number 12842 in
Lecture Notes in Artificial Intelligence, Springer-Verlag, 2021, pp. 236–249.

[67] J. Otten, MleanCoP: A Connection Prover for First-Order Modal Logic, in: S. Demri,
D. Kapur, C. Weidenbach (Eds.), Proceedings of the 7th International Joint Conference on
Automated Reasoning, number 8562 in Lecture Notes in Artificial Intelligence, 2014, pp.
269–276.

[68] D. Tishkovsky, R. Schmidt, M. Khodadadi, The Tableau Prover Generator MetTeL2,
in: L. Fariñas del Cerro, A. Herzig, J. Mengin (Eds.), Proceedings of the 13th European
conference on Logics in Artificial Intelligence, number 7519 in Lecture Notes in Computer
Science, Springer, 2012, pp. 492–495.

[69] L. Fariñas del Cerro, D. Fauthoux, O. Gasquet, A. Herzig, D. Longin, F. Massacci, LoTREC:
The Generic Tableau Prover for Modal and Description Logics, in: R. Gore, A. Leitsch,
T. Nipkow (Eds.), Proceedings of the International Joint Conference on Automated Rea-
soning, number 2083 in Lecture Notes in Artificial Intelligence, Springer-Verlag, 2001, pp.
453–458.

[70] U. Hustadt, R. Schmidt, MSPASS: Modal Reasoning by Translation and First-Order
Resolution, in: R. Dyckhoff (Ed.), Proceedings of the International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, number 1847 in Lecture Notes in
Artificial Intelligence, Springer-Verlag, 2000, pp. 67–71.

[71] I. Horrocks, A. Voronkov, Reasoning Support for Expressive Ontology Languages Using
a Theorem Prover, in: J. Dix, S. Hegner (Eds.), Proceedings of the 4th International
Symposium on Foundations of Information and Knowledge Systems, number 3861 in Lecture
Notes in Computer Science, Springer-Verlag, 2006, pp. 201–218.

[72] R. Schmidt, U. Hustadt, The Axiomatic Translation Principle for Modal Logic, ACM
Transactions on Compututational Logic 8 (2007) 19.

[73] M. Schneidner, G. Sutcliffe, Reasoning in the OWL 2 Full Ontology Language using
First-Order Automated Theorem Proving, in: N. Bjørner, V. Sofronie-Stokkermans (Eds.),
Proceedings of the 23rd International Conference on Automated Deduction, number 6803 in
Lecture Notes in Artificial Intelligence, Springer-Verlag, 2011, pp. 461–475.

[74] C. Eisenhofer, R. Alassaf, M. Rawson, L. Kovács, Non-Classical Logics in Satisfiability
Modulo Theories, in: D. Ramanayake, J. Urban (Eds.), Proceedings of the 32nd International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods, number
14278 in Lecture Notes in Computer Science, 2023, pp. 24–36.

[75] A. Steen, G. Sutcliffe, T. Scholl, C. Benzmüller, Solving Modal Logic Problems by Translation

to Higher-order Logic, in: A. Herzig, J. Luo, P. Pardo (Eds.), Proceedings of the 5th
International Conference on Logic and Argumentation, number 14156 in Lecture Notes in
Computer Science, Springer, 2023, pp. 25–43. (Best paper award).

[76] G. Sutcliffe, Semantic Derivation Verification: Techniques and Implementation, International
Journal on Artificial Intelligence Tools 15 (2006) 1053–1070.

[77] S. Trac, Y. Puzis, G. Sutcliffe, An Interactive Derivation Viewer, in: S. Autexier,
C. Benzmüller (Eds.), Proceedings of the 7th Workshop on User Interfaces for Theorem
Provers, volume 174 of Electronic Notes in Theoretical Computer Science, 2007, pp. 109–123.

[78] J. McKeown, G. Sutcliffe, An Interactive Interpretation Viewer for Typed First-order
Logic, in: A. Ae Chun, M. Franklin (Eds.), Proceedings of the 36th International FLAIRS
Conference, 2023. DOI: 10.32473/flairs.36.133073.

[79] G. Sutcliffe, SystemOnTPTP, in: D. McAllester (Ed.), Proceedings of the 17th International
Conference on Automated Deduction, number 1831 in Lecture Notes in Artificial Intelligence,
Springer-Verlag, 2000, pp. 406–410.

[80] G. Sutcliffe, TPTP, TSTP, CASC, etc., in: V. Diekert, M. Volkov, A. Voronkov (Eds.),
Proceedings of the 2nd International Symposium on Computer Science in Russia, number
4649 in Lecture Notes in Computer Science, Springer-Verlag, 2007, pp. 6–22.

	1 Introduction
	2 The Classical TPTP Languages
	3 The Non-classical TPTP Languages
	3.1 Logic Specification

	4 TPTP Problems
	5 TSTP Solutions
	5.1 TSTP Derivations
	5.2 TSTP Interpretations

	6 Software Support
	6.1 Parsers and Printers
	6.2 ATP Systems
	6.3 Verifiers and Viewers
	6.4 Online

	7 Conclusion

