
Towards self-configuring Knowledge Graph
Construction Pipelines using LLMs - A Case Study
with RML
Marvin Hofer1,3, Johannes Frey1,2 and Erhard Rahm1,3

1Institute of Computer Science, Leipzig University, Germany, https:// cs.uni-leipzig.de
2KMI Competence Center @ Institute for Applied Informatics, Leipzig University, Germany, https://kmi-leipzig.de
3Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany, https:// scads.ai

Abstract
This paper explores using large language models (LLMs) to generate RDF mapping language (RML) files
in the RDF turtle format as a key step towards self-configuring RDF knowledge graph construction
pipelines. Our case study involves mapping a subset of the Internet Movie Database (IMDB) in JSON
format given a target Movie ontology (selection of DBpedia Ontology OWL statements). We define
and compute several scores to assess both the generated mapping files and the resulting graph using a
manually created reference. Our findings demonstrate the promising potential of the state-of-the-art
commercial LLMs in a zero-shot scenario.

Keywords
Knowledge Graph Construction, LLM-KG-Engineering, Automated RML Mapping Generation

1. Introduction

LLMs excel in understanding, generating, and manipulating human language. They are widely
used for tasks like text completion, language translation, and generating creative content.
Besides, LLMs have not only shown to be adept at natural language, but also to be capable of
generating and understanding data representation languages [1] like the RDF Turtle format for
RDF knowledge graphs (KGs). As such, LLMs demonstrated to be useful and evolve in assisting
with knowledge graph engineering related task [2], including generation of RDF KGs from a
variety of input formats ranging from textual to (semi)-structured sources [3, 4, 5]. However,
when it comes to creating KGs out of (structured) sources, execution costs and runtime limit the
scalibility and thus applicability of LLMs for transforming large input data into RDF. Currently,
traditional mapping and transformation approaches scale much better in terms of costs and
performance for structured sources. On the downside, most tools require a configuration of
various input and output parameters (e.g. thresholds) per source, or even complex setups such
as selecting scoring functions or defining rules, to work properly. As the complexity and variety
of the input data or target KG grows, this effort becomes increasingly difficult [6]. We see

KGCW’24: 5th International Workshop on Knowledge Graph Construction, May 27, 2024, Crete, GRE
*Corresponding author.
$ hofer@informatik.uni-leipzig.de (M. Hofer); frey@informatik.uni-leipzig.de (J. Frey);
rahm@informatik.uni-leipzig.de (E. Rahm)
� 0000-0003-4667-5743 (M. Hofer); 0000-0003-3127-0815 (J. Frey); orcid.org/0000-0002-2665-1114 (E. Rahm)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://cs.uni-leipzig.de
https://kmi-leipzig.de
https://scads.ai
mailto:hofer@informatik.uni-leipzig.de
mailto:frey@informatik.uni-leipzig.de
mailto:rahm@informatik.uni-leipzig.de
https://orcid.org/0000-0003-4667-5743
https://orcid.org/0000-0003-3127-0815
https://orcid.org/orcid.org/0000-0002-2665-1114
https://creativecommons.org/licenses/by/4.0

potential in combining the best of both worlds, by leveraging LLMs to automatically configure
(the setup of) those tools, while scaling over both volume and variety.

In this work, we investigate such a hybrid strategy for the RDF Mapping language (RML)
[7] as a proof of concept. Our case study is motivated and driven by the common scenario of
mapping a semi-structured dataset into RDF for the purpose of integrating or fusing it into
an existing target KG in an automated pipeline. RML is a powerful, and flexible language
designed to enable the creation of RDF graphs from heterogeneous data sources, including
JSON, XML, CSV, and relational databases. Given its popularity, standardization, RDF-compliant
specification/declaration, and machine-readable language definition [8], it seems an excellent
candidate for zero-shot experiments without prior training and fine-tuning, but also as a key
technology towards self-configuring RDF KGC pipelines. Our work encompasses the following
novelties and contributions:

• We conduct the first study on RML generation capabilities of LLMs
• We present novel insights into how well LLMs consider knowledge from target ontology

definitions in Turtle when generating RML rules and selecting mapping targets
• We define and evaluate measures to analyze and evaluate LLM-generated RML mappings

w.r.t. a gold standard reference KG.
The remainder of the paper is structured as follows: First, we will give a brief overview of

works that use LLMs for data integration and knowledge graph construction. Then, we introduce
our method and setup, describing our LLM instruction approach, the derived target ontology,
and the test data snippets. Afterwards, we evaluate our approach using several commercial
LLMs and investigate the quality with metrics involving a reference KG.

2. Related Work

2.1. LLMs in Mapping and KGC processes

A plethora of works experimented with the execution of KGC or data extraction / integration
tasks in combination with or fully powered by LLMs. In [9] instruction prompts are used with
large foundation models (released before the 2023 era, like GPT3) to perform entity matching,
error detection, schema matching, data transformation, and data imputation tasks. Zhu et al.
[3] investigated the performance of LLMs for KGC w.r.t. entity, relation, and event extraction as
well as link prediction, on eight benchmark datasets. According to their study, LLMs showed
limited effectiveness in a one to few-shot setting. SPIRES [4] recursively performs prompt
interrogation to directly extract triples from text matching either a provided LinkML schema or
identifiers from existing ontologies and vocabularies. In [1] a handful one-shot benchmark tasks
are presented to evaluate the capabilities of LLMs (reported amongst others for GPT3.5/4, Claude
2) to parse, write, comprehend, fix and construct KGs in RDF Turtle Format. The performance
of those commercial model version from July 2023 were reported as promising, motivating us
to use the Turtle format for RML mappings and Ontology snippets.

TechGPT-2.0 [5] is a model trained specifically for KGC tasks, including named entity recog-
nition and relationship triple extraction.

Also the field of Ontology Matching (OM) has seen several efforts to employ LLMs. OM is a
crucial step to generate RML mappings between RDF KGs, but is also related to the task of map-

2

ping CSV or JSON schemata to a target ontology. [10] uses LLMs to refine ontology/vocabulary
mappings. Similar to our experiment, they feed mapping candidates externally using high-recall
methods (e.g. lexical similarity). Olala [11] also feeds textual descriptions of ontology candi-
date members into an LLM to perform binary or multiple-choice ontology matching decisions.
AutoAlign [12] constructs a predicate-proximity-graph using LLMs to capture the similarity
between predicates across two KGs. This allows for creating predicate embeddings without
manual seeds and usage of unsupervised KG alignment in vector space without further use of
LLMs.

Experiments in [13] indicate that LLMs seem able to understand and to construct concept
hierarchies. We consider this an important skill in order to select appropriate classes and
properties of a target ontology esp. when there are information granularity/depth mismatches.

A method that generates code using LLMs to create views on heterogeneous data lakes is
proposed in [14].

While there exists a very recent effort to generate OWL ontologies and RML mappings for
CSV files1 with LLMs, the problem scenario and applied methods are different and more generic.
The approach uses the LLM to create a novel target ontology based on the CSV structure, while
we want to reuse an existing target ontology. Moreover, the RML generation is constrained
by pre-defined generic RML snippet templates, whereas the LLM needs to compose the final
mapping by creating instances of those templates and composing them in one file. To the best
of our knowledge, no evaluation for creating RML mappings for a JSON dataset without further
assistance - other than providing the relevant target ontology members - has been conducted.

2.2. Mapping Frameworks and RML Quality Evaluation

Several frameworks and mapping languages exist for (declarative) graph generation from
heterogeneous (semi-)structured data. Since we focus on RML [7] and RMLMapper in this work,
we refer the reader to [15] for an overview on other approaches. With regard to evaluating the
quality of RML mappings, a few works exist. Most notably, [16] created a tool2 that assesses
RML mappings and suggests patches. Backed by RDFUnit (tests) and OWL axioms from the
target ontology, the RML mapping file can be checked for quality issues (e.g. domain/range
violations, missing type statements). The approach was evaluated, amongst others, on the
DBpedia dataset for both mappings and mapped data.

Four metrics to assess the quality of R2RML (a subset of RML) mappings were presented
in [17]. The tests checked for usage of undefined classes/properties, blank nodes and RDF
reification as indicators for quality issues. In [18] this was extended into a framework that uses
SHACL to check (e.g. similar to [16] the correct term type and datatype) and refine R2RML
mappings. The novel RML ontology [8] is shipped with SHACL shapes, that could be used
to validate proper usage of RML statements in the mappings. EvaMap [19] is a framework to
evaluate RDF Mappings using a set of metrics based on the 7 Linked Data quality dimensions
from [20]. The metrics are evaluated given the input dataset on a YARRRML mapping [21] or
sampled mapped entities (when instances are needed) and aggregated into a final weighted
score. Notably is that they measure the mapping coverage w.r.t. the input dataset as well as

1https://github.com/tecnomod-um/OntoGenix
2https://github.com/RMLio/RML-Validator

3

https://github.com/tecnomod-um/OntoGenix
https://github.com/RMLio/RML-Validator

Figure 1: Mapping Generation Experiment Workflow.

[22] which calculate the ratio of mapped SQL columns in relational database mapping scenarios.
[22] provides an exhaustive list of measures for faithfulness, quality, and interoperability of the
output data. However, a plethora of them is out of scope or do not apply to our work, since they
require knowledge from the data(base) in use or assume publishing a dataset given an open
vocabulary choice.

Although some of our evaluation scores can be grounded in these previous works, we did
not directly employ any of those tools. Since we consider quality mostly as fitness for use and
given the differences in requirements and the nature of the problem setups, we need a custom
set of scores for more nuanced insights.

3. Experiment Method and Setup

In this section, we describe the data and ontology used in our experiment, the prompts as well
as requirements and challenges w.r.t. the RML generation task. Fig. 1 gives an overview on
the experimental mapping generation workflow. We executed RML mappings using one of
the reference implementations in Java3. The code and all resources are accessible in a public
repository 4, including (links to) the input data, the crafted prompt templates, and generated
results with their descriptions.

3.1. Test Data & Prompt Input Data

We derived our test data from the International Movie Database (IMDB)5. We convert a subset
(focused on movies and involved Persons) of the original CSV files into JSON (see Listing 1)
format as input data for the LLM. This is done because processing the CSV export of a relational
table adds several layers of complexity. First, the data is split into various files. Second, it has
multi-value cells (’|’ separator) and empty cells (’\N’ values). Third, CSV values have no
datatype information. These introduce extra sub-tasks with potential error sources, such as CSV
syntax analysis or advanced RML expressions (e.g., string splitting). However, we want to start
with assessing the general capability on how well LLMs can generate RML mappings having
as much information as clearly and "syntactically standardized" as possible at hand. JSON on

3https://github.com/RMLio/rmlmapper-java
4https://github.com/Vehnem/kg-pipeline/tree/main/experiments/llm4rml
5https://developer.imdb.com/non-commercial-datasets/

4

https://github.com/RMLio/rmlmapper-java
https://github.com/Vehnem/kg-pipeline/tree/main/experiments/llm4rml
https://developer.imdb.com/non-commercial-datasets/

{
"id": "tt0167423",
"originalTitle" : "Diamonds",
"runtimeMinutes" : 91,
"startYear" : 1999,
"genre" : ["Comedy","Mistery"],
"titleTyp" : "movie",
"isAdult" : 0,
"involvedPeople" : [{

"id" : "tt0167423",
"ordering" : 1,
"name" : "Kirk Douglas"
"birthYear" : 1916,
"deathYear" : 2020,
"category" : "actor" }, ...]

}

Listing 1: JSON Input Data Excerpt.

@prefix ...
@base <http://mykg.org/resource/>

<tt0167423> a dbo:Film ;
dbo:title "Diamonds" ;
dbo:genre "Comedy", "Mistery" ;
dbo:startYear "1999"^^xsd:gYear ;
dbo:Work/runtime "91"^^dtd:minute ;
dbo:starring <nm0000018> , ... ;
dbo:director <nm0038875> ;
...

<nm0000018> a dbo:Person ;
dbo:name "Kirk Douglas" ;
dbo:birthYear "1916"^^xsd:gYear ;
dbo:deathYear "2020"^^xsd:gYear .

Listing 2: Gold Reference Snippet.

the other hand is a popular representation format used in many web applications / APIs. A
vast amount of JSON data is available in corpora used to train LLMs. It allows to define nested
values, such as people associated with films, and arrays to represent multiple values, such as
film genres. It also supports standard datatypes like integers and floats. Nevertheless, we see
comparing the performance between JSON and the original CSV as interesting future work.
We select a single JSON sample by filtering the title to cover a wide range of specified fields,
including all possible people job categories specified in our target Movie ontology. Listing 1
shows a snippet from our selected sample, and Listing 2 the respective data in RDF Turtle.

In our final experiment, we will test a single film resource, about the movie "Diamonds". The
film has connections to 10 individuals, covering all possible IMDB job categories. We expect the
derived RDF graph to contain 59 triples based on 15 mapped properties.

3.2. Target Ontology

The target ontology (see Fig. 2) is a subset of existing classes and properties from the DB-
pedia ontology by focusing on films and involved people. We compiled, to the best of our
knowledge, the best matching concepts relevant to our input data, together with context from
the ontology (super-class, domain/range etc). But we also added real-life "confusables": two
runtime properties (one assuming minutes the other seconds as double), (film) editing vs.
editor (publishing) properties, producer vs executive producer properties. The ontol-
ogy consists of 6 classes (Work, Film, VideoGame, Person, Actor, Agent). As a special minor
change, we modified the property dbo:genre, and defined it as owl:DatatypeProperty
instead of owl:ObjectProperty as the latter would require the LLM to construct new genre
entities from a simple string or matching them to DBpedia entities. Both tasks introduce error
sources that affect the evaluation of basic RML generation capabilities. We consider them as a
subsequent step in a KGC pipeline, once an initial KG version of the input was created via the

5

Figure 2: Target Ontology about Movies.

mapping, and thus out of the scope of this initial experiment. Although the target ontology is
rather specific, it serves the purpose to check whether the LLms are capable of using it correctly.

3.3. RML Mapping Requirements & Challenges

In order to generate (meaningful) data for our use case of constructing a KG to be fused with a
target KG, the generated mapping has to fulfill a set of requirements:

1. defining correct logical source based on given file path
2. mapping all JSON attributes where a target property (candidate) exists in the ontology

but not mapping keys without a candidate (ontology coverage & succinctness)
3. selecting most specific over generic properties and types (e.g. Actor instead of Person)

w.r.t. formalized context of ontology members
4. correct literal value representations and datatypes
5. following a specified pattern for entity IRIs incorporating their IDs
6. usage of RML-Mapper built-in functions only

Given these requirements and our experiment data, we consider mapping the category attribute
of involved persons to the appropriate job function/role property of the ontology a challenge.
For example, when the category of an involved person is actor or actress it needs to generate
an edge from the movie entity via dbo:starring to the actor entity. Another interesting case is
posed by both runtime properties, whereas one needs conversion from minutes to seconds.

6

3.4. LLM Instructions

Prompt engineering is an iterative process. We started by crafting simple prompts that quickly
accomplished our tasks and then refined them based on our early findings.

3.4.1. RML Mapping Prompt

The mapping file generation prompt encompasses different rules and presets the entire target
ontology and a JSON input data sample. The instruction contains the following rules (shortened
versions):

• Convert given JSON data with file located at /path/to/input.json
• Use the provided movie ontology as a mapping target
• Map information with the most specific class or property possible
• Take the domain and range of properties into account
• Convert values to be valid for datatypes
• Ensure syntactical and semantical correctness to RML specifcation
• Use ’http://mykg.org/resource/’ as target namespace

3.4.2. Turtle Repair Prompt

One major challenge when requesting specific structured formats from LLMs in a zero-shot
manner is the handling of syntax errors.

To deal with corrupted syntax in the Turtle format, we use a second prompt for requesting the
LLM to repair the syntax. It includes rigorous instructions and hints for the syntax, the corrupted
Turtle data (response from initial mapping generation prompt or the output of previous fixing
attempt), and the parsing exception thrown by the Python RDF library (rdflib).

The instruction contains the following constraints (shortened versions):
• Respond with the full fixed RDF Turtle document.
• Stick with the original structure and formatting of the original Turtle file as much as

possible.
• Only apply minor modifications to fix the syntax.
• Take the given parsing exception into account when repairing
• Check proper usage of . ; , for separating triples, predicate-objects, and objects.

4. Evaluation

In our evaluation, we assessed five commercial large language models (LLMs): Claude2.1,
Claude3 Opus (20240229), GPT3.5 Turbo (01-25), GPT4 Turbo (01-25-preview), and Gemini Pro.
Each model underwent a structured testing protocol over 40 runs using its default settings, such
as temperature. The evaluation comprised the following steps:

1. For each run, we checked the output for RDF syntax errors. If the initial output is not
syntactically valid, we performed up to two consecutive repair attempts.

2. For outputs that were either generated correctly or successfully repaired, we evaluated
the generation of triples.

7

3. We then verified the correctness of these triples, both under exact and relaxed conditions.
4. Finally, for all properties, we assessed whether they were correctly mapped to the target

ontology.
We assess the generated RML and the transformed RDF triples in the following sections.

(a) RML Turtle Syntax Validity (b) Mapping Soundness

Figure 3: LLM Response Validity of generated RML Mapping Files in Turtle Format.

4.1. LLM Response Validity

In Fig. 3a, we show how many iterative Turtle syntax repair attempts were performed for each
of the 40 generated initial mappings per model. We found, that the novel Claude3 is the most
syntax-conformant model and shows a significant enhancement over its predecessor (which
lacks in generating and repairing Turtle in around 75% of the cases). For the OpenAI models
we could observe a reversed effect, which aligns with findings reported in [1]. Fortunately,
GPT4 can fix its mappings in the majority of cases in one attempt. Gemini has a slightly better
performance (25%) than Claude2.1. However, when looking at Fig. 3b, we see that when trying
to put the valid (parsable) mappings into action, both models do not generate a single mapping
that produces any triple but the majority leads to processing exceptions (correct syntax but
issues w.r.t. RML spec or bad JSON iterator). While GPT3.5 is reliable w.r.t. Turtle, the produced
RML is not sound and leads to errors in over 90% of the cases. Claude3 produces the most
actionable mappings in the majority of cases, where a great portion generates triples. GPT4
only creates mappings in slightly more than one-third of the cases. The reason for 0-triple
mappings is usually that the iterators or reference conditions do not select input data.

4.2. Mapping Quality.

We analyze the quality of the mapping mostly based on the "fitness for use" of the triples
generated by it. Fitness for use is driven by the degree of how well requirements 2-5 (Section 3.3)
are fulfilled and our data integration/fusion use case (mapping data to integrate in target KG)
can be accommodated. While we reused some metrics from related work, a plethora of these do

8

(a) Triples (b) Subjects (c) Predicates (d) Objects

Figure 4: Generated Knowledge Graph Elements Quality. Exact Match on Triple and Triple Elements.
The F1 scores are presented, with the median (bold line) and mean (big circle) scores.

claude3 gpt4
mappings with triples 26 13
full predicate coverage 4 0
only ontology mapped 20 2
isAdult|ordering not mapped 26 13
usage of any / custom funct. 0/0 3/3

Table 1
Vocabulary Usage.

claude3 gpt4
mappings with triples 26 13
all people have id 21 9
all people ids are typed 20 7
all actors have id 21 9
all actor ids are typed 11 0

Table 2
Generated Entity IRIs and Types.

not match well with this setting or have limited value. E.g. correctness of the (lexical) values of
transformed data is more important than the datatype (ideally datatype is also correct but if
the value is wrong and datatype is correct this a serious problem). As such using e.g. RDFUnit
as in [16] would be of limited help. Instead, we created a "gold mapping" and produce a gold
standard KG. However, matching the mapping output KGs with it, pose the challenge that the
graph could be correct and useful but not isomorphic due to IRI identifier variety. Moreover,
AI-generated mappings can have different types of errors compared to manually created ones.
But this work has the goal to get insights what aspects of the experiment task pose challenges
to the LLMs. As a consequence we present a set of custom measures that have varying levels
of strictness, when it comes to comparing the triples generated by the mapping to the gold
standard, but also measures that are tailored to our specific experiment data. In Table 1 we
report overall statistics about the mappings and its vocabulary usage. Claude3 created 26 and
GPT4 created 13 mappings that generated at least one triple. With regard to mapping to all
possible candidates from the target ontology, only four Claude3 mappings succeeded. Claude3

9

also matched in most cases only the correct candidates and nothing more. For GPT4 this OM
aspect seems to cause problems. It consistently tried to map "unmappable" elements like isAdult
or ordering. Moreover, it also ignored our requirement to use no external functions. We found
that GPT4 has issues in following our mapping requirements and instructions.

4.2.1. Triples Exact Match Comparison

(a) Class Assignment (b) Subject Relaxed (c) Literal Values EM (d) Literal Datatypes EM

Figure 5: Relaxed Scores.

As a first and very strict set of scores we report 4 graph identity measures. In Fig. 4, we show
F1 scores for the extracted triples compared to our gold reference. Every point of the boxplot
represents a mapping that generated at least one triple. Note, that the amount of mappings are
different because, we gave every model the same fair chance in 40 runs to produce and repair
the mapping, which lead to different numbers of mappings generating triples. The median (bold
line) for the triple-oriented and subject-oriented matches is both 0. The mean (big circle) of
Claude3 is slightly better than GPT4. However, we also see some outliers with F1 values of
0.8 which show that some runs were more successful. With regard to the set of predicates and
objects the results are significantly better, showing that Claude3 performed better.

4.2.2. Relaxed Scores

The triple-element scores showed that the F1 triple score is significantly affected by problems
with subject identifiers. As such, we present in Fig. 5 a set of relaxed scores. The Subject
Relaxed score is tolerant with regard to our requested IRI pattern (since the models very often
ignore this request and create IRIs of the form /class/id instead). Since the IRI patterns have no
effect on data integration, we tolerate this in the relaxed score, but we ensure that the correct

10

ty
pe

W
or
k/
ru
nt
im

e

bi
rt
hY

ea
r

co
m
po

se
r

de
at
hY

ea
r

di
re
ct
or

ed
it
in
g

ex
ec
ut
iv
eP

ro
du

ce
r

ge
nr
e

na
m
e

or
ig
in
al
Ti
tl
e

st
ar
ri
ng

st
ar
tY
ea
r

ti
tl
e

w
ri
te
r

ed
it
or

pr
od

uc
er

ru
nt
im

e

p is used 26 24 25 6 25 6 5 0 22 23 25 7 25 24 6 1 6 0
p outdegree OK 7 24 22 5 22 5 5 0 22 20 25 4 25 24 5 - - -
s-o fuzzy OK 9 20 21 0 21 0 0 0 18 20 21 0 21 20 0 - - -
o is IRI 26 0 0 6 0 6 5 0 1 1 1 7 0 1 6 1 6 0
o is literal 0 24 25 0 25 0 0 0 21 22 24 0 25 23 0 0 0 0
literal OK - 19 21 - 21 - - - 18 20 21 - 21 20 - - - -

Table 3
Claude 3 Property Mapping Statistics. Showing counts from a total of 26 generated files with triples.
The last three rows show the correct mapping of object properties "o is IRI", and datatype properties "o
is literal", including datatype declaration "literal OK".

ids are contained within the IRIs, since this a non-negotiable necessary requirement. This score
shows that Claude3 makes only very few errors w.r.t. subject id generation, but also GPT4 has a
reasonable performance. Since the object performance can be also affected by our IRI constraint
for Object properties, we had an isolated look on the datatype properties. The Literal Values
EM score describes whether the values (lexical) are having an exact match without considering
the datatype. We see that Claude3 shows an excellent performance compared to GPT4 (median
smaller than 0.5). When doing the opposite by ignoring the object value but testing for the
correct datatype only (Literal Datatypes EM), the performance of GPT4 is better, but still
worse compared to Claude3. We calculated a Class Assignment score to get an impression of
which entities are mapped. The class assignment result shows the F1 score calculated between
the list of expected (most specific) and assigned class types of the applied RML mapping. We
see that Claude3 is better but the assignment needs further inspection. In Table 2, we see both
Claude3 and GPT4 miss in some instances to extract all person entities but then in particular
fail to assign the correct most-specific type to Actors.

4.2.3. Property Mapping Insights

Based on our analysis of the single mappings, we have observed diverse vocabulary usage
throughout the generated mapping files. Table 3 and Table 4 show the results of an in-depth
analysis for Claude3 and GPT4. We analyze the mapping vocabulary usage quality by:
counting the number of generated triple files containing the property ("p is used"); checking
whether the outdegree matches the outdegree from the reference ("p outdegree OK"); checking
whether it is used reasonably ("s-o fuzzy OK") by performing fuzzy matching on subjects (should
contain title/person id) and objects (match on value ignoring the datatype) with the reference
triples; it is used as an object or datatype property, and in the case of the latter, whether the
literal value and datatype match correctly ("literal OK").

We observed that all datatype properties are highly used in the generated mappings by both

11

ty
pe

W
or
k/
ru
nt
im

e

bi
rt
hY

ea
r

co
m
po

se
r

de
at
hY

ea
r

di
re
ct
or

ed
it
in
g

ex
ec
ut
iv
eP

ro
du

ce
r

ge
nr
e

na
m
e

or
ig
in
al
Ti
tl
e

st
ar
ri
ng

st
ar
tY
ea
r

ti
tl
e

w
ri
te
r

ed
it
or

pr
od

uc
er

ru
nt
im

e

p is used 13 1 8 1 8 3 0 0 11 9 10 2 11 11 1 1 1 10
p outdegree OK 0 1 7 0 7 1 0 0 11 8 10 0 11 11 0 - - -
s-o fuzzy OK 0 0 8 0 8 0 0 0 10 8 9 0 10 9 0 - - -
o is IRI 13 0 0 0 0 2 0 0 1 0 0 1 0 0 0 0 0 0
o is literal 0 1 8 1 8 1 0 0 10 9 10 1 11 11 1 1 1 10
literal OK - - 8 - 8 - - - 10 8 9 - 10 9 - - - -

Table 4
GPT 4 Property Mapping Statistics. Showing counts from a total of 13 generated files with triples.

models. Considering a fuzzy triple match ("s-o fuzzy OK") for triples containing the predicate
shows good usage counts for each of these properties. The same can be seen for property
outdegree ("p outdegree OK") and their value+datatype correctness count ("literal OK"). Claude3
has at least 18, and GPT4 has at least 8 generated triple files with datatype properties, mapping
the correct value and datatype. Concerning the "confusable" predicates (Section 3.3), our analysis
shows that (incorrectly) mapping to the property runtime instead of Work/runtime only
happened for GPT4.

Both models fail to generate correct mapping rules for all the job function object properties
based on the given person (involvement/job) category. Claude3 and GPT4 do not map the
expected property executiveProducer, but the producer property was mapped six times
by Claude3 and once by GPT4. Further, a mapping for the false property editor was only
generated once by both models. However, Claude3 RML mappings use the expected target
property editing five times, but unfortunately incorrectly, whereas GPT4’s mapping results
do not contain a single triple using this property.

Notably, for both models, we can identify the incorrect usage of datatype or object
properties in several cases (e.g., an object is mapped as literal instead of IRI, or vice versa). The
genre property was used as object property once in each of the model results, as opposed to
the changes made in our ontology (w.r.t. the original definition in the DBpedia ontology). The
highest incorrect usage in both models is for the job function properties (e.g., starring).

5. Conclusion & Future Work

In conclusion, our detailed analysis of RML mappings generated by the latest commercial large
language models (LLMs) like Claude3 Opus and GPT4 showcased promising results in handling
given JSON data and target ontologies. Claude3 Opus, in particular, generally excelled over
GPT4 in quality evaluations, highlighting its enhanced proficiency. However, earlier versions
such as Claude 2.1, GPT3.5T, and Gemini-Pro struggled significantly with the task, failing to
produce any valid RML documents.

12

Throughout our development phase, we encountered issues related to RDF syntax, such as
incorrect prefix definitions and the use of separators in Turtle syntax. Although the newer
models showed a good grasp of the RML spec and our ontology vocabulary, they consistently
confused properties like executive-producer with producer, likely due to unclear ontology
documentation, and incorrectly mapped certain properties completely (person job functions).
The property mapping issue may be related to the correct definition of the JSON reference,
whereby The LLM needs to generate a JSON expression for each job, matching an exact key-value
pair in the nested person objects, to map the correct specific role function property.

Our initial experiment offers plenty of directions for future research. Testing RML mapping
with different data formats, such as CSV and XML, could offer insights into how data expres-
siveness impacts mapping generation. The study of YARRRML could further our understanding
of LLM capabilities in relation to the targeted mapping issues. Next, experimenting with diverse
data sampling strategies, like popular versus unpopular datasets or entirely unknown data,
would measure understanding of more specialized domains. Furthermore, enhancing model
performance through feedback mechanisms on errors and the integration of SHACL valida-
tions could improve results. There is also a potential to refine LLM capabilities by providing
more context through ontologies and improving model training with existing mappings from
resources like GitHub. Finally, enabling custom RML function usage and generation would offer
better flexibility and allow more complex mappings.

Moving forward, we see substantial potential for LLMs to automate and enhance the con-
struction of knowledge graphs, highlighting the importance of continued advancements and
refinements in hybrid KG and LLM technologies.

Acknowledgements. The authors acknowledge the financial support by the Federal Ministry of
Education and Research of Germany and by the Sächsische Staatsministerium für Wissenschaft
Kultur und Tourismus in the program Center of Excellence for AI-research "Center for Scalable
Data Analytics and Artificial Intelligence Dresden/Leipzig", project identification number:
ScaDS.AI.

Furthermore, this work was partially supported by grants from the German Federal Ministry
for Economic Affairs and Climate Action (BMWK) to the KISS project (01MK22001A).

References

[1] J. Frey, L.-P. Meyer, N. Arndt, F. Brei, K. Bulert, Benchmarking the abilities of large
language models for RDF knowledge graph creation and comprehension: How well do
llms speak turtle?, in: M. Alam, M. Cochez (Eds.), Proceedings of the Workshop on Deep
Learning for Knowledge Graphs (DL4KG 2023) co-located with the 21th International
Semantic Web Conference (ISWC 2023), Athens, November 6-10, 2023, volume 3559 of
CEUR Workshop Proceedings, CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3559/
paper-3.pdf. arXiv:2309.17122.

[2] J. Frey, L.-P. Meyer, F. Brei, S. Gründer-Fahrer, M. Martin, Assessing the evolu-
tion of llm capabilities for knowledge graph engineering in 2023, in: ESWC 2024
Satellite Events, Hersonissos, Crete, Greece, May 26 - 30, 2024, Proceedings., 2024.

13

https://ceur-ws.org/Vol-3559/paper-3.pdf
https://ceur-ws.org/Vol-3559/paper-3.pdf
http://arxiv.org/abs/2309.17122

URL: https://www.researchgate.net/publication/378804553_Assessing_the_Evolution_of_
LLM_capabilities_for_Knowledge_Graph_Engineering_in_2023.

[3] Y. Zhu, X. Wang, J. Chen, S. Qiao, Y. Ou, Y. Yao, S. Deng, H. Chen, N. Zhang, Llms for
knowledge graph construction and reasoning: Recent capabilities and future opportunities,
2023. arXiv:2305.13168.

[4] J. H. Caufield, H. Hegde, V. Emonet, N. L. Harris, M. P. Joachimiak, N. Matentzoglu, H. Kim,
S. A. T. Moxon, J. T. Reese, M. A. Haendel, P. N. Robinson, C. J. Mungall, Structured prompt
interrogation and recursive extraction of semantics (spires): A method for populating
knowledge bases using zero-shot learning, 2023. arXiv:2304.02711.

[5] J. Wang, Y. Chang, Z. Li, N. An, Q. Ma, L. Hei, H. Luo, Y. Lu, F. Ren, Techgpt-2.0: A
large language model project to solve the task of knowledge graph construction, 2024.
arXiv:2401.04507.

[6] M. Hofer, D. Obraczka, A. Saeedi, H. Köpcke, E. Rahm, Construction of knowledge graphs:
State and challenges, CoRR abs/2302.11509 (2023). URL: https://doi.org/10.48550/arXiv.
2302.11509. doi:10.48550/ARXIV.2302.11509. arXiv:2302.11509.

[7] A. Dimou, M. V. Sande, P. Colpaert, R. Verborgh, E. Mannens, R. V. de Walle, RML: A
generic language for integrated RDF mappings of heterogeneous data, in: C. Bizer, T. Heath,
S. Auer, T. Berners-Lee (Eds.), Proceedings of the Workshop on Linked Data on the Web
co-located with the 23rd International World Wide Web Conference (WWW 2014), Seoul,
Korea, April 8, 2014, volume 1184 of CEUR Workshop Proceedings, CEUR-WS.org, 2014.
URL: https://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf.

[8] A. Iglesias-Molina, D. Van Assche, J. Arenas-Guerrero, B. De Meester, C. Debruyne, S. Joza-
shoori, P. Maria, F. Michel, D. Chaves-Fraga, A. Dimou, The rml ontology: A community-
driven modular redesign after a decade of experience in mapping heterogeneous data to
rdf, in: T. R. Payne, V. Presutti, G. Qi, M. Poveda-Villalón, G. Stoilos, L. Hollink, Z. Kaoudi,
G. Cheng, J. Li (Eds.), The Semantic Web – ISWC 2023, Springer Nature Switzerland, Cham,
2023, pp. 152–175.

[9] A. Narayan, I. Chami, L. Orr, S. Arora, C. Ré, Can Foundation Models Wrangle Your Data?,
2022. URL: http://arxiv.org/abs/2205.09911, arXiv:2205.09911 [cs].

[10] N. Matentzoglu, J. H. Caufield, H. B. Hegde, J. T. Reese, S. Moxon, H. Kim, N. L. Harris,
M. A. Haendel, C. J. Mungall, Mappergpt: Large language models for linking and mapping
entities, 2023. arXiv:2310.03666.

[11] S. Hertling, H. Paulheim, Olala: Ontology matching with large language models, in:
Proceedings of the 12th Knowledge Capture Conference 2023, K-CAP ’23, Association
for Computing Machinery, New York, NY, USA, 2023, p. 131–139. URL: https://doi.org/10.
1145/3587259.3627571. doi:10.1145/3587259.3627571.

[12] R. Zhang, Y. Su, B. D. Trisedya, X. Zhao, M. Yang, H. Cheng, J. Qi, AutoAlign: Fully
Automatic and Effective Knowledge Graph Alignment enabled by Large Language Models,
2023. URL: http://arxiv.org/abs/2307.11772, arXiv:2307.11772 [cs].

[13] M. Funk, S. Hosemann, J. C. Jung, C. Lutz, Towards ontology construction with language
models, in: S. Razniewski, J. Kalo, S. Singhania, J. Z. Pan (Eds.), Joint proceedings of the 1st
workshop on Knowledge Base Construction from Pre-Trained Language Models (KBC-LM)
and the 2nd challenge on Language Models for Knowledge Base Construction (LM-KBC)
co-located with the 22nd International Semantic Web Conference (ISWC 2023), Athens,

14

https://www.researchgate.net/publication/378804553_Assessing_the_Evolution_of_LLM_capabilities_for_Knowledge_Graph_Engineering_in_2023
https://www.researchgate.net/publication/378804553_Assessing_the_Evolution_of_LLM_capabilities_for_Knowledge_Graph_Engineering_in_2023
http://arxiv.org/abs/2305.13168
http://arxiv.org/abs/2304.02711
http://arxiv.org/abs/2401.04507
https://doi.org/10.48550/arXiv.2302.11509
https://doi.org/10.48550/arXiv.2302.11509
http://dx.doi.org/10.48550/ARXIV.2302.11509
http://arxiv.org/abs/2302.11509
https://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://arxiv.org/abs/2205.09911
http://arxiv.org/abs/2310.03666
https://doi.org/10.1145/3587259.3627571
https://doi.org/10.1145/3587259.3627571
http://dx.doi.org/10.1145/3587259.3627571
http://arxiv.org/abs/2307.11772

Greece, November 6, 2023, volume 3577 of CEUR Workshop Proceedings, CEUR-WS.org,
2023. URL: https://ceur-ws.org/Vol-3577/paper16.pdf.

[14] S. Arora, B. Yang, S. Eyuboglu, A. Narayan, A. Hojel, I. Trummer, C. Ré, Language
models enable simple systems for generating structured views of heterogeneous data lakes,
Proc. VLDB Endow. 17 (2023) 92–105. URL: https://doi.org/10.14778/3626292.3626294.
doi:10.14778/3626292.3626294.

[15] D. Van Assche, T. Delva, G. Haesendonck, P. Heyvaert, B. De Meester, A. Dimou,
Declarative rdf graph generation from heterogeneous (semi-)structured data: A sys-
tematic literature review, Journal of Web Semantics 75 (2023) 100753. URL: https:
//www.sciencedirect.com/science/article/pii/S1570826822000373. doi:https://doi.org/
10.1016/j.websem.2022.100753.

[16] A. Dimou, D. Kontokostas, M. Freudenberg, R. Verborgh, J. Lehmann, E. Mannens, S. Hell-
mann, R. Van de Walle, Assessing and refining mappingsto rdf to improve dataset quality,
in: M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth,
M. Dumontier, J. Heflin, K. Thirunarayan, S. Staab (Eds.), The Semantic Web - ISWC 2015,
Springer International Publishing, Cham, 2015, pp. 133–149.

[17] A. Randles, D. O’Sullivan, Assessing quality of R2RML mappings for osi’s linked open data
portal (short paper), in: B. Yaman, M. A. Sherif, A. N. Ngomo, A. Haller (Eds.), Proceedings
of the 4th International Workshop on Geospatial Linked Data (GeoLD) Co-located with
the 18th Extended Semantic Web Conference (ESWC 2021), Virtual event (instead of
Hersonissos, Greece), June 7th, 2021, volume 2977 of CEUR Workshop Proceedings, CEUR-
WS.org, 2021, pp. 51–58. URL: https://ceur-ws.org/Vol-2977/paper7.pdf.

[18] A. Randles, A. C. Junior, D. O’Sullivan, A framework for assessing and refining the quality
of r2rml mappings, in: Proceedings of the 22nd International Conference on Information
Integration and Web-Based Applications & Services, iiWAS ’20, Association for Computing
Machinery, New York, NY, USA, 2021, p. 347–351. URL: https://doi.org/10.1145/3428757.
3429089. doi:10.1145/3428757.3429089.

[19] B. Moreau, P. Serrano-Alvarado, Assessing the quality of rdf mappings with evamap, in:
A. Harth, V. Presutti, R. Troncy, M. Acosta, A. Polleres, J. D. Fernández, J. Xavier Parreira,
O. Hartig, K. Hose, M. Cochez (Eds.), The Semantic Web: ESWC 2020 Satellite Events,
Springer International Publishing, Cham, 2020, pp. 164–167.

[20] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, Quality assessment for
linked data: A survey, Semantic Web 7 (2015) 63–93. doi:10.3233/SW-150175.

[21] P. Heyvaert, B. D. Meester, A. Dimou, R. Verborgh, Declarative rules for linked data gener-
ation at your fingertips!, in: A. Gangemi, A. L. Gentile, A. G. Nuzzolese, S. Rudolph,
M. Maleshkova, H. Paulheim, J. Z. Pan, M. Alam (Eds.), The Semantic Web: ESWC
2018 Satellite Events - ESWC 2018 Satellite Events, Heraklion, Crete, Greece, June
3-7, 2018, Revised Selected Papers, volume 11155 of Lecture Notes in Computer Sci-
ence, Springer, 2018, pp. 213–217. URL: https://doi.org/10.1007/978-3-319-98192-5_40.
doi:10.1007/978-3-319-98192-5_40.

[22] D. Tarasowa, C. Lange, S. Auer, Measuring the quality of relational-to-rdf mappings, in:
P. Klinov, D. Mouromtsev (Eds.), Knowledge Engineering and Semantic Web, Springer
International Publishing, Cham, 2015, pp. 210–224.

15

https://ceur-ws.org/Vol-3577/paper16.pdf
https://doi.org/10.14778/3626292.3626294
http://dx.doi.org/10.14778/3626292.3626294
https://www.sciencedirect.com/science/article/pii/S1570826822000373
https://www.sciencedirect.com/science/article/pii/S1570826822000373
http://dx.doi.org/https://doi.org/10.1016/j.websem.2022.100753
http://dx.doi.org/https://doi.org/10.1016/j.websem.2022.100753
https://ceur-ws.org/Vol-2977/paper7.pdf
https://doi.org/10.1145/3428757.3429089
https://doi.org/10.1145/3428757.3429089
http://dx.doi.org/10.1145/3428757.3429089
http://dx.doi.org/10.3233/SW-150175
https://doi.org/10.1007/978-3-319-98192-5_40
http://dx.doi.org/10.1007/978-3-319-98192-5_40

	1 Introduction
	2 Related Work
	2.1 LLMs in Mapping and KGC processes
	2.2 Mapping Frameworks and RML Quality Evaluation

	3 Experiment Method and Setup
	3.1 Test Data & Prompt Input Data
	3.2 Target Ontology
	3.3 RML Mapping Requirements & Challenges
	3.4 LLM Instructions
	3.4.1 RML Mapping Prompt
	3.4.2 Turtle Repair Prompt

	4 Evaluation
	4.1 LLM Response Validity
	4.2 Mapping Quality.
	4.2.1 Triples Exact Match Comparison
	4.2.2 Relaxed Scores
	4.2.3 Property Mapping Insights

	5 Conclusion & Future Work

