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Abstract
Combining theorem proving strategies into schedules is a well-known recipe for improving prover performance,

as a well-chosen set of complementary strategies in practice covers many more problems within a predetermined

time budget than a single strategy could. A strategy schedule can be a monolithic sequence, but may also

consist of multiple schedule branches, intended to be selected based on certain problem’s features and thus to

specialize in solving the corresponding problem classes. When allowing schedule branching, there is an intuitive

trade-off between covering the known (training) problems quickly, by splitting them into many classes, and the

generalization of the obtained branching schedule, i.e., its ability to solve previously unseen (test) problems.

In this paper, we attempt to shed more light on this trade-off. Starting off with a large set of proving strategies

of the automatic theorem prover Vampire evaluated on the first-order part of the TPTP library, we report on two

preliminary experiments with building branching schedules while keeping track of how well they generalize

to test problems. We hope to attract more attention to the exciting topic of schedule construction by this

work-in-progress report.
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1. Introduction

Proof search in most automatic theorem provers (ATPs) relies on parameterized heuristics. Strong

configurations (strategies) of an ATP are, typically, specialized to certain classes of input problems – no

configuration performs well on all possible problems of interest. Selecting a strong strategy for a given

input problem is, in general, hard. This is namely due to the chaotic behavior of the provers [1]: Using

a fixed strategy, a small change in the input problem may lead to a substantially different proof search.

Typically, if a strategy solves a problem, the solution is reached in a relatively short time [2]. In

contexts where sufficient time or parallelism is available, running a portfolio of diverse strategies is a

pragmatic approach to increase the power of a prover. Such portfolio, or schedule in case a time limit is

assigned to each of the strategies, may be either hand-crafted [3] or constructed automatically [4, 5].

Further gain in performance can be achieved by specializing the schedule: We partition the possible

input problems into classes and construct a specialized schedule for each class. We prefer the classes to

be homogeneous in terms of the problems’ response to strategies, so that a schedule specialized for a

class needs less time to cover the same percentage of problems. Increasing the granularity of the classes

increases the specialization and the associated potential performance gain.

Decision trees [6] provide a suitable architecture to capture such gradual specialization. A set of

features, such as the number of atoms, the presence of certain syntactic traits, or the membership in

standard logical fragments, are computed for the input problem. A binary tree is then traversed from

the root to a leaf. Each internal node is labeled with a criterion that partitions the domain of one of

the features into two parts. When a node is traversed, the next node is selected depending on the

corresponding feature of the problem. The schedule inhabiting the final leaf is then used to attempt to

solve the problem.
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The ATP Vampire [7] won the prestigious First-Order Form theorems (FOF) division of the CADE

ATP System Competition (CASC) [8] every year from 2002 to 2023 [9]. Arguably, this continued success

is partially thanks to the famous “CASC mode” of the prover and the corresponding use of strong

strategy schedules. The schedules were constructed by Andrei Voronkov with the help of a system

called Spider [10] and arranged in a shallow decision tree for specialization.
1

When the specialization problem classes are chosen in a way that optimizes the performance on a

training set of problems, we run the risk of overfitting, that is increasing performance on the training

problems at the cost of decreasing performance on unseen problems. Regularization is the process of

reducing the expressive power of a machine-learned model to prevent overfitting.

In our previous work [4], we studied the regularization of monolithic schedule construction, i.e., the

case where the algorithm’s output is a single sequence with no specialization to problem features. We

discovered and evaluated more than a thousand Vampire strategies targeting the first-order fragment of

the TPTP library [11], which are now available as an independent data set for experimentation [12].

In this work, we use the same data set to start shedding some light on regularization during schedule

specialization. Namely, after brief preliminaries (Sect. 2), we first discuss (and measure) how a single

branching criterion (i.e., a single problem feature) can affect the generalization of the simplest branching

schedule with just one level of branching (Sect. 3). We complement this view by an experiment with

gradient boosted trees (Sect. 4), which explores the opposite extreme case where every problem can —

based on its features — be, in principle, assigned its unique schedule. Our paper also briefly overviews

related work (Sect. 5) and offers several concluding remarks (Sect. 6).

We are far from any definite answer on how specialization in schedule construction should be best

done. Yet we hope to spark more interest in this exciting topic by this work-in-progress report.

2. Preliminaries

2.1. Training and evaluation data

In our previous work [4], we generated a collection of 1096 strong and mutually complementary

strategies for the ATP Vampire. We evaluated the performance of each of these strategies on a set of

7866 first-order logic (FOL) problems from TPTP [11] v8.2.0. The results of these evaluations constitute

a dataset suitable for experimenting with schedule construction and specialization [12].

We denote the set of strategies as 𝑆 (|𝑆| = 1096), the set of problems as 𝑃 (|𝑃 | = 7866), and the

evaluation matrix as 𝐸𝑠
𝑝 : 𝑆 × 𝑃 → N ∪ {∞}. The value 𝐸𝑠

𝑝 is the time at which strategy 𝑠 solves

problem 𝑝, or ∞ in case strategy 𝑠 failed to solve problem 𝑝 within the time limit.

The time is measured in whole CPU megainstructions (Mi), where 1Mi = 220 instructions reported

by the tool perf and 2000Mi take approximately 1 second of wallclock time on our hardware.

2.2. Vampire’s CASC-mode problem features

For our schedule specialization experiments, we use problem features already available in Vampire

and used there by the CASC mode. This feature set consists mainly of various syntactic counters (the

number of: goal clauses, axiom clauses, Horn clauses, equational clauses, etc.), most prominent of which

is the number of atoms (roughly corresponding to problem size); problem class according to TPTP

classification (NEQ, HEQ, . . . , EPR, UEQ); and a number of bitfields checking for properties such as “has

𝑋 = 𝑌 ”, “has functional definitions”, or “has inequality resolvable with deletion”.

These features are not included in the mentioned dataset [12], but can be obtained easily by running

a modified version of Vampire
2

in “profile mode” via --mode profile <problem_name>.

1

E.g., https://github.com/vprover/vampire/blob/c7564c1d65020771079f29787ca2d5d7743f5d6a/CASC/Schedules.cpp#L5676.

2

https://github.com/vprover/vampire/tree/ourProfile

https://github.com/vprover/vampire/blob/c7564c1d65020771079f29787ca2d5d7743f5d6a/CASC/Schedules.cpp#L5676
https://github.com/vprover/vampire/tree/ourProfile


2.3. Strategy schedules

A strategy schedule is a mapping 𝑡𝑠 : 𝑆 → N. The value 𝑡𝑠 is the time limit assigned to strategy 𝑠. A

schedule may be used to attack an arbitrary problem with Vampire: The strategies are run sequentially

with the assigned time limits, each attempting to solve the problem, until a solution is found or every

strategy has depleted its allocated time. In the rest of this work, instead of running the prover, we use

the evaluation matrix to simulate the evaluation of schedules, restricting our scope to problems in 𝑃 .

Similarly to strategies, schedules are typically evaluated in a time-constrained setting. Schedule 𝑡𝑠
satisfies (time) budget 𝑇 ∈ N if and only if

∑︀
𝑠∈𝑆 𝑡𝑠 ≤ 𝑇 .

In our previous work [4], we proposed a greedy algorithm that constructs a strategy schedule from

an evaluation matrix and a budget. The algorithm allows finding a relatively strong (with respect to the

evaluation matrix) schedule satisfying the budget quickly.

A strategy schedule recommender produces a schedule for an arbitrary input problem. To evaluate a

schedule recommender on a set of problems, we estimate, using the evaluation matrix, the proportion

of problems solved by the respective schedules produced by the recommender.

2.4. Overfitting and regularization

Extreme schedule specialization is discouraged in CASC [13]:

All techniques used must be general purpose, and expected to extend usefully to new unseen

problems. [...] If machine learning procedures are used to tune a system, the learning must

ensure that sufficient generalization is obtained so that no there is no specialization to

individual problems.

In machine learning (ML), it is common for a trained system to perform better on the data it was

trained on than on previously unseen data. The system is said to overfit to the training data. In most

applications, we are ultimately interested in optimizing the performance on unseen data, so overfitting

is undesirable. A system that does not overfit is said to generalize (to unseen data).

To evaluate generalization of our ML training procedures, we repeatedly randomly split the set of

problems 𝑃 into a training set (80%) and a test set (20%), train the system on the training set, and

evaluate the trained system on the test set. The final score is the mean of the per-split test scores (in

our case, schedule recommender success rates). This way, we estimate the performance on unseen data.

Moreover, before training we exclude strategies that have their “witness problem” in the test set.

Roughly speaking, this prunes the set of strategies only to those that could have been discovered if a

given test set was fixed beforehand for the strategy discovery phase. See [4, Section 6] for more details.

3. Single branching point

Creating a schedule can be seen as an act of “covering” the training problems with the help of the

known solutions of the previously evaluated strategies. It is clear that if many strategies need to be

involved with long running times in order to eventually cover every training problem, the running

time of the whole schedule will need to be high.
3

Schedule specialization comes to rescue to reduce

this running time, as it allows the covering process to focus, within each branch, on a different subset

of the training problems. In a nutshell, on each branch, there is less covering work to do and during

evaluation, only the “right” branch is always used.

However, from the perspective of generalization, i.e., the effort of ensuring that our specializing

schedule performs well also on problems unseen in training, splitting the work into branches may be

detrimental. Indeed, if many training problems end up in their respective subset for mostly a random

3

Here we conceptually depart from the position where there is a fixed budget and we are trying to solve as many problems as

possible within that budget. This is because we aim, in this section, to present an analysis which answers a question for all

budgets at once. We can do it thanks to the anytime nature of the mentioned greedy algorithm we employ here [4].
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Figure 1: Monolithic (“1”) vs single branching schedule performance. Problems split into three random subsets
on the left (“3”) and into small-medium-large subsets based on the number of atoms (“Atoms”) on the right.
Showing averages over 100 random 80 : 20 train/test split runs. Shading marks the zone of one standard
deviation around the averages (and got four times larger for the Test runs compared to the Train runs just from
the effect of normalizing the averages from the unequal train/test set sizes to the reported fractions).

reason, the chances of a similar testing problem (that could be solved by the same strategy) being

classified into the same subset and thus subjected to the same schedule branch are low.

In this experiment, we set out to demonstrate this phenomenon at its extreme. Our method of

covering is the greedy algorithm presented in previous work [4] and we run it repetitively over random

80 : 20 train/test splits of our problem set 𝑃 . We compare the average performance of a monolithic

(non-branching) schedule, a schedule branching into three groups based on the number of problem’s

atoms, and a schedule branching into three random equally-sized groups. For the branching on atoms,

we split the problems into small (number of atoms < 750), large (number of atoms > 2900) and medium
(the rest). The cutoff points were chosen not to split the problems into equally-sized subsets, but by

aiming for a split for which each subset can be fully covered within approximately the same budget.

The results are presented in cactus plot form in Fig. 1. The results of the monolithic schedule building

(1-Train/1-Test) are the same in both the left and the right plot (and roughly correspond to Fig. 7 in

Appendix E of our previous work [4]). The monolithic schedule requires approximately 2 million Mi

to cover all the training problems and the test performance converges to around 93% of the training

one. The train performance of both the random 3-split (3-Train) and the atom split (Atom-Train) are

at all times higher than that of the monolithic schedule until they (necessarily) converge to the same

value and stabilize. (The atom split tends to finish its covering job a bit earlier than the random split.)

However, the pictures for the test performance of the branching schedules differ. While splitting on

atoms improves over monolithic even in test performance (up until around the 1 million Mi mark), and

for the lower budgets even improves over the monolithic’s train performance, the test performance of

the random 3-split (3-Test) is at all times worse.

It is perhaps not surprising that random features are useless from the perspective of branching

schedule generalization, however, we find the “backwards version” of this perspective to be quite

revealing, namely the realization that even reasonable-sounding problem features may differ in how

useful (useless, or even detrimental) they could be in this regard. Schedule construction is sometimes

organized by first fixing the problem groups based on features and only then looking for strategies in

each group separately (one can save computational resources by not having to evaluate each strategy

on every training problem; evaluating just within the relevant group would be enough). However,

if such initial split is only based on educated guessing of what problems reasonably belong together,

opportunities for better (or even the best possible) generalization can be missed.

Ideally, we would like to come up with generalization-conducive splits of the problems beforehand,



by just studying our evaluation matrix and asking a question such as “What could be a nice, easy-to-

delineate subset of problems for which certain strategies work well together and complement each

other, while elsewhere they are mostly useless?” We remark that such splits might be defined by other

properties than those expressible by our current fixed feature set. Discovering such new properties

that would still be easy to compute (and thus easy to understand) would be an interesting instance of

the explainable AI endeavour. At this moment, however, we do not have a good way of doing this and

leave this research direction for future work.

4. Gradient boosting

Unlike in the previous section, where a hand-crafted split based on the number of atoms occurring in the

problem is discussed, we want to produce finer splits of the problems based on Vampire’s CASC-mode

problem features here. In other words, we want to learn more complicated decision trees, or as in our

case ensembles of small decision trees. Hence we want to train a model that for a given problem 𝑝
produces a schedule 𝑡1, . . . , 𝑡|𝑆|, where

∑︀
𝑠∈𝑆 𝑡𝑠 ≤ 𝑇 , such that there is a strategy 𝑠 ∈ 𝑆 that solves

𝑝 ∈ 𝑃 in time at most 𝑡𝑠.

Although we want to obtain schedules, we may characterize them by probability distributions. A

discrete probability mass function p : 𝑆 → [0, 1] defines a schedule by setting 𝑡𝑠 = 𝑇 ·p𝑠. Hence we can

use standard approaches for multi-class classification, where usually we get a probability distribution

over possible classes and select the class as the one with the highest estimated probability. Here,

however, we take the estimated probability distribution and compute a schedule based on it.

This of course immediately leads to the question of what is the true probability distribution we want

to estimate. One possible approach is to assign, for example, probability 1 to the best strategy for the

problem. However, we likely need a more fine-grained approach as we are interested in generalization.

First, we are happy to split the budget among more strategies, as long as at least one of them solves the

problem. Second, we do not require that the problem be solved by the best available strategy.

Hence instead of having, for each (training) problem, a fixed true distribution that we want to learn,

we may produce a “true” distribution iteratively during the training based on our previous estimates

and change it as necessary. For example, we have a training problem 𝑝 and an estimated probability

p1, . . . ,p|𝑆| for it. We may want to produce a “true” distribution for 𝑝 by assigning p𝑖 = 0 if the

strategy 𝑖 does not solve the problem in the given budget 𝑇 , and hence increase p𝑗 if the strategy 𝑗
solves the problem. In other words, we want to split the budget only among strategies that can possibly

solve the problem. Moreover, we can boost the strategy that is closest to solving the problem; the

strategy requiring the smallest increase in the estimated budget to solve the problem. And there are

many other ways how to get a new “true” distribution. It is worth noticing that we may obtain this “true”

distribution in different ways: one way for those training examples that our model predicts correctly

(estimated schedule solves the problem) and another for those that are predicted incorrectly.

4.1. Model

Gradient boosting for decision trees, see, e.g., [14], fits nicely into this picture. Loosely speaking, it

combines weak models that iteratively improve their predictions by correcting the previous mistakes.

In particular, we learn decision trees that split our problems into different subsets based on the static

Vampire’s features. Or, more precisely, in each iteration, we learn |𝑆| regression trees (multi-class

problem); one per strategy. When we want to estimate the probability distribution after 𝑖 iterations, we

combine the output of all 𝑖 regression trees learned for each strategy, and get the probability distribution

by the softmax function. In the next iteration, we fix the “true” distribution based on the newly estimated

distribution and iterate this process until we get a satisfactory model or reach the limit on the number

of iterations.



Table 1
We compare the success rate of the split into small-medium-large subsets based on the number of atoms (“Atoms”,
see Sect. 3) and the schedule produced by gradient boosting.

Budget
Atoms Gradient boosting

Train Test Train Test

1000 0.5297 0.5113 0.6196 0.5660
10000 0.6965 0.6547 0.7650 0.6998
100000 0.8219 0.7519 0.8358 0.7807

4.2. Initial experiments

We use LightGBM [15], a framework for gradient boosting decision trees, with custom objective

functions. We get probability estimates from our models by the softmax function and use the cross-

entropy between predicted probabilities and “true” probabilities as the loss function.

We report some preliminary results, as we have not performed much of hyper-parameter tuning.
4

We use the learning rate 0.05, the maximal number of bins that feature values are bucketed in is 8, the

number of boosting iterations is 500, and, most importantly, we restrict the number of leaves to 2; hence

we use decision stumps as weak learners.

Our custom objective functions create “true” probabilitiesp′
1, . . . ,p

′
|𝑆| from the estimated probabilities

p1, . . . ,p|𝑆| for a problem 𝑝. We have tried various combinations of the following procedures:

(a) p′
𝑖 = 0 if the strategy 𝑖 does not solve 𝑝 in the time budget 𝑇 , otherwise p′

𝑗 = p𝑗 ,

(b) p′
𝑖 = 1 if the strategy 𝑖 is the best available strategy

5
and p′

𝑗 = 0 for 𝑖 ̸= 𝑗,

(c) boost
6

the best available strategy,

and then L1-normalize p′
1, . . . ,p

′
|𝑆|. It is even possible to combine different ways how to create “true”

probabilities based on whether the predicted schedule solves the training problem or not. Surprisingly,

(a) works quite well even though it can get stuck in a local minima. Hence, for simplicity, all the

subsequent results use this objective function. It takes roughly 10 s, using one core, to train one

iteration of the model with our non-optimized custom objective function written in Python.

We train our models using 10 random 80:20 train/test splits over the dataset described in Section 2.1.

In Table 1, we report the success rate. The best iteration is selected based on the number of solved

problems on the training set. For shorter budgets, the gradient boosting model significantly outperforms

the simple split into small-medium-large subsets based on the number of atoms in the problem. As

expected, the gap is narrowing as the budget is increasing.

Interestingly, when we inspect the produced schedules, the majority of problems (both on the train

and test sets) are solved by multiple strategies in the schedule. Moreover, it is unlikely that a problem is

solved by the overall best available strategy for the problem, supporting our idea behind the careful

creation of “true” probabilities.

As the “true” probability that we aim to estimate evolves, it is possible that the majority of trees

learned do not offset incorrect estimates from previous iterations but rather compensate for the changing

“true” probability. Note that we often add the same tree (with different leaf values) multiple times.

These initial experiments show that it is possible to automatically train a model that both leverages

the available feature space and keeps a reasonable level of generalization.

4

The performance of LightGBM is sensitive to choices of hyper-parameters. Moreover, our custom objective functions make

these choices even more significant.

5

There are many possible definitions here. For example, we have experimented with selecting the strategy that has the

maximal difference between the time assigned to the strategy and the time necessary to solve the problem by the strategy.

6

We tried two variants. First, in combination with (a), we split “saved time” not among all strategies that solve the problem,

but we only boost the best available strategy. Second, we increase the allocation to the best available strategy just enough for

it to solve the problem.



5. Related work

Strategy schedule specialization is closely related to strategy selection (also referred to as “heuristic

selection”), a special case of algorithm selection [16, 17]. Automatic mode in the E prover [18] uses

hand-crafted problem classes to select a strategy for the input problem [19]. Strategy selection for E has

also been approached by machine learning [20]. Given an input problem, MaLeS [19] predicts solving

time for all strategies in a portfolio and selects the strategy that minimizes the predicted time. Similarly,

Grackle [21] selects a strategy using a trained LightGBM model that predicts a ranking of strategies in

a pre-computed portfolio.

Strategy schedules have been constructed manually in Gandalf [3] and automatically in E-SETHEO

[22], Spider for Vampire [10], CPhydra [23], BliStrTune [24], HOS-ML [5], and in our previous work

[4]. Given an input problem, HOS-ML [5] selects a strategy schedule automatically. The problem’s

static features are used to identify a problem class, for which a schedule was optimized during the

training. CPhydra [23] identifies 10 training problems that are the most similar to the input problem

and optimizes a schedule for these problems using a pre-computed evaluation matrix.

6. Conclusion

Working with a dataset of 1096 Vampire strategies, which were evaluated on the first-order part of

TPTP, and a selection of syntactic problem features, which Vampire computes efficiently for its input

problem at startup, we presented two experiments with strategy schedule construction and schedule

specialization. In the first, we noticed that the selection of the splitting features not only influences how

fast a specialized schedule can cover the training problems, but, more interestingly, how well it can

generalize to previously unseen problems. In the second, we demonstrated that a good performance

can be achieved by using gradient boosted decision trees. The second approach is interesting in that it

departs from the concept of problem covering and instead develops a schedule in the form of a probability

distribution over the available strategies. This requires the use of a custom target distribution which

develops during the learning process.

There are many avenues for future research. Our next target for experimentation is the grow-and-

prune technique for decision tree construction and regularization [6] and its adaptation to cautious

schedule specialization. However, we would also be more than happy for others to join us in exper-

imenting with our strategy data [12] to see which method could eventually lead to the most useful

approach.
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