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Abstract
Cryptographic hash functions play a crucial role in ensuring data security, generating fixed-length hashes from

variable-length inputs. The hash function SHA-256 is trusted for data security due to its resilience after over

twenty years of intense scrutiny. One of its critical properties is collision resistance, meaning that it is infeasible

to find two different inputs with the same hash. Currently, the best SHA-256 collision attacks use differential

cryptanalysis to find collisions in simplified versions of SHA-256 that are reduced to have fewer steps, making it

feasible to find collisions.

In this paper, we use a satisfiability (SAT) solver as a tool to search for step-reduced SHA-256 collisions, and

dynamically guide the solver with the aid of a computer algebra system (CAS) used to detect inconsistencies

and deduce information that the solver would otherwise not detect on its own. Our hybrid SAT + CAS solver

significantly outperformed a pure SAT approach, enabling us to find collisions in step-reduced SHA-256 with

significantly more steps. Using SAT + CAS, we find a 38-step collision of SHA-256 with a modified initialization

vector—something first found by a highly sophisticated search tool of Mendel, Nad, and Schläffer. Conversely, a

pure SAT approach could find collisions for no more than 28 steps. However, our work only uses the SAT solver

CaDiCaL and its programmatic interface IPASIR-UP.

Keywords
Hash Functions, Differential Cryptanalysis, SAT Solving, Inconsistency Blocking, Computer Algebra System

1. Introduction

Cryptographic hash functions play a vital role in information security. They are widely relied on for data

security and integrity. Due to the high reliance on cryptographic hash functions for security, they have

been constantly targeted for cryptanalysis. Through these cryptanalytic attacks, some hash functions

that were heavily relied on for security purposes have met their end of life. Some prominent examples

include MD5 and SHA-1—hash functions that were compromised in terms of collision resistance in

the works of Wang and Yu [1] and Stevens et al. [2] respectively. SHA-1 was published by NIST in

1995 [3]. Six years later, NIST has also published a new family of hash functions called SHA-2. Soon

after, weaknesses were found in SHA-1 [4], and in 2011 NIST formally recommended anyone relying on

SHA-1 for security migrate to other hash functions like SHA-2. Consequently, hash functions in the

SHA-2 family have become very widely used. For example, the function SHA-256 is used for transaction

signatures and for proof-of-work in the Bitcoin protocol [5].

Despite the arrival of SHA-3 [6], NIST still recommends both the SHA-2 and SHA-3 families. SHA-2

is attractive for its ease-of-computation while still being secure to all known attacks—no collision attack

has ever been successful on the full version, despite a large number of attempts and partial results. One

such attack by Mendel et al. [7] in 2013 utilized differential cryptanalysis for SHA-256. It was inspired by

the 2005 work of Wang and Yu [1] that used a differential attack (involving modular integer differences)

to find MD5 collisions. Mendel et al. found collisions for step-reduced versions of SHA-256 up to 28

steps and a “semi-free-start” collision (where the hash function is slightly modified to allow changing

some predefined constants) of SHA-256 up to 38 steps. These records held for over ten years and were
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only broken in the last few months with the announcement of a 31-step SHA-256 collision [8] and a

39-step semi-free-start (SFS) SHA-256 collision [9]. For more details and background, see Section 2.

Traditionally, the best collisions for step-reduced SHA-256 were found using highly sophisticated

tools specifically designed to search for such collisions. Conversely, another line of research examined

using satisfiability (SAT) solvers to search for collisions in step-reduced SHA-256, but the results of SAT

solvers were not at all competitive with the best custom-written search tools. For example, in 2016,

Prokop [10] successfully used a SAT solver to find a collision for 24 steps of SHA-256, but was not able

to go higher. In 2019, Nejati and Ganesh [11] pushed this to 25 steps by using a SAT solver that was

tuned to do programmatic propagation specifically for the collision-finding problem. However, this was

still a long way from Mendel et al.’s 28 step collision or 38 step SFS collision from 2013 [7].

In our work, we develop a hybrid approach of using a programmatic SAT solver that uses a computer

algebra system (CAS) to provide the SAT solver information it wouldn’t be able to detect on its own—an

approach that has been successful on many other problems recently [12]. We encode the collision-

finding problem directly into SAT (see Section 3) and then programmatically encode several of the

mathematical constraints exploited by Mendel et al. [7] that made their 2013 search so effective.

In particular, we are able to detect and block inconsistencies in the solver’s state using programmatic

inconsistency blocking (see Section 4) and are able to deduce nontrivial information about the solver’s

state using programmatic propagation (see Section 5). Our “SAT + CAS” solver was able to find several

new 38-step SFS SHA-256 collisions, matching the same step count of the SFS collisions found by Mendel

et al. [7], while a pure SAT approach was not able to go any further than 28 steps—see Section 6 for a

summary of our results.

We note that our SAT-based tool is significantly slower than the dedicated search tool of Mendel

et al. [7] for finding 38-step SFS SHA-256 collisions. However, the novelty of our work is that we show

that the performance of an off-the-shelf SAT solver can be dramatically improved by exploiting the

IPASIR-UP interface. Moreover, the 38-step SFS SHA-256 collisions that we found are of independent

interest as they have additional structure not present in Mendel et al. [7]’s 38-step SFS SHA-256

collisions—an additional two internal state variables have zero difference (see Table 5) when compared

with Mendel et al. [7]’s collision.

2. Background

In this section we provide background on cryptographic hash functions, especially SHA-256, and then

discuss differential cryptanalysis and the notation we use in our work (see Section 2.3). We also briefly

discuss SAT solving and summarize previous collision attacks on SHA-256.

2.1. Cryptographic Hash Functions

Cryptographic hash functions take an arbitrary-length input and produce a short fixed-length output

that acts as a signature or fingerprint of the input. The fingerprint is called a hash value and the input

is known as a message. Hash functions are extensively used for data integrity and security. They are

particularly helpful in cases where storing the message would pose a security threat but a signature is

still required for verification, such as a password in a database. The hashes of the passwords can be

stored instead and each time the user enters their password, the hashes can be matched for verification.

Hashes can be used for data integrity as well. For example, when some data is stored or transferred,

the integrity can be checked by comparing a known hash with the hash of the stored data. This integrity

check ensures that the data was preserved without alteration.

Cryptographic hash functions are expected to have three primary characteristics:

• Preimage resistance: It’s computationally infeasible to find an input, x, given a hash, y, such that

y is the hash of x.

• 2nd preimage resistance: Given an input, x, and its hash, y, it’s infeasible to find a different input,

x′, that produces the same hash y.
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Figure 1: SHA-256 processes the input (with padding if needed) into message blocks (abbreviated as “MB”),
which are sequentially fed to the compression function, f . The output of each compression is used as the chaining
value in the next compression. The compression of the last message block produces the final hash. The initial
chaining value (IV) is fixed by the specification of SHA-256. The entire method is known as the Merkle–Damgård
construction, which is popular for building collision-resistant hash functions.
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Figure 2: A diagram depicting the simplified version of SHA-256 we consider in our work. fn is the step-reduced
compression function having n steps. The chaining value, CV, is arbitrary for semi-free-start (SFS) collisions and
is not required to match the IV actually used in SHA-256—though a SFS colliding message pair is required to
have matching CV s.

• Collision resistance: It’s infeasible to find an input pair, x and x′ (x ̸= x′), that both produce the

same hash.

An example of a weak hash function is MD4 [13] because it does not have collision resistance—an

attacker can easily generate colliding message pairs.

2.2. SHA-256

SHA-256 is a hash function that takes an arbitrary-length input and pads it as necessary to produce one

or many 512-bit message blocks. Afterwards, the message blocks are processed iteratively to produce a

256-bit hash. Each message block is processed by a compression function that takes the message block

and a 256-bit chaining value as inputs (see Figure 1).

In the compression function, 64 rounds (also called steps) of transformations are performed to

produce a hash. The hash from processing a single message block is used as the chaining value for

the next message block. This means that altering a message block will lead to cascading changes in

the next message blocks in the sequence. The chaining value for the first message block is set by the

specification [14] to a fixed value, known as the standard IV (initialization vector). The hash output is

the chaining value produced after applying the compression function on the last message block.

In our work, we focus on a step-reduced version of SHA-256. This means that the number of

rounds/steps in the compression function is reduced to make the problem easier. Moreover, we only

consider messages with a single block of size 512 bits. Because the hash output has 256 bits, there

is certainly enough freedom in the input so that many collisions exist without needing to consider

multiple blocks.

A relaxed type of collision known as a semi-free-start (SFS) collision allows an arbitrary initial

chaining value CV, so long as the same chaining value is used to initialize the hash function for both

colliding messages in the SFS collision (see Figure 2). In our work, we find SFS collisions for SHA-256

using up to 38 steps of the compression function. Note that the actual SHA-256 hash function has 64

steps, meaning we are still very far from finding a true SHA-256 collision (roughly speaking, as the

number of steps increases the collision problem becomes exponentially more difficult). The best known

collision attacks on SHA-256 are very far from the full 64 steps, so this provides evidence that SHA-256

is secure.



2.2.1. Message Expansion

SHA-256 performs operations on 32-bit words only. The input message block consists of 16 such words,

Mi for 0 ≤ i < 16, but the compression function expands the Mi to more words (dependant on M0 to

M15) to fill up for the rest of the 64 steps. Altogether there are 64 “expanded” message words Wi for

0 ≤ i < 64 defined by

Wi =

{
Mi for 0 ≤ i < 16

σ1(Wi−2)⊞Wi−7 ⊞ σ0(Wi−15)⊞Wi−16 for 16 ≤ i < 64
(1)

where the functions σ0 and σ1 are defined as

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X ≫ 3), and

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X ≫ 10).

Here ⊞ denotes addition modulo 232, ⊕ denotes bitwise XOR, ≫ denotes the right shift operator, and

≫ denotes the right circular shift operator.

2.2.2. State Update Transformation

The compression function of SHA-256 takes as input a chaining value and message block and computes

a new chaining value by applying 64 iterations of a state update procedure. We describe this state update

procedure using equations similar to those presented by Mendel et al. [15]. The expanded message

words Wi are used to compute internal state variables Ti, Ei, and Ai through the equations

Ti = Ei−4 ⊞ Σ1(Ei−1)⊞ IF(Ei−1, Ei−2, Ei−3)⊞Ki ⊞Wi,

Ei = Ai−4 ⊞ Ti, and

Ai = Ti ⊞ Σ0(Ai−1)⊞MAJ(Ai−1, Ai−2, Ai−3).

Here the functions IF and MAJ are defined on words by applying bitwise the functions from F3
2 to F2

IF(x, y, z) = xy + xz + z, and MAJ(x, y, z) = xy + yz + xz,

and the linear functions Σ0 and Σ1 are defined by

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22), and

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

The chaining value is taken to be [A−4, . . . , A−1, E−4, . . . , E−1]. In other words, the chaining value

sets the initial values of the state variables A and E. For example, A−4 will be initialized to the first

32-bit word of the chaining value while E−1 will be initialized to the last word of the chaining value.

Ki is a constant given in SHA-256’s specification and there is one unique constant for each step i. The

auxiliary variable Ti is introduced to keep the modular additions from having more than 5 addends.

After the state update transformations, the last four A and E words are added with the chaining

value to produce a new chaining value, which will be the output of the compression function (and

following the final block will be the output of the hash function).

2.3. Differential Cryptanalysis

Differential cryptanalysis is a technique that analyzes how the input differences influence the output

differences in, for example, a hash function. This technique is crucial in collision attacks of hash functions,

since we’re interested in studying the diffusion of the input differences to the output differences such

that we get a zero output difference and a non-zero input difference.

In differential cryptanalysis of hash collisions, we have two hash inputs and we examine the differences

in all the operations until the output for both inputs. Usually differences between the values are



Table 1
This table shows the notation we use for differential conditions in our study. A ‘+’ indicates whether a specific
value pair is possible for (x, x′). For example, ‘?’ indicates that the variables x and x′ can take any value, ‘x’
indicates the variables x and x′ have distinct values, and ‘-’ represents equal values. In the rest of the conditions,
the exact values of the variables x and x′ are known.

(x, x′) 0 u n 1 x - ?

(0, 0) + + +
(1, 0) + + +
(0, 1) + + +
(1, 1) + + +

calculated through XOR operations, such as Δx = x⊕ x′, where x is a single bit, x′ is its counterpart

in the second hash instance, and Δx is the difference of x and x′. In general, a pair (x, x′) representing

a bit in one bitvector and its counterpart in the second hash instance may have up to 4 combinations,

{(0, 0), (0, 1), (1, 0), (1, 1)}. In some cases, some of the four possibilities may be ruled out, though. The

possibilities for (x, x′) can be generalized as the differential conditions [16] presented in Table 1. For

example, if a pair (x, x′) has the possibilities {(0, 0), (1, 1)}, we describe it as having the differential

condition ‘-’, whereas the differential condition ‘x’ describes the possibilities {(0, 1), (1, 0)}.

For convenience, the differential conditions of a pair of words (A,A′) can be collectively described

in a vector ∇A = [cncn−1 · · · c1c0], where ci is the differential condition of the ith bit pair (ai, a
′
i) with

A = [an−1 · · · a0] and A′ = [a′n−1 · · · a′0].
The differential over a function f(X) = Y where X and Y are bitvectors is denoted ∇X → ∇Y . On

a high level, we want f to be the hash function while ∇X and ∇Y are the input and output differences

represented by differential conditions. In practice, analyzing this differential alone is not helpful as it

contains too little information. We want to study all the operations in between as well—chaining the

operations in SHA-256 together as a series of steps starting from the input to the output. If we represent

the differences in an operation’s input and output values as a differential, we can represent the 2 hash

function instances as a chain of differentials. This chain of differentials is called the differential path

and analyzing this path shows how the differences propagate from the input differences all the way to

the output differences, which is essential for finding collisions.

2.4. Boolean Satisfiability (SAT)

Boolean satisfiability (SAT) solving involves searching for a solution of a Boolean formula (an assignment

of the variables that makes the formula true). The tools designed for this purpose are called SAT solvers.

Even though all known algorithms for SAT solving run in exponential time in the worst case, in practice

many problems can be solved by modern SAT solvers in a reasonable amount of time. In fact, SAT

solvers are so effective that in practice there are problems unrelated to logic that are most effectively

solved by reducing them to SAT and calling a SAT solver.

The beauty of SAT solving lies in its generic nature, which means that it can be applied to any domain

as long as the problem can be encoded into a Boolean formula. This also allows solvers to be tuned for

performance independently of a specific problem. Modern SAT solvers can be surprisingly effective

at solving SAT problems by incorporating sophisticated techniques like conflict analysis and clause

learning, clever branching heuristics, and simplification [17]. This combination allows them to be highly

potent at general-purpose search.

The SC2 Project. SAT solving, ever since its inception, has been found to be useful for satisfiability

checking—determining whether a logical formula is satisfiable. On the other side, Computer Algebra

Systems (CASs) include algorithms that are efficient at solving mathematical problems. However, many

problems exist that involves both satisfiability checking and symbolic computation, and bridging the

two fields was proposed in 2015 in the work of Ábrahám [18] and Zulkoski et al. [19]. Shortly afterwards,



the SC
2

project [20] was initiated to support the joint community. Since then, a wide variety of problems

have been tackled using SC
2

techniques, from circuit verification [21] to knot theory [22] to quantifier

elimination and cylindrical algebraic decomposition [23], and factoring integers with known bits [24].

See England’s survey [25] for an overview of many other examples.

Programmatic SAT. Programmatic SAT involves injecting code into the solver to aid the solver and

solve a problem more efficiently than it otherwise could [26]. It’s useful especially when aspects of the

problem are difficult to express in conjunctive normal form, the typical input of SAT solvers [27].

Programmatic SAT is usually domain-specific and combines the powerful techniques of search

possessed by SAT solvers with the most efficient high-level algorithms and analysis tools for the

problem. Some modern SAT solvers can be customized in a programmatic way through built-in

interfaces like IPASIR-UP [28]. The solver may be aided through the following ways during search:

• External propagation: Assigning variables derived through high-level deduction.

• External decisions: Making decisions on picking important unassigned variables and guessing

their values through high-level analysis.

• External learning: Injecting learned clauses during conflicts detected through the high-level

conflict analysis.

2.5. Previous Work

Cryptographic hash functions such as MD4, MD5, SHA-1, etc. have been extensively relied on for

information security for many years. However, Wang et al. [13] devised an efficient method in 2005 for

finding MD4 collisions with probability from 2−6
to 2−2

using at most 256 MD4 hash operations. Wang

et al. also proposed an attack on MD5 [1] for finding collisions within 15–60 minutes of computational

time in the same year. Also in 2005, Wang et al. [29] presented a collision attack on SHA-1 using at

most 269 SHA-1 hash computations, resulting in a SHA-1 collision found in 2017 [30].

The SHA-2 family of hash functions, however, survived these remarkable attacks, likely due to their

relatively complex design with message expansion. One of the earliest attacks on SHA-256 and its

family members was in 2003 by Gilbert and Handschuh [31]. In FSE 2006, Mendel et al. [32] reported

that the message expansion of the SHA-2 family of hash functions was one of the key points for their

increased collision resilience over SHA-1. To tackle this, Mendel et al. applied a message modification

technique and reached an 18-step collision for SHA-256. In INDOCRYPT 2008, Sanadhya and Sarkar [33]

presented collisions up to 24 steps of SHA-256 and SHA-512, making improvements over the work of

Nikolić and Biryukov [34] that presented collisions up to 21 steps of SHA-256 at FSE 2008.

In ASIACRYPT 2011, Mendel et al. [15] revealed a collision for 27-step SHA-256 and a semi-free-start

(SFS) collision for 32 steps. They automated the search with a domain-specific tool that searches for dif-

ferential characteristics for SHA-256. The tool utilizes propagation, analysis of the bit constraints, clever

branching on the most constraints bits, and contradiction detection in the differential characteristics.

In EUROCRYPT 2013, Mendel et al. [7] came back with another breakthrough—a 28-step collision of

SHA-256 along with a 38-step SFS collision. They further improved the automatic search tool that finds

differential characteristics. The improvements included local collisions over a larger number of steps

and improved decision/branching heuristics over [15].

Very recently, in the rump session of FSE 2024, Li et al. [8] announced a 31-step collision of SHA-

256, and in a EUROCRYPT 2024 paper found a 39-step SFS collision [9]. These works also made an

advancement in cryptanalysis with SAT solving, searching for characteristics by controlling the sparsity

(number of variables with no difference).

The progress of the attacks on SHA-256 is presented in Table 2.



Table 2
Progress of step-reduced SHA-256 collision attacks (including SFS collisions) from 2006 to 2024. The entries in
the table indicate the number of steps for which the collisions (or SFS collisions) were found.

Publication Year Author Collision SFS Collision

2006 Mendel et al. [32] 18 -
2008 Sanadhya and Sarkar [33] 24 -
2011 Mendel et al. [15] 27 32
2013 Mendel et al. [7] 28 38
2024 Li et al. [8, 9] 31 39

3. The SAT Encoding

Our problem is to find two different messages whose hashes match, and to do this we use SAT solvers

as a search tool for the collision attack. Our SAT formula contains variables encoding two messages

(each containing one 512-bit message block) that we want to collide after applying SHA-256. For each

block, the formula includes an n-step compression function taking a 512-bit message block and a 256-bit

chaining value, and from them computes a 256-bit hash. The number of steps/rounds, n, is adjusted to

generate a step-reduced version of SHA-256.

Encoding the compression function includes bitwise Boolean functions such as IF and MAJ. The

other functions, σ0, σ1, Σ0, and Σ1, boil down to 3-operand XOR functions after circular rotations and

shifts. For each 3-bit XOR a⊕ b⊕ c, our encoding produces x ↔ a⊕ b⊕ c (where x is a new auxiliary

variable) using 23 = 8 clauses. A new variable is introduced for every gate in the circuit similar to how

the Tseitin transformation is performed [35].

The 32-bit modular addition is encoded as bitslices, where each bitslice involves at most 7 addends

(including carries) and a 3-bit output (a high carry, a low carry, and a sum). The addition encoding is

taken from the work of Nejati and Ganesh [11], which used the Espresso logic minimizer [36].

On top of the two hash function instances, we have the differential cryptanalysis layer. Each Boolean

variable in one instance, say x, has its counterpart x′ in the other instance. For the analysis of the

differences as per differential cryptanalysis, we encode the bitwise differences as Δx ↔ x⊕x′ (following

Nejati and Ganesh [11]) where Δx ∈ {0, 1} is a new auxiliary variable. Each triple (x, x′, Δx) defines

a differential condition. For example, (x, x′, 1) defines an x while (1, 0,Δx) defines a u (see Table 1 for

the complete list of differential conditions).

A naive way to constrain collisions is to have zero differences in the hash pair while maintaining at

least one difference in the message pair. However, we want to analyze all the differences between the

two hash instances, especially the state update as well as the auxiliary variables, to capture as much

information as possible. Thus, we follow the idea of a local collision as presented in the works of Mendel

et al. [15, 7] and many others.

To induce a local collision, we constrain the differential conditions in the state update variables,

A and E, along with the message words, W . The encoding includes clauses for constraining of the

conditions as such, and is called the starting point of the differential path. For example, if a differential

condition on the variable x is constrained to be a ‘-’, we add the unit clause ¬Δx to set the difference

to be zero (and thus x = x′). The explicit starting points we used in our work are given in the appendix

(Tables 6–9).

Any solution found by the solver will be within the confinements set by the starting point. This

reduction of search space is found to very beneficial and the possibility and time required for finding

collisions highly depends on a well-crafted starting point.

To make the base problem easier, we also add clauses for the propagation of common differentials,

especially ones with - and x. For example, the encoding has a clause for propagation of [xx-] →
[-] for the XOR function, encoding that when x is the auxiliary variable for a ⊕ b ⊕ c we have

(Δa∧Δb∧¬Δc) → ¬Δx. Such helpful clauses are present for all the operations XOR, MAJ, IF, and

the modular addition of words from equation (1) and the state update equations of Section 2.2.2.



4. Programmatic Inconsistency Blocking

As discussed in Section 2.3, analyzing differential paths is essential in cryptanalysis. There are cases

when a differential path has inconsistencies. In other words, parts of the differential path define a

relation contradicting a relation defined by other parts of the differential path. For example, if we can

derive the conditions a = b and a ̸= b from differential conditions in the same path, then there certainly

cannot exist any message pairs conforming to that path. During solving, it’s crucial to analyze the

current path for such inconsistencies and block them as early as possible to prevent the solver from

exploring paths that are inconsistent.

The idea of looking for and blocking inconsistencies in the SHA-256 collision attack was utilized by

Mendel et al. [15]. They described having linear equations relating two Boolean variables in SHA-256’s

state. Each of these equations can be derived from bitsliced differentials of bitwise functions and

modular addition. Such relations can lead to conditions on the equality or inequality of two variables.

Mendel et al. [15, 7] refers to these conditions as “two-bit conditions”.

Two-bit conditions can be derived from bitsliced differentials of bitwise functions and addition

operations. To deduce the two-bit conditions from a bitsliced differential, we enumerate all the pos-

sibilities and look for a pattern. As an example, consider the differential ∇[x2x1x0] → ∇[y0] of the

XOR operation x0 ⊕ x1 ⊕ x2 = y0. If the differential is specifically [-0-] → [0], it means that

(x2, x0) ∈ {(0, 0), (1, 1)} giving us the two-bit condition x2 = x0.

In practice, two-bit conditions are significantly more common in the bitsliced differentials of bitwise

functions than that of addition operations. Thus, in our experiments, we only computed the two-bit

conditions of these bitwise functions to reduce computational costs. Additionally, there are two-bit

conditions involving Boolean variables other than that of A, E, and W . For example, two-bit conditions

often involve the output variables of bitwise functions along with other auxiliary variables. However,

we did not find it beneficial to address inconsistencies involving two-bit conditions of these auxiliary

variables. As a result, we focused solely on the two-bit conditions involving the primary variables to

block inconsistencies.

The two-bit conditions are expressed in the form x ⊕ y = z where x and y are variables in the

differential path and z ∈ {0, 1}. For example, the two-bit condition x ̸= y gives the equation x⊕ y = 1.

The set of these linear equations often lead to inconsistencies that are non-trivial. For example, if a = b,
b = c, and c ̸= a, we have a contradiction involving the 3 two-bit conditions and can be visualized as a

cycle a = b = c ̸= a.

Such cycles of inconsistencies translate to cycles of inconsistent differentials, which in turn are

blocked to direct the search away from an invalid differential path. To do this efficiently we employ a

custom-written computer algebraic routine to detect cycles of inconsistent equations during solving. In

particular, we use a graph for finding inconsistent cycles, where in the graph each vertex represents a

variable and each edge represents a two-bit condition. Every time a new edge is added to the graph, we

search for an inconsistent cycle involving that edge (and the shortest such cycle when one exists).

The graph algorithm we use for detecting inconsistent cycles involves a breadth-first search starting

from vertex v0 where (v0, vd) is a newly added edge. We look for all possible ways to reach vd excluding

the edge (v0, vd). Each edge (u, v) holds a Boolean variable d(u, v) = u ⊕ v, called an edge value,

which tells whether the Boolean variables u and v are equal or not.

For each path from v0 to vd found through the method described above, we get a cycle v0, v1, . . . , vd,

v0 by adding the edge (v0, vd) to the path. We check if there’s a contradiction in a cycle (connecting

Boolean variables v0 to vn) by taking the F2 sum of all the edge values, s = d(v0, v1) + d(v1, v2) +
· · ·+ d(vd−1, vd) + d(vd, v0). If the sum s is 1, there is an odd number of edges with inequal variables,

indicating an inconsistent cycle. We iterate through the inconsistent cycles and take the shortest one

for blocking.

When an inconsistency is detected it is blocked by adding a conflict clause constructed from the parts

of the SAT solver’s partial assignment (during the time of detection) implying the 2-bit conditions in

the cycle. The IPASIR-UP interface [28] is used for feeding the new clause to the solver. The falsified

clause causes the solver to backtrack right away, stepping out of the invalid differential path causing



the solver to backtrack earlier than it otherwise would.

5. Programmatic Propagation

During the search for a collision, we work with a partial state that comprises known and unknown

variables. Using the known variables, unknown variables may be derived. In other words, the infor-

mation that we have can spread or propagate. This form of deduction is crucial in the search process.

As mentioned in Section 3, many propagation rules such as [xx-] → [-] for the XOR function are

encoded directly into the SAT encoding. However, it is not feasible to encode all possible propagation

rules on 32-bit words because there are simply too many.

There is a large body of work studying propagation in SAT encodings and metrics by which prop-

agation can be studied, including propagation completeness [37], propagation strength [38], and

unit-refutation completeness [39]. In general, the basic unit propagation mechanism used in SAT

solvers will not propagate all logically implied information, though IPASIR-UP supports the inclusion of

more advanced custom propagation routines. Ideally, one would use “perfect” propagation encoding the

most stringent conditions possible given the current state. For example, we describe a simple example

of perfect propagation given by Eichlseder [40, Ex. 3.4]. Suppose X = [x3x2x1x0] is a 4-bit word,

Σ(X) = (X ≫ 1) ⊕ (X ≫ 2) ⊕ (X ≫ 3) = Y , and we want to perform perfect propagation on

the differential ∇X → ∇Y . If the differential ∇X is known to be [11--], then there are 22 = 4
possibilities for (X,X ′) because x2 = x′2 ∈ {0, 1} and x3 = x′3 ∈ {0, 1} may be chosen independently.

After trying all 4 possibilities one derives that (Σ(X),Σ(X ′)) = (Y, Y ′) must be one of (1100, 1100),
(0010, 0010), (0001, 0001), or (1111, 1111). In each case we have Y = Y ′

meaning that we can derive

that ∇Y = [----].

Since all possibilities for “grounding” ∇X were explored, the maximum amount of possible infor-

mation was propagated to ∇Y and this is said to be “perfect” propagation. Unfortunately, in general

perfect propagation is infeasible because there are too many possibilities to explore.

5.1. Bitsliced Propagation

Perfect propagation is only feasible for small differentials with a small number of possibilities to explore.

However, SHA-256 performs operations on 32-bit words, which means that every function operates

on 32-bit words as input. If we want to propagate the output for a function, we’d have to deal with a

relatively large number of bits.

To keep the process computationally feasible, we only perform perfect propagation on the output

of a bitwise operation in each bit position independently. This reduces the number of bits involved

in the propagation while still helping to deduce information. Each output condition is propagated by

enumerating all possibilities conforming to the input conditions that the output condition is dependent

on—the same as perfect propagation, but only perfect locally. This is a practical version of perfect

propagation called “bitsliced” propagation.

For example, suppose we have X ⊞ Y = Z and we want to propagate ∇X = [x-x-] and ∇Y =
[x---] to ∇Z . We will focus on propagating information for the second-least significant bit; this

bitslice is highlighted in bold in the depiction below:

∇Z =

??-
[x-x-]

⊞ [x---]
[???-]

In the example above, the wordwise addition (modulo 24) involves 2 addends with the differential

conditions [x-x-] and [x---], and the first row denotes the differential conditions of the carries. In

general the bitslices involve 3 input conditions and 2 output conditions (namely, a sum differential bit



and a carry differential bit). The conditions are derived through perfect propagation on each bitslice—in

this case the slice having a width of 1 bit.

In this example, the highlighted bitsliced differential [-x-??] (with the last ? denoting the carry)

after propagation becomes [-x-x?] (i.e., the sum differential bit becomes an x). This process of bitwise

propagation can be repeated for the rest of the bit positions, resulting in propagation over a wordwise

operation with a low cost.

5.2. Wordwise Propagation

SHA-256’s hash output is calculated by a series of Boolean operations on 32-bit words. Each step

involves the state update equations of Section 2.2.2 that are used for transforming the state variables A
and E. We also have the message expansion equation (1) defining Wi for all steps i ≥ 16. All these

equations involve modular additions and therefore to effectively search for collisions it is essential

to have effective propagation for the modular additions. Bitsliced propagation is helpful in deriving

information for modular additions, however, this technique doesn’t capture all the relations between

the bits as it is local to a bitslice and doesn’t operate on the entirety of the 32-bit words.

To mitigate this shortcoming of bitwise propagation, we utilize a global “wordwise” propagation

technique, that is significantly cheaper than perfect propagation on words pairs in practice but typically

derives more information than bitwise propagation.

Wordwise propagation works by exploiting the constraints in the modular addition, such as the

modular integer differences of words. Modular differences of words were also used in the work of Wang

and Yu [1] for a different purpose.

When A ⊞ B = C and A′ ⊞ B′ = C ′
, wordwise propagation may derive additional information

on the differential conditions ∇A and ∇B if the modular difference of C and C ′
is known. Denoting

modular subtraction of two 32-bit words by ⊟, the modular difference of C and C ′
is

δC := C ⊟ C ′ =
31∑
i=0

(ci − c′i)2
i mod 232 (2)

where ci and c′i denote the ith least significant bits of C and C ′
.

In the previous example, the modular addition equations in both the hash instances can be combined

via (A⊟A′)⊞ (B ⊟B′) = C ⊟ C ′
which can be rewritten as δA⊞ δB = δC .

In general, wordwise propagation is performed on equations like

δA1 ⊞ δA2 ⊞ · · ·⊞ δAn = C (3)

where C can be determined in advance and we want to derive some additional information on at least

one of the differential conditions ∇A1 to ∇An.

For example, suppose we know δA = δB, ∇A = [ux-], and ∇B = [-n-]. It follows that

δB = 0 ·22+(0−1) ·2+0 = −2 is known (modulo 8), but δA = (1−0) ·22+(a1−a′1) ·2+0 = 4±2
is either 2 or 6 since a1 − a′1 = ±1. From ∇A alone the value of δA cannot be determined exactly,

but when the additional constraint δA = δB is considered it is clear that the only solution is δA = 6
meaning that a1 − a′1 = 1. Thus, wordwise propagation in this case would derive ∇A = [uu-].

To avoid dealing with negative numbers, the differential conditions x, n, and ? are normalized by

adding an appropriate power of two. For example, in the above example 21 would be added making the

equation

(1− 0) · 22 + w · 21 + 0 = −2 + 21 = 0 where w := a1 − a′1 + 1 ∈ {0, 2}

becoming (1 + v) · 22 = 0 where v := w/2 ∈ {0, 1}. As a 3-bit bitvector equation (hence performed

modulo 23), this is [1 + v, 0, 0] = [0, 0, 0] which has just one solution v = 1.



Dividing into subproblems. After reducing equations of the form (3) to bitvector equations, we

want to determine all solutions for the variables. To do so, we search for possible values through brute

force. Since this has an exponential time complexity, we divide the problem into smaller components

by analyzing the cascading effects of the carries. In practice, this reduces the computational cost

significantly as the subproblems can usually be solved quickly, and any subproblem that is too expensive

to solve can be skipped without affecting the other subproblems. In our work, we consider any

subproblem with more than 10 variables as expensive, limiting the number of (brute force) iterations to

210 = 1024 for a subproblem.

As an example, suppose δA ⊞ δB = δC where ∇A = [u1xxx], ∇B = [xx-nx], and ∇C =
[---u-]. Then δC = 2, and after normalizing A and B we derive

(δA+ 22 + 2 + 1)⊞ (δB + 24 + 23 + 2 + 1) = δA⊞ δB ⊞ 2 = 4,

becoming the bitvector modular addition problem

δA⊞ δB ⊞ 2 =

[ 1, v3, v2, v0, 0 ]
⊞ [ v4, 0, 0, v1, 0 ]

0 0 1 0 0

where v0, . . . , v4 ∈ {0, 1}.

Now, a linear scan is performed starting from the least significant digit (the rightmost column). Since

there’s no variable in the first column, we skip it. Next, we have a subproblem candidate v0 + v1 ≡ 0
(mod 2). Since this addition can overflow, the next column must be included in the subproblem.

Including the next column results in the subproblem v0+v1+2v2 ≡ 2 (mod 4) which cannot overflow

since v0 = v1 = v2 = 1 is not a solution. Thus, the problem starting in the next column is independent.

The next problem is then v3 ≡ 0 (mod 2), which only has one solution v3 = 0 and thus also cannot

overflow and is independent of the final column. Similarly, the final column results in the subproblem

1 + v4 ≡ 0 (mod 2) which only has the single solution v4 = 1.

In this example wordwise propagation thus determines that v4 = 1 and v3 = 0. Since v4 arose from

the second ‘x’ in ∇B which encodes the difference b3 ⊕ b′3, i.e., v4 = (b3 − b′3 + 1)/2, we derive that

(b3, b
′
3) = (1, 0). Similarly, v3 arose from the ‘x’ in ∇A encoding a2 ⊕ a′2, i.e., v3 = (a2 − a′2 + 1)/2,

and we derive that (a2, a
′
2) = (0, 1). Thus, in this example wordwise propagation deduces the updated

differential conditions ∇A = [u1nxx] and ∇B = [xu-nx].

Implementation Details. Wordwise propagation was applied to all the modular addition equations,

specifically the message expansion (1) and state update transformation equations, including the one for

the auxiliary word Ti. However, the only variables that were propagated were the differential variables

in ∇Ai, ∇Ei, and ∇Wi.

During the wordwise propagation routine, a heuristic that we used which we found dramatically

improved the efficiency of the solver was to assume that any differential ‘?’ in the auxiliary variables

(including ∇Ti and the differential variables corresponding to the output of IF, MAJ, σ0, Σ0, etc.)

was actually a ‘-’ differential. In practice, making this assumption allowed the modular difference of

the auxiliary differential words to be calculable much more frequently, and increased the likelihood

that variables in the word differentials ∇Ai, ∇Ei, and ∇Wi were derived. This heuristic is related

to the ‘decision’ search strategy of Mendel et al. [15] which always first imposes a ‘-’ for a ‘?’ before

imposing a ‘x’. However, we found that making assumptions on the primary word differentials ∇Ai,

∇Ei, and ∇Wi themselves significantly decreased the solver’s performance, preventing us from finding

SFS collisions for SHA-256 beyond 28 steps.

6. Implementation and Results

Our programmatic SAT solver was implemented in CaDiCaL 1.8.0 [41] using the programmatic interface

IPASIR-UP [28]. Our experiments were run in the Digital Research Alliance of Canada’s [42] Narval



cluster. Each SAT solver instance ran on a single core of an AMD Rome 7532 processor running at

2.4 GHz with 4 GiB of RAM. Our implementation is free software and is available online.
1

6.1. Implementation

The IPASIR-UP programmatic interface provides access to the current state of the solver for the relevant

variables (i.e., those encoding the state of the hash function and the differential variables). IPASIR-UP

also enables us to perform custom propagation and branching as well as learning custom conflict

clauses.

For implementing inconsistency blocking, we used our own implementation of a graph library. This

houses the graph algorithm described in Section 4 for detecting minimal inconsistent cycles in linear

time. Our implementations of bitsliced and wordwise propagation, as well as the two-bit condition

detection engine used for inconsistency blocking, are based on the ideas described in the works of

Mendel et al. [15] and Eichlseder [40, 43]. We used a least-recently-used cache data structure for

caching propagation rules and rules for deriving two-bit conditions. The cache doesn’t grow beyond

the maximum available RAM, since the least frequently used entries are deleted on the fly.

In our experiments, most queries to the propagation and two-bit detection engines could be served

from the cache, which is much faster than deriving the propagation rules or the two-bit conditions on

the fly each time. Since the set of rules that are queried throughout the entire runtime is usually small

(i.e., consumes a small portion of the total CPU time), it wasn’t necessary to precompute any rules.

We perform bitsliced propagation for all operations in SHA-256 (including the modular additions)

alongside the solver’s built-in Boolean constraint propagation (BCP). As wordwise propagation is much

more expensive in terms of computational cost, it’s performed only when the SAT solver finishes with

the other propagation methods. This way, wordwise propagation only deduces the conditions that

bitsliced propagation couldn’t.

IPASIR-UP asks for a “reason” clause of propagated literals when it becomes necessary for the solver

to know why a literal was propagated. For bitsliced propagation, these reason clauses were relatively

short, so in this case we provided reason clauses directly via IPASIR-UP’s interface. On the other hand,

wordwise propagation involves multiple word pairs and a single propagated literal may depend on a

relatively large number of bits, leading to long reason clauses. To avoid overwhelming the solver with

long reason clauses, we did not use IPASIR-UP’s propagation interface for wordwise propagation and

instead set the values of any literals deduced by wordwise propagation via branching.

6.2. Results

We performed the same experiment with three separate solvers: an unmodified version of CaDiCaL

1.8.0, a version of CaDiCaL with programmatic bitsliced and wordwise propagation, and a version

of CaDiCaL with both programmatic propagation and inconsistency blocking. We also tried using

CryptoMiniSat 5.11.21 [44], given that it supports XOR constraints natively and has been tuned to work

on cryptographic problems. However, we did not pursue this extensively as CryptoMiniSat currently

does not have a programmatic interface and did not perform as well as CaDiCaL.

With each solver we searched for semi-free-start collisions for step-reduced SHA-256 with 20 to 38

steps. In order to reduce the randomness inherent in the search, each instance was solved ten times

independently using 10 different random seeds, though these 10 different seeds were consistently used

across all our experiments. Each instance was run for a time limit of 500,000 seconds (roughly 5.8 days).

The number of instances successfully solved in each case is given in Table 3, and the minimum time for

finding a collision is plotted in Figure 3. The starting points used for the 21-step, 25-step, 28-step, and

38-step instances are given in the appendix. The starting points for all other step counts were formed

from one of these starting points by dropping a number of rows at the bottom, e.g., the 26-step instance

matches the 28-step starting point with two rows removed. This means that the instances in the step

1

https://github.com/nahiyan/cadical-sha256

https://github.com/nahiyan/cadical-sha256


20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Steps

102

103

104

105

CP
U 

Ti
m

e 
(s

ec
on

ds
) i

n 
Lo

g 
Sc

al
e

Plain SAT vs. Programmatic SAT Solve Times

CaDiCaL
CaDiCaL/P
CaDiCaL/P+IB

Figure 3: Running times for finding a SFS collision for step-reduced SHA-256 for a varying number of steps.
The plot compares a plain SAT solver with two programmatic SAT solvers. The lack of a data point indicates no
collisions were found within 500,000 seconds.

Table 3
Number of step-reduced SFS collisions found in each instance for the 3 methods: plain CaDiCaL, CaDiCaL with
Propagation (P), and CaDiCaL with Propagation and Inconsistency Blocking (P+IB). For each number of steps
and solver, we solved the same instance using 10 different SAT solver seeds.

Steps 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

CaDiCaL 10 10 10 10 10 10 8 5 7 0 0 0 0 0 0 0 0 0 0
CaDiCaL/P 10 10 10 10 10 10 10 10 10 6 9 8 4 2 3 1 4 7 3

CaDiCaL/P+IB 10 10 10 10 10 10 10 10 10 6 7 7 4 2 5 0 4 4 4

ranges 20–21, 22–25, 26–28, and 29–38 can be expected to roughly have similar difficulty as they were

created from the same starting point.

The results show that programmatic propagation was clearly effective at helping the solver find

SFS collisions. The plain SAT solver could only find SFS collisions up to 28 steps, while CaDiCaL

with programmatic propagation, both with and without inconsistency blocking, successfully found

SFS collisions for every step count from 20 to 38, with the exception of 35—no 35-step instances were

solved when both programmatic propagation and inconsistency blocking were enabled (see Table 3). In

general, we found inconsistency blocking tended to decrease the efficiency of the solver, although using

inconsistency blocking did result in the fastest solve times for the instances with 30, 31, 32, and 36 steps.

7. Conclusion

In this work we combine the programmatic SAT+CAS paradigm with the differential cryptanalysis

techniques used in previous collision attacks on SHA-256. In the process, we demonstrate that these

computer algebraic techniques can dramatically improve the performance of the SAT solver, enabling

the SAT+CAS solver to find a semi-free-start collision of SHA-256 with 38 steps, while a plain SAT

solver could go no further than 28 steps. Moreover, previous 38-step SFS collisions [7] were found

with a highly sophisticated search tool specifically written to find SHA-256 collisions, while our work

used the general purpose SAT solver CaDiCaL coupled with the IPASIR-UP interface [28] for custom



propagation, branching, and learning. Thus, we were able to exploit the power of modern SAT solvers

without needing to write a search tool from scratch.

At the time the work in this paper was performed, the best SFS collision ever found for SHA-256

contained 38 steps [7]. Just prior to submitting this work, the authors became aware of the work of Li

et al. [9] appearing at EUROCRYPT 2024 that finds for the first time a 39-step SHA-256 SFS collision. Li

et al. [9] also use a SAT-based approach, but with a significantly different encoding. Determining if the

SAT+CAS approach can also be useful with this alternate encoding will be the subject of future work.
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Appendix

In the appendix, we provide an example of a 38-step semi-free-start SHA-256 collision that we found

(Table 4), a table showing its differential characteristic (Table 5), and the starting points that we used in

our search.

The 21-step starting point (Table 6) is taken from the work of Prokop [10]. The starting point for 25

steps (Table 7) is an extended version of the 24-step starting point provided by Prokop [10]. The 28-step

starting point (Table 8) is a slightly modified version of the starting point used by Mendel et al. [7].

The 38-step starting point (Table 9) is constructed based on the 38-step differential characteristic

provided by Mendel et al. [7]—in particular the differential words ∇W15, ∇W23, ∇W24, ∇A15, and

∇A16. The ‘x’s in these words are placed under the heuristic assumption that these words have a low

(but nonzero) Hamming weight. The differential word ∇W24 (with a Hamming weight of 1 and an ‘x’

in position 2) was taken from their starting point. This propagates to the ‘x’s in ∇W15 and ∇A16 (and

both those words were assumed to have a Hamming weight of 1 as well) as well as the ‘x’ in position 16

of ∇W23. Then setting position 16 of ∇A15 to ‘x’ causes it to propagate to ∇E19,16 and cancel out with

∇W23,16 in the state update transformation equation of T23 (and similarly for position 27 of ∇A15).

∇W23,27 is set to ‘x’ to cancel out with σ0(W15) in step 30 of the message expansion equation.

Table 4
SFS collision for 38 steps found with programmatic propagation and inconsistency blocking. h0 is the chaining
value, (M,M ′) is the colliding message pair, and h1 is the hash of M and M ′. Word pairs in M and M ′ that
have differences are enclosed in a box.

h0 afea2566 1e0a73e2 da747de7 34381a7f 6f4c0d98 897dd98c 592ba6ad 2aa5e80
M 5b5058d2 901f87fb 254bcfa2 5f8d7dc1 fb1053be 0622e1f8 da8801c2 a951cfbb

5db42ffd 683b4391 f87eabbd e928b976 3675cc55 6ebe78be e3031536 c2de906f
M ′ 5b5058d2 901f87fb 254bcfa2 5f8d7dc1 fb1053be 0622e1f8 da8801c2 9737d17b

5db43001 683b4391 f8812bbd e928b976 3675cc55 6ebe78be e3031536 c2de906b
h1 d0e019f7 408269d3 24296a7b 30df8e7f 95d2bff8 34e2bca6 6c50a294 ddb4254a



Table 5
The differential characteristic for the 38-step semi-free-start collision presented in Table 4. The words with a
nonzero difference (i.e., including a ‘u’ or ‘n’ differential) are enclosed in a box. Interestingly, compared to the
38-step semi-free-start collision presented by Mendel et al. [7], an additional two words (∇A8 and ∇E10) have a
zero difference.

i ∇Ai ∇Ei ∇Wi

−4 00110100001110000001101001111111 11010010101010100101111010000000
−3 11011010011101000111110111100111 11000101100100101011101001101010
−2 00011110000010100111001111100010 10001000100101111101110110011000
−1 10101111111010100010010101100110 00000110111101001100000011011001
0 11111110001111000010010101011001 01101011101011110101110100111011 01011011010100000101100011010010
1 01001011000010110110000101101010 11000001100000000001101010100000 10010000000111111000011111111011
2 01100101111011000011000000100010 11100000101101110101010101101101 00100101010010111100111110100010
3 01110101001010010111110000101000 00001101001111101101010100100110 01011111100011010111110111000001
4 11000011100011110110101000111111 00000010101010001100011111011001 11111011000100000101001110111110
5 11001111011111111011000001010111 00011000001010000101111110011101 00000110001000101110000111111000
6 00111101011110100100110110011011 01001100100101100011110010101001 11011010100010000000000111000010

7 nnn0nnnunnnnu01uuuuuuuu0un000010 010u1u0nnnn0nunnuuuuuuu00u001010 10ununn10un10nn1110nuuu1un111011

8 11001111111110101001001011100001 001nu010011001010000000010010010 0101110110110100001nuuuuuuuuuu01

9 01u001n0n0unnnnn00n0nuunuu10nu11 00010111011010010111110001101n00 01101000001110110100001110010001

10 00000000111000001100000100000111 10001011000001111011101010010110 11111000nuuuuuunu010101110111101

11 11011000101000000101000100000110 0unnun011u0n0u1110100n0un1nuuu01 11101001001010001011100101110110
12 10110000001000101011101010001100 10000000001000100100001001000101 00110110011101011100110001010101

13 01100100110001111111110111111000 1un0nu0uuunnnnnn00n1nuu0nu100n11 01101110101111100111100010111110
14 00001110111110110011010111100111 00110110001100111100010010010000 11100011000000110001010100110110

15 1100n0101011001u0100111101111101 1111n110000111un1011101111111100 11000010110111101001000001101u11

16 11011101100011000101110010100u10 unnnnnn0001111000110011111u0nu10 10110000011011100011010101111110

17 11101100000110000000111011010101 0001111nuuu111nu0unn1110101010nu 11010101101101000100100110000001
18 00110001010011100101110110001111 00000110000111110000111110111100 11000000111100000000000101101111

19 01111001001101010100100010010001 0010n101unnnnnnn0001100110110011 10111010010001001001101110101000

20 00000011110100011000001001011001 100110000101110010110unnnnnnnn00 10110011001011110000100101010110
21 11000111011100100100001111011010 01101101111111111111000000000001 01100110010010100111100100010011
22 00100011101011111111110111000001 10101011100001110101011111111110 00010100101010100100011010011101

23 10000010100110001101110100111111 11011110110001000111101101110110 1100u000011001nu0000110101111000

24 01000000000101011100011011111110 01010101111111011000110111111001 10011110001100111100000011001n10
25 11001011100110110010110011011100 10011111100000110000101010100110 00011110010111001111111110111100
26 11100101100100000010111000100010 00001101111100100111101000100101 00101001110010011101001110101010
27 11001011111100101100101000101100 00000100001011101100101111001110 01011100001111001111111000110101
28 11100111000010101101101110111100 10110010110111000001011001011100 01011111100011111001000101011010
29 00101001101011001111100101111010 00111110011010011101111100000101 00011001000111111010011001001101
30 00101111100001101001111000010001 00110111000011000101010101011000 01001001101111110100101000011010
31 11011100111011101011001110011111 11011000010000100000001110000101 11101111001011100111000001011100
32 01111100111101110111110011000001 01100101010010000110100010000001 00100110101001001100110001000010
33 00001111011000110010100101101000 01010111011001000010011011011001 10111101011000000100111100101100
34 11111100101001110111010000000000 00001011000010011100011011001010 01111101101001000011001100101100
35 01001001101101001110110010010100 10100110101111011110100000101010 11000001100001101101001000000100
36 00100010011101111111010111110001 10101100010010101101111100001110 00100000011111001000101001001111
37 00100000111101011111010010010001 10001110110111011111111100011111 00001100100101111011010111101000

Table 6
Starting point for a 21-step semi-free-start collision.

i ∇Ai ∇Ei ∇Wi

−4 -------------------------------- --------------------------------
−3 -------------------------------- --------------------------------
−2 -------------------------------- --------------------------------
−1 -------------------------------- --------------------------------
0 -------------------------------- -------------------------------- --------------------------------
1 -------------------------------- -------------------------------- --------------------------------
2 -------------------------------- -------------------------------- --------------------------------
3 -------------------------------- -------------------------------- --------------------------------
4 -------------------------------- -------------------------------- --------------------------------
5 x??????????????????????????????? ???????????????????????????????? ????????????????????????????????
6 -------------------------------- ???????????????????????????????? ????????????????????????????????
7 -------------------------------- ???????????????????????????????? ????????????????????????????????
8 -------------------------------- ???????????????????????????????? ????????????????????????????????
9 -------------------------------- ???????????????????????????????? --------------------------------
10 -------------------------------- -------------------------------- --------------------------------
11 -------------------------------- -------------------------------- --------------------------------
12 -------------------------------- -------------------------------- --------------------------------
13 -------------------------------- -------------------------------- ????????????????????????????????
14 -------------------------------- -------------------------------- --------------------------------
15 -------------------------------- -------------------------------- --------------------------------
16 -------------------------------- -------------------------------- --------------------------------
17 -------------------------------- -------------------------------- --------------------------------
18 -------------------------------- -------------------------------- --------------------------------
19 -------------------------------- -------------------------------- --------------------------------
20 -------------------------------- -------------------------------- --------------------------------



Table 7
Starting point for a 25-step semi-free-start collision.

i ∇Ai ∇Ei ∇Wi

−4 -------------------------------- --------------------------------
−3 -------------------------------- --------------------------------
−2 -------------------------------- --------------------------------
−1 -------------------------------- --------------------------------
0 -------------------------------- -------------------------------- --------------------------------
1 -------------------------------- -------------------------------- --------------------------------
2 -------------------------------- -------------------------------- --------------------------------
3 -------------------------------- -------------------------------- --------------------------------
4 -------------------------------- -------------------------------- --------------------------------
5 -------------------------------- -------------------------------- --------------------------------
6 -------------------------------- -------------------------------- --------------------------------
7 -------------------------------- -------------------------------- --------------------------------
8 x??????????????????????????????? ???????????????????????????????? ????????????????????????????????
9 -------------------------------- ???????????????????????????????? ????????????????????????????????
10 -------------------------------- ???????????????????????????????? --------------------------------
11 -------------------------------- ???????????????????????????????? ????????????????????????????????
12 -------------------------------- ???????????????????????????????? --------------------------------
13 -------------------------------- -------------------------------- --------------------------------
14 -------------------------------- -------------------------------- --------------------------------
15 -------------------------------- -------------------------------- --------------------------------
16 -------------------------------- -------------------------------- ????????????????????????????????
17 -------------------------------- -------------------------------- --------------------------------
18 -------------------------------- -------------------------------- --------------------------------
19 -------------------------------- -------------------------------- --------------------------------
20 -------------------------------- -------------------------------- --------------------------------
21 -------------------------------- -------------------------------- --------------------------------
22 -------------------------------- -------------------------------- --------------------------------
23 -------------------------------- -------------------------------- --------------------------------
24 -------------------------------- -------------------------------- --------------------------------

Table 8
Starting point for a 28-step semi-free-start collision.

i ∇Ai ∇Ei ∇Wi

−4 -------------------------------- --------------------------------
−3 -------------------------------- --------------------------------
−2 -------------------------------- --------------------------------
−1 -------------------------------- --------------------------------
0 -------------------------------- -------------------------------- --------------------------------
1 -------------------------------- -------------------------------- --------------------------------
2 -------------------------------- -------------------------------- --------------------------------
3 -------------------------------- -------------------------------- --------------------------------
4 -------------------------------- -------------------------------- --------------------------------
5 -------------------------------- -------------------------------- --------------------------------
6 -------------------------------- -------------------------------- --------------------------------
7 -------------------------------- -------------------------------- --------------------------------
8 ???????????????????????????????? ???????????????????????????????? x???????????????????????????????
9 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????
10 ???????????????????????????????? ???????????????????????????????? --------------------------------
11 -------------------------------- ???????????????????????????????? --------------------------------
12 -------------------------------- ???????????????????????????????? --------------------------------
13 -------------------------------- ???????????????????????????????? ????????????????????????????????
14 -------------------------------- ???????????????????????????????? --------------------------------
15 -------------------------------- -------------------------------- --------------------------------
16 -------------------------------- -------------------------------- ????????????????????????????????
17 -------------------------------- -------------------------------- --------------------------------
18 -------------------------------- -------------------------------- ????????????????????????????????
19 -------------------------------- -------------------------------- --------------------------------
20 -------------------------------- -------------------------------- --------------------------------
21 -------------------------------- -------------------------------- --------------------------------
22 -------------------------------- -------------------------------- --------------------------------
23 -------------------------------- -------------------------------- --------------------------------
24 -------------------------------- -------------------------------- --------------------------------
25 -------------------------------- -------------------------------- --------------------------------
26 -------------------------------- -------------------------------- --------------------------------
27 -------------------------------- -------------------------------- --------------------------------



Table 9
Starting point for a 38-step semi-free-start collision.

i ∇Ai ∇Ei ∇Wi

−4 -------------------------------- --------------------------------
−3 -------------------------------- --------------------------------
−2 -------------------------------- --------------------------------
−1 -------------------------------- --------------------------------
0 -------------------------------- -------------------------------- --------------------------------
1 -------------------------------- -------------------------------- --------------------------------
2 -------------------------------- -------------------------------- --------------------------------
3 -------------------------------- -------------------------------- --------------------------------
4 -------------------------------- -------------------------------- --------------------------------
5 -------------------------------- -------------------------------- --------------------------------
6 -------------------------------- -------------------------------- --------------------------------
7 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????
8 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????
9 ???????????????????????????????? ???????????????????????????????? --------------------------------
10 -------------------------------- ???????????????????????????????? ????????????????????????????????
11 -------------------------------- ???????????????????????????????? --------------------------------
12 -------------------------------- ???????????????????????????????? --------------------------------
13 -------------------------------- ???????????????????????????????? --------------------------------
14 -------------------------------- ???????????????????????????????? --------------------------------
15 ----x----------x---------------- ???????????????????????????????? -----------------------------x--
16 -----------------------------x-- ???????????????????????????????? --------------------------------
17 -------------------------------- ???????????????????????????????? --------------------------------
18 -------------------------------- -------------------------------- --------------------------------
19 -------------------------------- ???????????????????????????????? --------------------------------
20 -------------------------------- ???????????????????????????????? --------------------------------
21 -------------------------------- -------------------------------- --------------------------------
22 -------------------------------- -------------------------------- --------------------------------
23 -------------------------------- -------------------------------- ----x---------xx----------------
24 -------------------------------- -------------------------------- -----------------------------x--
25 -------------------------------- -------------------------------- --------------------------------
26 -------------------------------- -------------------------------- --------------------------------
27 -------------------------------- -------------------------------- --------------------------------
28 -------------------------------- -------------------------------- --------------------------------
29 -------------------------------- -------------------------------- --------------------------------
30 -------------------------------- -------------------------------- --------------------------------
31 -------------------------------- -------------------------------- --------------------------------
32 -------------------------------- -------------------------------- --------------------------------
33 -------------------------------- -------------------------------- --------------------------------
34 -------------------------------- -------------------------------- --------------------------------
35 -------------------------------- -------------------------------- --------------------------------
36 -------------------------------- -------------------------------- --------------------------------
37 -------------------------------- -------------------------------- --------------------------------
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