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Abstract
A conceptual understanding of inequalities and logic is essential for success in most of mathematics
and its applications. E.g., it is indispensable for the learning of calculus because inequalities and logic
are the tools that are used to express intuitive ideas about rates, changes and limits in a formal way
that is required to give proofs. We show that GeoGebra and especially GeoGebra Discovery can be
used to support the learning of these foundations. It will be shown that propositional logic is already
supported well in GeoGebra and that support for predicate logic is realized in the experimental fork
GeoGebra Discovery.
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1. Introduction
Students face a lot of obstacles when starting to learn advanced mathematics and especially
calculus [2]. Among these obstacles is the understanding of inequalities and the ability to
manipulate them, the role of logic and especially quantifiers (see e.g. [17, 19, 20, 18]). However,
more in-depth studies that investigate how the learning process of logic can be supported seem
to be absent. Durand-Guerrier and Dawkins [7] have noted that “Part of the study of logic in
undergraduate mathematics education should include students’ learning of such formal systems
in model theory, proof theory, or computability. However, we are aware of no research-based
evidence on the teaching and learning of such topics.” The present paper does not fill this gap,
either, but it discusses technology that might offer learning opportunities in the domain of logic.

Building up competencies in logic and logical reasoning by mere paper & pencil exercises is
difficult because misconceptions may prevail for a long time. When students work, however,
with digital tools they get immediate feedback and can extend the range of examples beyond
what is possible by time-consuming calculations. In this paper, we show what activities are
possible in GeoGebra and GeoGebra Discovery to support learning.

Possible ways to use computer algebra in the classroom has been a widely studied topic of
scientific communities in the last decades. Being an important snapshot on post-secondary
education from the early 2010s, we refer to [14]. To mention another important milestone,
we recall that in 2014, a team of mathematics teachers and free software developers decided
to implement a symbolic computation suite for the popular dynamic mathematics software
GeoGebra. The initial attempts covered the high school final mathematics exam in Bavarian
schools in 2014 (see a collection of problems and their solutions with GeoGebra at https:
//www.geogebra.org/m/cCUCGSxN). After the first successful results, in Austria and Germany,
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GeoGebra was officially designated as preferred tool for learners, because of its symbolic
computation capabilities, easy syntax and free availability. As of today, various school books
include tutorials and explanatory exercises on solving problems with the help of GeoGebra’s
CAS Window (see, for example [9]).

Accessing symbolic algorithms in most classrooms is, however, still limited to widely-known
techniques only. It is quite well-accepted by teachers that a computer algebra system should be
able to solve a set of linear equations, or to find the derivative or anti-derivative of a function.
But it is quite surprising for many teachers that today’s algorithms are ready to automatically
solve problems that contain quantifiers as well. In fact, many teachers still lack good knowledge
of connecting quantified formulas and text problems. Certainly, stable computer algebra support
to handle such formulas with an easy syntax and a robust backend would speed up the widespread
of the required knowledge among teachers and learners as well.

Therefore, our contribution confirms the relevance of the SC2 Project for a wider community,
including schools. The new cylindrical algebraic decomposition (CAD) algorithms that came
out of SC2 Project (for example, the non-uniform CAD algorithm in Tarski) already make it
possible to bring robust computations of non-trivial classroom problems by exploiting the popular
user interface of GeoGebra. On the other hand, there is still room for several improvements. We
give some examples on possible future work in the last section of the paper.

2. Didactical Background
Logical thinking and mathematics are often believed to be related, and this is supported by
several studies. Wong [23] finds correlations between deductive reasoning and mathematical
problem-solving. Cresswell and Speelman [6] found a significant correlation (although only 0.135)
between logical thinking and scientific achievement.

One of the main issues in learning propositional logic is getting used to the definition of
implication, which is not meant to represent transfer of epistemic support, but only the formal
relation between truth values. Related to this is the law of excluded middle or equivalently that
double negation on a statement is logically identical to the original statement (of course, it should
be noted that these issues are deep and that there are constructivist mathematicians that do not
accept proofs by contradiction, but for the present paper, we simply restrict ourselves to classical
logic). Durand-Guerrier and Dawkins [7] mention that therefore the use of natural language in
logic education has some benefits, but that “Coordinating natural and mathematical language
requires striking a careful balance.” We argue that using the logical operators in connection with
properties of points in the Euclidean plane provides an environment that is concrete enough
to let students easily get the meaning of propositions, yet abstract enough to avoid pitfalls of
natural language.

Propositional logic is not enough for mathematics: only predicate logic gives the means to
deal with mathematical objects like numbers and functions and describe their properties in a
precise sense. This role of describing properties precisely and enabling correct argumentation
about them is also important beyond mathematics, e.g. in computer science. The book [10]
expresses this clearly in its subtitle “Modelling and Reasoning about Systems”.

Quantifiers play an essential role in predicate logic, yet they are difficult for learners to
understand correctly (see e.g. [17, 19]). In many situations in mathematics, their use can be
avoided by expressing them in common language. Hence, some students view formalization as
an additional burden, not as a useful concept. In a computer algebra environment, however,
formalization is the way to communicate with the computer and thus this can give students
a feeling for its sense. Moreover, quantifiers are essential in the definitions of many concepts,
especially in rigorous calculus. Formalization can thus be seen as a modelling process: intuitive
concepts are modelled in formalized language, and a computer environment can be used to
validate the results. This point of view, that formalization is a kind of modelling, has been



advocated in the paper [15] (Fig. 2), but shall be elaborated with another example: students
easily have an intuitive understanding of what it means that a function on an interval [a, b]
increases strictly, e.g. they might express this as the rule that “if x increases, so does f(x)”.
However, to give proofs a formal model of this intuitive idea must be developed, namely

∀x1, x2 ∈ [a, b] : x1 < x2 ⇒ f(x1) ≤ f(x2).

Thus, we will show that technology can be used to exercise such formalisation processes. Dual
to formalization is interpretation, e.g. giving meaning to a formula. Both activities are linked in
the modelling cycle and both activities should be addressed in teaching.

3. Mathematical Background
Tarski [21] has shown that in a certain class of ordered fields, including the real numbers,
the predicate logic that includes addition, multiplication, equality (=), and inequality (<), is
decidable. Moreover, he showed that every formula of this language, including quantifiers, can be
transformed algorithmically into an equivalent form that is free of quantifiers. The theory covers
absolute values, polynomials (and with some care also rational functions) as well as powers to
fixed rational exponents, but no logarithms, exponentials or other transcendental functions.

There are different realizations of Tarski’s theory. The most important one is based on
CAD. Metaphorically speaking, it rests on dividing the space of possible values of variables into
components, on which each polynomial relevant in the formula at hand has the same sign. The
question as to whether a formula is true for all infinitely many numbers can thus be reduced to
the question if it is true on a finite set of sample point: one from each of these cells. Although
explaining CAD and how it leads to quantifier elimination is difficult (an attempt has been made
in [1]) it is nevertheless sensible to relate it to the ways algebraic inequalities can be used to
segment the Euclidean plane.

4. Technical Background
Recently, an experimental version of GeoGebra [8], GeoGebra Discovery [5] started to support
computations via CAD. An underlying system called Tarski [22] has been embedded in GeoGebra
Discovery via a Java Native Interface (for the desktop version) and a JavaScript library (for the
web version, available at https://autgeo.online). In fact, Tarski forwards the input problems in
a prepared and rewritten form for the underlying Qepcad B [3] system, which is a well-known
industry standard software in solving problems that require quantifier elimination.

As a result, it is easy to formulate statements given in predicate logic in GeoGebra Discovery.
This usually means that a combination of existential and universal quantifiers can be given, that
quantify an expression that consists of polynomial equations or inequalities, connected by logical
operations. For example, to formalize the statement that there is no least positive number, we
can use GeoGebra Discovery’s CAS Window and type the following line

¬(∃x x > 0 ∧ (∀y y > 0 → x < y)).

Now, GeoGebra Discovery preprocesses this input for Tarski, which implies a certain extent of
automatic simplification and the formula

∀x (∃y (x ≤ 0 ∨ y > 0 ∧ y − x ≤ 0)) (1)

is returned: it is a prenex form of the input that contains no implication operations. Finally,
the command RealQuantifierElimination($) computes via a black-box CAD process the
quantifier free version which is in this case simply the logical truth of the formula, i.e. it returns
the answer “true”.

https://autgeo.online


Figure 1: A CAD with respect to variable x.

GeoGebra Discovery also supports visualizing CAD in two dimensions. Here, the command
Plot2D(x ≤ 0 ∨ y > 0 ∧ y − x ≤ 0, "x") shows the decomposition

(A1 ∪A2 ∪A3 ∪A4 ∪A5) ∪ (B1 ∪B2 ∪B3) ∪ (C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5)

where A1 = {x < 0 ∧ y < x}, A2 = {x < 0 ∧ y = x}, A3 = {x < 0 ∧ x < y < 0}, A4 =
{x < 0 ∧ y = 0}, A5 = {x < 0 ∧ 0 < y}, B1 = {x = 0 ∧ y < 0}, B2 = {x = 0 ∧ y = 0},
B3 = {x = 0 ∧ y > 0}, C1 = {0 < x ∧ y < 0}, C2 = {0 < x ∧ y = 0}, C3 = {0 < x ∧ y < x},
C4 = {0 < x ∧ y = x}, C5 = {0 < x ∧ x < y} (see Figure 1). One can easily see that the
projections of these sets on the x-axes are A = {x < 0}, B = {x = 0} and C = {0 < x},
respectively. On the other hand, it is easy to read off that formula (1) is true because for all
projected sets A, B and C, there are pre-image regions (namely, A1, A2, A3, A4, A5, B1, B2,
B3, C3 and C4) such that the formula x ≤ 0 ∨ y > 0 ∧ y − x ≤ 0 yields.

In fact, the CAD approach allows the user to plot arbitrary inequalities or logical connectives of
inequalities in two variables in a faithful way. This can be, however, computationally exhausting
for formulas containing many logical operations or higher degrees of polynomials [4].

5. Propositional Calculus and Inequalities
With this section, we start with presenting ideas how these tools can be included in teaching.
Inequalities in two variables have the nice property that their solution set can be represented
graphically, and standard GeoGebra can do this easily (without using a CAD, unless higher
degree polynomials are present). Moreover, it offers the possibility to combine inequalities by
logical junctions such as “and”, “or”, “not”, and “implication”. For example, one may enter
y > 0 ∧ x2 + y2 < 9 to get directly the graph shown in Figure 2 on the left. To get the result
on the right side of Figure 2, students can come up with several solutions. What they do is
modelling geometric sets within logic and set theory. Experience showed (see [16]) that such
activities can be motivating even for younger students of age 15. The graphical context eased
argumentation and students easily acquired logical rules such as de Morgans’ laws, the rule of
double negation or the expression of implication by conjunction a → b ⇔ ¬a ∨ b. Such activities
can also be combined with absolute values.



Figure 2: Some regions drawn by GeoGebra from logical descriptions.

6. Predicate Calculus: Handling Quantifiers in Calculus
Formalization of intuitive ideas with predicate logic and understanding formulas expressed in
predicate logic are dual activities that can both be exercised within GeoGebra Discovery. Let us
first consider two easy examples taken from assignments in actual teaching, one of each kind:

1. Interpretation: Given the real function f(x) = x3 − x interpret what the following formula
means: ∀x : x > a → (∀y : x < y → f(x) < f(y)).

2. Modelling: Express that a real valued function has exactly one, resp. exactly two global
maxima. Test your formalization with various polynomial functions.

The meaning of the formula in 1 is best understood when doing some rearrangement to come
to the equivalent form ∀x, y : a < x ∧ x < y → f(x) < f(y). Hence, the meaning is that the
function is strictly monotonically increasing on the open interval ]a,∞[. For f(x) = x3 − x
quantifier elimination will hence give the equivalent form a ≥ 1/

√
3 which can be used to check

logical reasoning.
The second example leads to the formalizations ∃x0 ∀x : x ̸= x0 → f(x) < f(x0) resp. ∃x1 ∃x2 :

x1 ̸= x2 ∧ f(x1) = f(x2) ∧ ∀x : f(x) ≤ f(x1) ∧ (f(x) = f(x1) → (x = x1 ∨ x = x2))
Figure 3 shows how the first activity can be supported with GeoGebra Discovery: In its

CAS View the function f must be defined first, then the quantified statement is to be entered
(which will be automatically rewritten into an equivalent prenex form), after this step a real
quantifier elimination is performed, which is finally reformulated into a formula which is familiar
for students.

Figure 4 gives an overview on how the second part of activity 2 can be formulated in the same
software. First, we define a quartic function that fulfills the expected property. Later, we should
do a counter-test with a non-example function. Syntactically, it is important that in certain
parts of the input a minimal number of spaces and parentheses must be used; otherwise, the
input will be misinterpreted and the user can obtain, at first sight, strange results. Here we
provide a “didactic trick” to obtain some analysis on two simplified formulas that contain just
two quantifiers (or just one) with the same inner formula: clearly, GeoGebra cell 5 finds the
extrema at for the input function, and this is confirmed in cell 7 of the session.

It is quite clear that more complicated notions and concepts may be even more difficult to
formulate and check. But, unlike other computer software that support real quantifier elimination
(like Mathematica, which may be a problematic choice for students because of its commercial
licensing; or like Qepcad B, which is difficult to access for non-experts), GeoGebra Discovery



Figure 3: Computer algebra support for the first activity in GeoGebra Discovery’s web version.

Figure 4: A CAS session in GeoGebra Discovery’s desktop version, illustrating the second activity.

offers a classroom-like syntax inside its CAS View which should already be quite well-known for
many learners.

To finish, we give two advanced examples to check continuity and differentiability.
First, we consider the function f(x) = x2/x if x ̸= 0. This has the limit 0 near 0, but, since it

is undefined at 0, it is not continuous. A correct formula that checks the limit property is now

∀ε ε > 0 → (∃δ δ > 0 ∧ (∀x x ̸= 0 ∧ x < δ → x2/x < ε)).

Here we note that the software rewrites the input into the non-equivalent form

∀ε (∃δ (∀x (ε ≤ 0 ∨ δ > 0 ∧ ((x = 0) ∨ (x2(ε− x)) > 0 ∨ δ − x ≤ 0))))

to prepare it to be applicable for Tarski’s theory because divisions are disallowed. The trick
here is to multiply by the square of the denominator, however, this should be done cautiously
as being considered also in the original manual input. Finally, the real quantifier elimination
confirms that f has a removable discontinuity at 0.

Second, we would like to compute the derivative of a rational function. In Figure 5 we collected
the required steps for a simple input: a rational function of two linear formulas. Here we note



Figure 5: A CAS session confirms that the formal definition of the derivative is correct.

that it may take quite a long time until the learners find a syntactically correct input formula.
So, very importantly, proper use of implications (after universal quantifiers) and conjunctions
(after existential quantifiers) cannot be avoided, that is, finding a successful solution requires
solving mathematical challenges as well.

7. Report on Use Cases in Teacher Training
First author held a teacher training course in logic for prospective mathematics teachers in the
winter semester of 2023/2024 at The Private University College of Education of Linz, Austria.
This course was a refined version of two former courses, based on a similar content but now with
improvements. The lecture notes for this course are available at [11]. In particular, chapter 4.4
on real quantifier elimination (p. 51–53) focuses on secondary school applications. Also, chapter
4.8 on CAD (p. 65–69) includes various figures that were created with GeoGebra Discovery’s
Plot2D command, contributed by one of the students as an extra assignment.

The students were asked to try both commands RealQuantifierElimination and Plot2D
in the desktop or web version of GeoGebra Discovery, during the lectures and also for their
homework assignments. Figure 6 shows the expected homework activities for the participants,
30 students, many of them having a bachelor degree already, but some of them not yet (only
successfully passed exams in discrete mathematics, linear algebra and calculus). The concept of
a CAD was difficult to understand for many students, this is why the lecturer decided to prolong
explaining the topic, since in the planned schedule there was only two weeks reserved for these
activities.

8. Feature List
• Quantified formulas can be stored in variables.
• Formula negation is supported.
• Disjunction, conjuction and implication between two formulas is allowed.
• Output expressions are automatically converted into prenex format.
• Quantifiers ∀ and ∃ are available in GeoGebra’s virtual keyboards. Also, keyboard shortcuts

(Alt-V and Alt-X) are supported.
• Keyboard shortcuts for the negation sign (Alt-Z), disjunction (Alt-J), conjunction (Alt-K),

implication (Alt-Y) and the not-equal sign (Alt-H).
• Localization for the Plot2D and RealQuantifierElimination commands are available in

English (default), German, Spanish and Hungarian.



Figure 6: Homework assignments in Moodle for prospective mathematics teachers.

• Rational numbers and quadratic surds are accepted as input.
• Rational functions are rewritten as implications before conversion to Tarski.
• The Plot2D command can have a second argument: “x” or “y”. If it is set, the cylindrical

algebraic decomposition will be created with respect to the given variable.

9. Conclusion
The above presentation showed that nowadays the technique of quantifier elimination is in
the reach of students and can be used to do sensible exercises in calculus. This use can build
naturally on former use of GeoGebra to exercise modelling with propositional calculus and
inequalities. In all applications the combination of two dual processes, the interpretation of
formulas and formalization of intuitive ideas, is an important didactical method that allows to
take benefits from the technical power of GeoGebra Discovery. A systematic empirical evaluation
of these benefits is, however, still to be conducted.

9.1. Connection with the SC2 Project
Teaching the concept of proofs in classrooms with the help of technology requires reliable
implementations of the used prover subsystems. In GeoGebra Discovery we use the Tarski
system for outsourcing heavy computations that require reliable and possibly fast calculations.
Also, some basic operations like parsing the input or preparing it for further operations inside
Tarski, may require additional internal programmatic techniques. Here we mention the smtlib
interface between them: for instance, the formula

(qepcad-api-call (smtlib-load ’clear "(assert (exists ((x Real)) (and (not (=
a 0) ) (= (+ (+ (* x b) c) (* (* x x) a)) 0))))") ’T)

describes the user input existence of a real root of the quadratic equation ax2 + bx+ c = 0. After
performing quantifier elimination, the result a /= 0 /\ 4 a*c - bˆ2 <= 0 (which means: the



discriminant b2 − 4ac is non-negative) must be translated back to GeoGebra internals. See [12],
slide 11, for some more details.

Now, we point to some possible future work. The example in Fig. 5 performs reliably if the
input f is a rational function, unless the denominator is of higher degree than 1. In other
cases the computation may result in a program crash due to possible lack of resources, missing
optimizations in the underlying algorithms or other issues. For a reliable student experience this
should be addressed in a next version of the program.
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