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Abstract

This short paper explores the usability of Long Range Wide Area Network (LoRaWAN) technology for localization
within the context of modern Industry 5.0 wireless networks. Traditional localization methods have often fallen
short in providing meaningful accuracy in this domain. Our research addresses this gap by investigating the
potential of LoRaWAN for localization, synthesizing key findings and advancements. Two primary contributions
are presented: the analysis of two underground LoRaWAN datasets, valuable resources for researchers and
practitioners, and the proposal of two innovative k-nearest neighbors (k-NN) algorithms designed to enhance
position estimation accuracy through optimized nearest neighbor selection. By integrating preprocessing
strategies with these algorithms, an improvement in accuracy of up to 17% is achieved.
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1. Introduction

Improving safety protocols within industrial landscapes, especially in hazardous settings where humans
interface with autonomous machinery, is a continual pursuit reshaping operational paradigms. This
development is significantly augmented by the integration of cutting-edge technologies, notably within
the realm of Industry 5.0 [1, 2]. A major aspect of this evolution is the amalgamation of the Internet of
Things (IoT) [3] and wearable tech, offering transformative potential for improving safety measures in
challenging industrial contexts [4].

Wearable devices have gained traction owing to their ability to enhance safety, particularly in
rugged environments [5]. However, the quest for enhanced functionality, reduced energy consumption,
and miniaturization poses intricate engineering challenges. Among these, localization emerges as a
critical domain, especially when considering LoRaWAN technology as means for communication or
localization [6].

LoRaWAN, a robust communication solution for IoT applications, including industrial wearables, is
very heavily used in IoT deployments [7]. However, its viability for localization applications necessitated
deeper scrutiny due to inherent bandwidth limitations, which may impinge upon accuracy. Nevertheless,
LoRaWAN’s attributes such as low-power operation, expansive coverage, scalability, market availability,
and robust propagation capabilities render it an attractive contender for IoT-based localization traditional
methodologies like Wi-Fi, BLE, or UWB [8].
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This paper delves into the feasibility of harnessing LoRaWAN for localization tasks based on real
life datasets, leveraging both preprocessing and postprocessing methodologies to augment accuracy,
particularly for wearable devices employed in safety-critical scenarios. Building upon antecedent
research that furnished open fingerprinting datasets acquired by the authors in "wild" conditions, this
study progresses by proffering two novel k-NN-based algorithm modifications customized to optimize
nearest neighbor selection for refined position estimation. Additionally, it reflects on two underground
LoRaWAN-based datasets, augmenting algorithmic refinement and serving as invaluable assets for the
broader research community following work [8].

The paper assesses LoRaWAN-based localization methodologies, finding conventional techniques
wanting, while ML, notably k-NN, substantially curtail errors. Diverse preprocessing strategies
further impacting the accuracy, with indoor datasets showcasing superior precision, followed by
outdoor and subterranean environments. The proposed k-NN algorithms and associated strategies
yield a marked accuracy enhancement of up to 17%. While not rivaling leading-edge technologies in
precision, LoRaWAN evinces promise for applications such as logistics and agriculture, demonstrating
commendable accuracy under appropriate conditions.

The rest of the paper is organized as follows. Section 2 provide a brief background information.
Further, Section 3 outlines the main k-N N related modifications. Next, Section 4 depicts selected
numerical results based on real-life datsets for both underground and traditional localization cases. The
last section concludes the work.

2. Background

This section draws upon previously gathered open-access LoORaWAN datasets documented in [8]
and accessible via [9]. To maintain coherence, we initiate this segment with a concise overview of
their configuration, followed by an examination of baseline localization errors and a comparison of
preprocessing methodologies.

Two distinct measurement campaigns were conducted at Brno University of Technology (BUT)
and Politehnica Bucuresti National University for Science and Technology (UNSTPB). Each campaign
adhered to a consistent two-stage protocol: an "offline" phase encompassing map preparation and
LoRaWAN LG308 gateway (GW) deployment, succeeded by an "online" phase involving direct data
collection utilizing LoRa Field Test Devices (FTDs) [10, 11]. Detailed procedural information regarding
campaign organization is available in [8].

This endeavor yielded seven distinct datasets [9], varying across several key parameters including
environment, spread factor (SF), measurement area, number of measurement points (MP), spacing,
LoRaWAN gateways (GW), as well as the mean random choice k-NN-obrained error. A summary of
pivotal parameters, with comprehensive dataset details available in [9].

«+ ds1: BUT, Building, GW place - Building, Spacing - 1m, GWs - 7, Indoor; Mean error: 3.4m;

« ds2: BUT, Parking (fl. -1), GW place - Building, Spacing — 3m, GWs - 7, Underground; Mean error: 11.6m;
« ds3: BUT, Parking (fl. -2), GW place - Building, Spacing — 3m, GWs - 7, Underground; Mean error: 13.3m;
« ds4: BUT, Parking (fl. -1) and Parking (fl. -2), Spacing - 2.5m, GWs - 6, Underground; Mean error: 5.6m;
« ds5: BUT, Parking (fl. -2) and Parking (fl. -2), Spacing - 2.5m, GWs - 6, Underground; Mean error: 7.2m;
« ds6: UNSTPB, Building, GW place — Building, Spacing — 1m, GWs — 9, Indoor; Mean error: 3.3m;

« ds7: UNSTPB, Alley, GW place - Building, Spacing — 1m, GWs - 8, Outdoor Mean error: 5.3m.

Initially, localization accuracy was approximated using conventional methodologies such as trilateration,
Weighted Centroid Algorithm (WCA), and k-Nearest Neighbors (k-NN). Trilateration and WCA, being reliant on
receiver positions, were directly applicable without significant data manipulation. Conversely, k-NN necessitated
redundancy exclusion stemming from multiple fingerprints per location. In our baseline k-NN implementation,
the "random choice" selection strategy was adopted, wherein one fingerprint per location was randomly chosen
for subsequent calculations. Following redundancy removal, the remaining data was partitioned into training



(20%) and testing (80%) subsets. Additional insights into the application of these localization algorithms can be
found in the seminal work [8].
Localization error estimation employed the Root Mean Square Error (RMSE) metric, widely utilized for accuracy

assessment: RMSE = \/Z ((xﬁm)zﬂyl 9)%) where x and y denote real coordinates, & and §/ represent
predicted object coordinates (utlhzmg Trllateratlon WCA, k-NN), and K denotes the number of MPs to be
estimated.

Overall, our previous observation proved that trilateration and WCA exhibit notably low accuracy within
a few tens of meters, rendering them relatively ineffectual for localization purposes. Conversely, k-NN yields
markedly superior and generally promising results across most scenarios, particularly for indoor scenarios (ds1
and ds6), boasting an accuracy up to 10 times greater than methods reliant on GW location.

Consequently, k-NN with random choice was designated as the baseline, with trilateration and WCA omitted
from further comparisons to streamline visualization. The baseline findings revealed an average error of 3.4m for
the indoor environment and 5.3m for outdoor scenarios.

In pursuit of heightened localization precision, we conducted experiments exploring various redundancy
reduction techniques essential for k-Nearest Neighbors (k-NN). In addition to the "random choice" strategy, we
investigated "averaging" (based on averaged fingerprints per location) and "maximum" (relying on fingerprints
with the highest average Received Signal Strength Indicator (RSSI) level) methodologies. As noted in [8],
while discernible disparity between the two strategies is minimal across the datasets, a marginal superiority
of the "averaging" strategy. Notably, the "averaging" strategy exhibits preeminence in underground datasets
characterized by signal attenuation and general instability. The calculations were conducted across five datasets,
excluding underground ds2 and ds3, thus exhibiting slight favoritism towards the "maximum" strategy.

Despite surpassing initial expectations, the current localization accuracy estimates by LoRaWAN still fall short
of leading technologies such as Ultra-Wideband (UWB) or Global Positioning System (GPS). Consequently, we
continued our quest for accuracy refinement. The noted in [8] experiments involved adjustments to measurement
campaign parameters (Spread Factor, number of Gateways, spacing) and machine learning algorithms. Our
analysis corroborated k-NN as the most accurate method for our specific problem, prompting further research
extensions detailed in the subsequent sections.

3. Description of the ML adjustments

Upon scrutinizing the dataset using k-Nearest Neighbors (k-NN), a discernible observation emerges: the shortest
distances in the distance matrix may correspond to measurement points (MPs) quite distant from the point under
estimation. This phenomenon, extensively elaborated in our prior conference paper dedicated to LoRaWAN-based
outdoor localization [12], primarily signifies the low stability of the signal map, resulting in erroneous neighbor
selection. To mitigate this drawback, an enhancement strategy can be integrated into the k-NN algorithm, aimed
at reducing its impact.

The Modification 1 strategy proposes to reassess the relevance of selected nearest neighbors based on the
Euclidean distance between them and the origin points. Here, one of the corners of the measurement area
perimeter serves as the origin point. The rationale behind this approach posits that the nearest neighbor group
should ideally reside within the same vicinity. Consequently, the proposition involves computing Euclidean
distances from the origin to each neighbor, delineating an approximate localization zone based on mean distance,
and discarding outliers, i.e., neighboring points outside this zone.

The Modification 2 follows a similar trajectory, albeit with a slight variation. Instead of computing Euclidean
distance to the origin point, it’s calculated from each neighbor to the preliminary estimated value provided by
k-NN. Consequently, the localization zone is established by one border, extending from 0 to the mean value of
Euclidean distances plus a designated allowance.

However, Modification 1 acknowledges certain limitations, particularly its efficacy at low & values, predicated
on the assumption that the outlier count in the group is fewer than relevant neighbors. Nevertheless, a potential
issue arises: the likelihood of a larger outlier group compared to ’valid’ neighbors, i.e., those within the localization
zone. To address this, a condition is proposed wherein irrelevant neighbors are eliminated only if their count n is
three times less than the total neighbor count k: n < k/3.

For the Modification 2, this work investigates two options: Modification 2.1 employs unstable k when the
number of the nearest neighbors, based on which the estimated position is calculated, is not replenished after the
elimination of outliers. Modification 2.2 uses stable k when the number of removed outliers 7 is replenished by
the next neighbors from the distance matrix d.



4. Numerical results

To estimate the general gain from the modifications proposed in this work, it is necessary to compare the strategies
against the baseline using preprocessing, i.e., averaging redundancy reduction, which has proven to be the most
effective. The results for this setup are presented in Figure 1.

The results are summarized in Table 1 show that Modification 2 remains the most successful, with which it
was possible to achieve an improvement in localization quality by 17.2% on average across all datasets, while for
ds1 and ds5 this number exceeds 25%. Among the datasets, the accuracy improvement exceeds 13% for all of
them except ds2 and ds3 - two underground datasets with non-local placement of the GWs.

Table 1
Relative Advantages of proposed strategies with preprocessing over the baseline
Strategy ds1 ds2 ds3 ds4 ds5 dsé6 ds7 z
1 +25.2%  +7.3% +6.0% +19.0% +23.5% +151% +21.6% +16.8%
2.1 +259% +7.3% +10.3% +19.0% +25.6% +13.4% +19.1% +17.2%
2.2 +15.9% +4.2% +5.3% +19.0% +25.6% +13.4% +21.6% +15.0%

The charts indicate significant improvements in LoRaWAN localization accuracy, up to 17.2% on average, with
the implementation of a simple redundancy reduction technique and proposed algorithms. While underground
datasets posed challenges, indoor and outdoor scenarios showed results comparable to Wi-Fi and GPS, respectively,
albeit within a few meters of accuracy. This level of precision may suffice for many industrial applications where
extreme precision is not critical, including logistics, agriculture, and smart factories.

Basic k-NN emerged as the most precise among the tested ML algorithms. Among the proposed
accuracy-enhancing strategies, reassessment from the estimated value with stable k (Modification 2.2) yielded the
most significant increase in accuracy, averaging 17.2% with preprocessing. Other strategies also performed well,
with an average performance exceeding 15%.

Notable error reductions were observed in indoor (ds1), outdoor (ds7), and certain underground datasets (ds4
and ds5), with over 6% reductions seen in the remaining datasets.

While certain conditions, like a concentration of 7 GWs per 50,000 square meters with uniform distribution,
seem necessary for indoor and outdoor scenarios, the implications for underground environments remain
uncertain. Although the presented underground datasets exhibited low localization accuracy, it’s unclear if this is
representative of the broader environment or specific to the measurement campaign.

Despite proposed accuracy improvements, LoRaWAN-based localization still lags behind leading technologies.
Nonetheless, it may find utility in sectors where extreme precision is not essential, leveraging its existing
infrastructure for communication in logistics, agriculture, or smart factories.

5. Conclusions

To draw the intermediate conclusion, we start with the trilateration and WCA methodologies that exhibit
inefficiency, yielding an approximate error of 30 meters. Conversely, Machine Learning (ML) algorithms showcase
significant error reduction, often by several folds. Notably, k-Nearest Neighbors (k-NN) emerges as the most
precise ML technique, reducing mean localization error by up to a factor of 10 compared to trilateration. Among
the k-NN extensions proposed in this paper, leveraging reassessment from the estimated position with unstable %
shows promise.

Baseline k-NN, employing random fingerprint selection, is eclipsed by "averaging" and "maximum"
preprocessing strategies in spite of redundancy reduction strategy. Of the two, the "averaging" strategy slightly
outperforms the "maximum" approach. Optimal strategy selection hinges on dataset signal levels: "averaging"
proves more effective for low signal levels, while "maximum" is preferable otherwise.

Notably, superior accuracy is observed in indoor datasets (~ 2.6 m), followed by outdoor (~ 4 m) and
underground datasets (~ 5 — 12 m).

In conclusion, this paper represents a culmination of efforts in exploring LoORaWAN’s localization potential. It
introduces new underground datasets, contributing to algorithm refinement, and proposes novel k-NN-based
algorithms aimed at enhancing position estimation accuracy. The integration of these algorithms with redundancy
reduction strategies yields a notable accuracy improvement of up to 17%. While not competing with leading
precision technologies, LoORaWAN-based localization remains viable for specific applications such as logistics,
agriculture, or smart factories, where extreme precision is not paramount.
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Figure 1: Result of applying modifications (k-NN with preprocessing)
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