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Abstract
Real-Time Precise Point Positioning (RT-PPP) aims at improving positioning accuracy by correcting Common
Mode Errors (CMEs) present in Global Navigation Satelite System (GNSS) observables. This is done by means of
products made available, in real-time, by specialized agencies, such as the International GNSS Service (IGS) and
the Faculty of Astronomical and Geophysical Sciences (FCAG) of the Argentine University of La Plata (UNLP).
Nevertheless, after applying the RT-PPP corrections, residual errors remain in the GNSS observables, which
need to be addressed if one aims to further improve positioning accuracy. Among the latter, stands out: (a) the
tropospheric error, which is a CME for which no RT-PPP products are currently provided; and (b) the multipath
error, which is a Non-Common Mode Error (NCME) whose effect is associated with the reception of multiple
GNSS signals reflected from the surrounding environment. In this work, we propose to estimate the residual
multipath errors as 1st-order Gauss-Markov (GM) processes, which are augmented to the Extended Kalman
Filter (EFK) state vector, after having their correlation times and driven noise Power Spectral Densities (PSDs)
suitably identified. For the tropospheric error, we estimate (and compensate) the latter via the University of
New Brunswick 3 (UNB3) empirical model, and we augment the EKF for one additional state, to account for the
residual zenith wet tropospheric delay, which is modeled according to Niell’s mapping function. The very aim of
this work is to evaluate the effectiveness of the aforementioned techniques, specifically aiming at the compliance
with positioning accuracy requirements of Single-Frequency (SF) code-based GNSS receivers-equipped Connected
Vehicle Applications (CVAs). As main contribution, we show that the estimation of the residual zenith wet
tropospheric delay in the EKF state vector improves the position accuracy of the RT-PPP solution, particularly in
the vertical channel (8% of improvement). As for the estimation of the multipath errors, however, the latter is not
seen to be true (30% of impairment). Results from a dynamic test supports the outlined verifications.
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1. Introduction

Global Navigation Satellite Systems (GNSSs) positioning is based on the transmission of signals from
orbiting satellites, which provide us with three types of measurements: pseudoranges, Doppler shifts,
and carrier phases. GNSS signals are affected by several sources of errors that deteriorate the position
solution. Pseudorange measurements (the main GNSS observable employed in mass market applications
and, hence, the one we focus on throughout this work are primarily corrupted by nine types of
errors [1, 2], which can be classified into two categories [3]:

• Common Mode Errors (CMEs), which are spatially and temporally correlated errors, i.e., they are
experienced similarly by all receivers in the same vicinity over short time intervals. They comprise
the ephemeris error, satellite clock bias, satellite hardware bias, ionospheric and tropospheric
delays;
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• Non-Common Mode Errors (NCMEs) are different for each receiver (even when separated by short
distances), being comprised of receiver clock bias, receiver hardware bias, multipath error, and
receiver tracking noise.

Real-Time Precise Point Positioning (RT-PPP) is a state-of-the-art technique that provides compensa-
tion for (most of) the CMEs, via products that are made available, over the internet and in real-time, by
specialized agencies. The International GNSS Service (IGS) currently provides RT-PPP corrections with
global coverage for satellite orbits; clock and hardware biases; and ionospheric delays. In parallel to
IGS, regional agencies have recently succeeded in establishing correction services to serve their local
users better. For example, Silva, Hu, and Farrell [4] showed that the ionospheric products broadcasted
by the Faculty of Astronomical and Geophysical Sciences (FCAG) of the Argentine University of La
Plata (UNLP) [5] attained superior performance w.r.t. the real-time ionospheric corrections provided by
the IGS, for Connected Vehicle Applications (CVAs) in Brazilian territory (focus of this work).

To the best of the authors’ knowledge, the tropospheric error is the sole CME for which no RT-
PPP products are currently provided by any specialized agency, even though they are foreseen in the
third stage of deployment of the IGS Real-Time Service (RTS) [6]. As conceptualized by Groves [7],
the troposphere is a nondispersive medium, so all GNSS signals are delayed equally and there is no
code–carrier divergence. On average, about 90% of the delay is due to the dry gases in the atmosphere
and is relatively stable. The remaining delay relates to water vapor and varies considerably. The total
tropospheric delay at the zenith is about 2.5 m and varies by about ±10% with the climate and weather.

As a solution for the current unavailability of RT-PPP tropospheric products, users have resorted
to the deployment of empirical models. In Brazilian territory, for instance, Oliveira et al. [8] showed
that the University of New Brunswick 3 (UNB3) is the model that performs best in terms of positioning
accuracy. UNB3 is a neutral atmosphere-based tropospheric delay model that employs predictions of
meteorological parameter values for a given location, i.e., it depends on the latitude and altitude of the
user and day of the year. These parameters are used to calculate hydrostatic (dry) and non-hydrostatic
(wet) zenith delays using Saastamoinen models [9]. Slant delays (and/or lag rates) are then determined
using Niell mapping functions (or mapping function rates in the case of lag rates) [10].

As analyzed by Conley et al. [11], residual errors of around 0.2 m are expected to exist when using
UNB3 model, which relates, mostly, to the associated residual wet delays. In this regard, best performance
can be obtained by using current temperature, pressure, and humidity data. The incorporation of
meteorological sensors in most navigation applications, however, is not practical. As analyzed by
Groves [7], for high-precision applications, the residual wet troposphere propagation errors may be
calibrated as part of the navigation solution. This exploits the high degree of correlation between
the errors on signals from different satellites and may improve the positioning accuracy by a few
centimeters.

In addition to the tropospheric residual error, the NCMEs are also not compensated for when deploying
RT-PPP. While the tracking noise is usually considered to be sufficiently white, and the receiver clock
and hardware biases can be easily estimated or compensated for by differencing the pseudoranges
across satellites, the multipath error stands out as the major source of residual NCMEs corrupting
the observables. The multipath is the phenomenon whereby the signal from a satellite arrives at the
receiver via multiple paths due to reflection and diffraction. These non-direct path signals distort the
received signal and cause errors both in code (pseudorange) and phase measurements, which might be
at the meter- and centimeter-level, respectively [12].

Several studies have been conducted to mitigate multipath errors. Without loss of generality, the
techniques may be categorized as depending on the: (a) antenna placement; (b) antenna type; (c) receiver
type; and (d) measurement post-processing, which deals with multipath-contaminated measurements
[13]. There are numerous applications in which multipath is unavoidable despite the best attempts at
an optimum choice of antenna placement/design, and receiver architecture.

In this work, hence, we focus on evaluating the performance of filtering-based techniques for
mitigating the residual wet tropospheric error and the multipath error that remains after SF code-based
RT-PPP deployment. From the estimation standpoint, we tackle the problem by adding one state to the



associated Extended Kalman Filter (EFK), to account for the residual wet part of the tropospheric error
at zenith (mapped w.r.t. to the visible satellites by means of Niell obliquity functions [10]). As for the
multipath errors, we augment the EKF state vector by the same number of visible satellites, and we
model the latter as a 1st-order Gauss-Markov (GM) processes (with correlation times and the driven
noise Power Spectrum Densities (PSDs) previously and meticulously identified). As main contribution
of this work, we show, via a dynamic experimental test, that the EKF estimation of the residual zenith
wet tropospheric error, in fact, improves the accuracy of the RT-PPP solution, particularly in the vertical
channel. The estimation of the multipath errors, in turn, does not seem to bring additional benefits.

The remainder of this work is organized as follows: Section 2 introduces the notation, GNSS back-
ground for SF code-based RT-PPP estimation, and the associated EKF modeling for the residual tropo-
spheric and multipath errors. Section 3 describes the procedure used to suitably identify the parameters
that model the residual multipath errors as 1st-order GM processes. Section 4 describes the experimental
data acquisition and discusses the outcomes in terms of positioning performance. Section 5, lastly,
summarizes the paper and presents final thoughts.

2. GNSS Background

The raw (subscript 𝑅) pseudorange measurement between the user antenna 𝑎 and satellite 𝑠, taking
into account the errors cited in Section 1, can be modeled as [14]:

𝜌𝑠𝑎,𝑅 =
⃒⃒
C𝐼

𝑒 r
𝑒
𝑒𝑠 − r𝑒𝑒𝑎

⃒⃒
+ 𝛿𝜌𝑠𝐸 − 𝛿𝜌𝑠𝑐 + 𝛿𝜌𝑠𝑏 + 𝛿𝜌𝑠𝐼,𝑎 + 𝛿𝜌𝑠𝑇,𝑎 + 𝛿𝜌𝑎𝑐 + 𝛿𝜌𝑎𝑏 + 𝛿𝜌𝑠𝑀,𝑎 + 𝑤𝑠

𝜌,𝑎, (1)

where C𝐼
𝑒 is the Direct Cosine Matrix (DCM) compensating for the Earth-Centered-Earth-Fixed (ECEF)

frame rotation during signal propagation (for details, please refer to section 2.4.1 from [12]); r𝑒𝑒𝑠 is the
ECEF satellite position at time of signal transmission; and r𝑒𝑒𝑎 is the ECEF user position at time of signal
reception. The second row in (1) represents the pseudorange CMEs (𝛿𝜌𝑠𝐸 is the ephemeris error, 𝛿𝜌𝑠𝑐
and 𝛿𝜌𝑠𝑏 are the satellite clock and hardware code biases, respectively, 𝛿𝜌𝑠𝐼,𝑎 is the ionospheric delay,
and 𝛿𝜌𝑠𝑇,𝑎 is the tropospheric delay); and the third row, the NCMEs (𝛿𝜌𝑎𝑐 and 𝛿𝜌𝑎𝑏 represent the receiver
clock and hardware code biases, respectively, 𝛿𝜌𝑠𝑀,𝑎 is the multipath error, and 𝑤𝑠

𝜌,𝑎 is the receiver
tracking noise).

As discussed in Section 1, the tropospheric delay, 𝛿𝜌𝑠𝑇,𝑎, can be divided into two components: (a) the
dry part, accounting for approximately 90% of the total delay, which can be more accurately modeled by
means of empirical models; and (b) the wet part, which is more complex to model, due to its variation
with climate and weather. According to Niell [10], one has:

𝛿𝜌𝑠𝑇,𝑎 = 𝑚𝑠
𝑑𝜏

𝑧
𝑑 +𝑚𝑠

𝑤𝜏
𝑧
𝑤 (2)

where 𝜏 𝑧𝑑 and 𝜏 𝑧𝑤 are the zenith delays for the dry and wet tropospheric components, respectively, and
𝑚𝑠

𝑑 and 𝑚𝑠
𝑤 are the dry and wet mapping functions, also respectively, which can be defined as [15]:

𝑚𝑠
𝑖 =

1

1 +
𝑎

1 +
𝑏

1 + 𝑐
1

sin(𝜖) +
𝑎

sin(𝜖) +
𝑏

sin(𝜖) + 𝑐

(3)

where 𝑖 ∈ {𝑑,𝑤}, the coefficients 𝑎, 𝑏 and 𝑐 are constants defined in [10], which are functions of the
latitude, and 𝜖 is the satellite elevation angle.

Following the deployment of SF code-based RT-PPP, most of the CMEs depicted in (1) may be
considered to have been accurately compensated for. The ephemeris error, satellite clock and hardware
code biases, for instance, may be corrected using State Space Representation (SSR) products from



the IGS RTS. The ionospheric error, in turn, particularly for Latin America users (with extension to
the Caribbean and the Antarctica peninsula), may be mitigated via the deployment of the Regional
Ionospheric Maps (RIMs) from the UNLP FCAG, and the dry (and most of the wet) components of the
tropospheric error, lastly, by the application of the empirical UNB3 model. Details on the applicable
models for SF code-based RT-PPP deployment are not given in this work. The interested reader is
invited to refer to [4, 16, 17].

After the deployment of such SF code-based RT-PPP compensations (subscript 𝐶), (1) can be re-
written as:

𝜌𝑠𝑎,𝐶 =
⃒⃒
C𝐼

𝑒 r
𝑒
𝑒𝑠 − r𝑒𝑒𝑎

⃒⃒
+𝑚𝑠

𝑤𝛿𝜏
𝑧
𝑤 + 𝛿𝜌𝑎𝑐 + 𝛿𝜌𝑎𝑏 + 𝛿𝜌𝑠𝑀,𝑎 + 𝑤𝑠

𝜌,𝑎, (4)

where 𝛿𝜏 𝑧𝑤 is the residual wet tropospheric delay at zenith.
Even though the lumped effect of the receiver clock and hardware code biases in (4) can easily

estimated (as these error terms corrupt equally every observation measurement from the visible satellites
to the receiver), it is usually more advised to remove the latter by means of forming pseudorange
observations differenced across satellites, i.e., Single-Differenced (SD) observations:

∇𝜌𝑝𝑠𝑎,𝐶 = 𝜌𝑠𝑎,𝐶 − 𝜌𝑝𝑎,𝐶 . (5)

where 𝑝 is the pivot satellite (usually the one with highest elevation angle [7]).
A suitable model for (5) is then:

∇𝜌𝑝𝑠𝑎,𝐶 =
⃒⃒
C𝐼

𝑒 r
𝑒
𝑒𝑠 − r𝑒𝑒𝑎

⃒⃒
+
⃒⃒
C𝐼

𝑒 r
𝑒
𝑒𝑝 − r𝑒𝑒𝑎

⃒⃒
+ (𝑚𝑠

𝑤 −𝑚𝑝
𝑤)𝛿𝜏

𝑧
𝑤 +∇𝛿𝜌𝑝𝑠𝑀,𝑎 +∇𝑤𝑝𝑠

𝜌,𝑎, (6)

where ∇𝛿𝜌𝑝𝑠𝑀,𝑎 and ∇𝑤𝑝𝑠
𝜌,𝑎 are the SD multipath error and tracking noise, respectively.

The parameter of interest in the estimation problem of (6) is the user position, whose functional
relationship to the SD pseudorange measurement is nonlinear. Examples of methods used to estimate
the latter are the Weighted Iterated Least Squares (WILS) and the Extended Kalman Filter (EKF).
When a filtered GNSS approach is implemented (focus of this work), the Kalman filter state vector
definition may vary according to the desired application. In general, the position and velocity vectors
are always estimated. Based on the measurement model of (6), and assuming that the residual zenith
wet tropospheric delay and the SD multipath errors are observable/estimable, the following state vector
can be proposed:

x𝑒 = [(r𝑒𝑒𝑎)𝑇 , (v𝑒𝑒𝑎)𝑇 , 𝛿𝜏 𝑧𝑤,∇𝛿𝜌𝑝1𝑀,𝑎, ...,∇𝛿𝜌𝑝𝑚𝑀,𝑎]
𝑇 ∈ R𝑚+7 (7)

where v𝑒
𝑒𝑎 is the ECEF-referenced receiver velocity and 𝑚 is the number of visible satellites (not

accounting for satellite 𝑝).
The state variables in (7) can be propagated in time, during the prediction step of the EKF, via the

following dynamic models [7]:
ṙ𝑒𝑒𝑎 = v𝑒

𝑒𝑎 (8)

v̇𝑒
𝑒𝑎 = w𝑎 (9)

𝛿�̇�
𝑧
𝑤 = 𝑤𝜏 (10)

∇𝛿�̇�𝑝𝑠𝑀,𝑎 = −𝛽𝑝𝑠
𝑀∇𝛿𝜌𝑝𝑠𝑀,𝑎 + 𝑤𝑝𝑠

𝑀 . (11)

where 𝛽𝑀 is the inverse of the SD multipath error correlation time, and w𝑎, 𝑤𝜏 and 𝑤𝑀 are the
acceleration, residual zenith wet tropospheric error, and SD multipath error driven noises, respectively,
whose statistics are deemed to be sufficiently known in order to the EKF process noise density matrix
to be suitably tuned (details will be discussed in Section 3).

Considering the availability of 𝑚 SD pseudorange measurements, the Jacobian operator can be
applied to the measurement model of (6), yielding the following measurement matrix for the update
stage of the EKF:

𝐻𝑒 =

⎡⎢⎣ −(u𝑒
𝑎1 − u𝑒

𝑎𝑝)
𝑇 01×3 (𝑚1

𝑤 −𝑚𝑝
𝑤) 1 . . . 0

...
...

...
...

. . .
...

−(u𝑒
𝑎𝑚 − u𝑒

𝑎𝑝)
𝑇 01×3 (𝑚𝑚

𝑤 −𝑚𝑝
𝑤) 0 . . . 1

⎤⎥⎦ (12)



where u𝑒
𝑎𝑠 is the ECEF-resolved line-of-sight vector from satellite 𝑠 to the receiver antenna 𝑎.

As for the EKF measurement noise covariance matrix, lastly, it is expected to be correlated between
the SD pseudorange measurements, and it shall be tuned based on the statistics of the SD tracking
noises (generally considered to be functions of the satellite elevation angles, signal-to-noise attenuation,
and/or receiver acceleration [7]).

3. Multipath Error Model Identification

To allow the SD multipath error states in (7) to be suitably accounted for in the EKF prediction model, it
is of paramount importance that the parameters that model their dynamic propagation match the true
ones, to the best accuracy possible. Below, we present the strategy adopted in this paper, as adapted
from [18], for correctly identifying the correlation times and the driven noise Power Spectral Densities
(PSDs) of the 1st-order GM processes herein proposed to model the SD multipath errors.

Following the pseudorange measurement model of (1), let us define the following model for the
associate carrier-phase measurement [14, 18]:

Φ𝑠
𝑎,𝑅 =

⃒⃒
C𝐼

𝑒 r
𝑒
𝑒𝑠 − r𝑒𝑒𝑎

⃒⃒
+ 𝛿𝜌𝑠𝐸 − 𝛿𝜌𝑠𝑐 + 𝛿Φ𝑠

𝑏 − 𝛿𝜌𝑠𝐼,𝑎 + 𝛿𝜌𝑠𝑇,𝑎

+ 𝛿𝜌𝑎𝑐 + 𝛿Φ𝑎
𝑏 + 𝛿Φ𝑠

𝑀,𝑎 +𝑁 𝑠
𝑎𝜆𝑐𝑎 + 𝜔𝑠

Φ,𝑎, (13)

where 𝛿Φ𝑠
𝑏 and 𝛿Φ𝑎

𝑏 are the satellite and receiver hardware phase biases, respectively, 𝛿Φ𝑠
𝑀,𝑎 is the

carrier phase multipath error, 𝑁 𝑠
𝑎 is the integer ambiguity, 𝜆𝑐𝑎 is the carrier wavelength, and 𝜔𝑠

Φ,𝑎 is
the carrier phase tracking noise.

From (1) and (13), it is possible to see that the true range, ephemeris error, satellite and receiver clock
biases, and the tropospheric delay are common both to the pseudorange and carrier-phase measurement
models. Thus, the difference of such measurements, sometimes referred to as Code-Minus-Carrier
(CMC), yields:

𝑥𝑠 = 𝜌𝑠𝑎,𝑅 − Φ𝑠
𝑎,𝑅 ≡ 2𝛿𝜌𝑠𝐼,𝑎 + (𝛿𝜌𝑠𝑏 − 𝛿Φ𝑠

𝑏) + (𝛿𝜌𝑎𝑏 − 𝛿Φ𝑎
𝑏 )

+ (𝛿𝜌𝑠𝑀,𝑎 − 𝛿Φ𝑠
𝑀,𝑎) +𝑁 𝑠

𝑎𝜆𝑐𝑎 + (𝑤𝑠
𝜌,𝑎 − 𝑤𝑠

Φ,𝑎). (14)

Assuming that the carrier-phase tracking noise and multipath errors are negligible compared to
those of the pseudorange, and that the hardware code and phase bias differences are also negligible,
(14) simplifies to:

𝑥𝑠 ≈ 2𝛿𝜌𝑠𝐼,𝑎 + 𝛿𝜌𝑠𝑀,𝑎 +𝑁 𝑠
𝑎𝜆𝑐𝑎 + 𝜔𝑠

𝑥,𝑎, (15)

where the term 𝜔𝑠
𝑥,𝑎 accounts for the pseudorange error noise plus residuals related to underlying

simplifying assumptions.
If an estimate of the ionospheric error, 𝛿�̂�𝑠𝐼,𝑎, is available, then we may compute:

𝑦𝑠 = 𝑥𝑠 − 2𝛿�̂�𝑠𝐼,𝑎 ≡ 𝑁 𝑠
𝑎𝜆𝑐𝑎 + 𝛿𝜌𝑠𝑀,𝑎 + 𝜔𝑠

𝑦,𝑎, (16)

where 𝜔𝑠
𝑦,𝑎 adds residual ionospheric error to 𝜔𝑠

𝑥,𝑎.
If dual-frequency carrier phase measurements are available (e.g., from frequencies 𝑓𝐿1 and 𝑓𝐿2 of the

Global Positioning System (GPS)), it is possible to compute a relative ionospheric delay which includes
the multipath, a constant integer ambiguity and residual terms (noise). In equation:

𝛿�̂�𝑠𝐼,𝑎 =

(︃
(𝑓𝐿2)

2

(𝑓𝐿1)
2 − (𝑓𝐿2)

2

)︃(︁
Φ𝑠,𝐿1
𝑎,𝑅 − Φ𝑠,𝐿2

𝑎,𝑅

)︁
. (17)

Therefore, a closed-form expression for the ionosphere-corrected CMC observable, 𝑦𝑠, can be alter-
natively computed as [13]:

𝑦𝑠 = 𝜌𝑠𝑎,𝑅 −

(︃
(𝑓𝐿1)

2 + (𝑓𝐿2)
2

(𝑓𝐿1)
2 − (𝑓𝐿2)

2

)︃
Φ𝑠,𝐿1
𝑎,𝑅 +

(︃
2 (𝑓𝐿2)

2

(𝑓𝐿1)
2 − (𝑓𝐿2)

2

)︃
Φ𝑠,𝐿2
𝑎,𝑅 . (18)



Now, assuming that the carrier tracking-loop has not experienced any cycle slips, the integer ambi-
guity 𝑁 𝑠

𝑎𝜆𝑐𝑎 is constant and can be removed by subtracting the mean value of 𝑦𝑠, i.e. 𝑦𝑠, from (18), as
follows:

𝑧𝑠 = 𝑦𝑠 − 𝑦𝑠

≡ 𝛿𝜌𝑠𝑀,𝑎 + 𝜔𝑠
𝑧,𝑎, (19)

which encompass the pseudorange multipath error plus the tracking noise and various residual errors
neglected due to the previous analysis assumptions [18].

As it is straightforward to infer from (19), 𝑧𝑠 unequivocally characterizes the multipath error 𝛿𝜌𝑠𝑀,𝑎

that corrupts the pseudorange measurement from satellite 𝑠 to the receiver antenna 𝑎. Such signal,
once computed for satellite 𝑝, can be subtracted from the latter to characterize the SD pseudorange
multipath error 𝛿𝜌𝑝𝑠𝑀,𝑎, i.e.,

𝑧𝑝𝑠 = 𝑧𝑠 − 𝑧𝑝 (20)

which can be modeled as a 1st-order GM process:

�̇�𝑝𝑠 = −𝛽𝑧𝑧𝑝𝑠 + 𝜔𝑧. (21)

Signal 𝑧𝑝𝑠 exhibits the exponential autocorrelation property

𝑅𝑧𝑝𝑠(𝜏) = 𝜎2
𝑧𝑝𝑠𝑒

−𝛽𝑧 |𝜏 |. (22)

where 𝜎2
𝑧𝑠 is the variance of signal 𝑧𝑝𝑠.

The correlation time 𝜏𝑧 ≜ 𝛽−1
𝑧 can be extracted from the autocorrelation function for the point when

𝛽𝑧|𝜏 | = 1 holds [19]. In practice, one shall search for an estimated correlation time 𝜏 𝑧 , related to the
minimal difference between the experimental autocorrelation function �̃�𝑧𝑝𝑠 and the theoretical value
𝑅𝑧𝑝𝑠(𝜏𝑧).

𝜏 𝑧 ≜ argmin
𝜏∈𝑇

(︁
�̃�𝑧𝑝𝑠(𝜏)− 𝜎2

𝑧𝑝𝑠𝑒
−1
)︁
. (23)

The driven noise PSD of 𝑧𝑝𝑠, in turn, can be computed using the following relation [19]:

𝑆𝑤𝑧 = 2�̂�𝑧�̃�𝑧𝑝𝑠(0). (24)

Equations (23) and (24) summarize the identification procedure that is to be implemented to suitably
characterize the SD pseudorange multipath errors modeled as states in (7).

4. Experimental Results

To verify the effectiveness of the filtering techniques herein proposed for mitigating the residual
multipath and zenith wet tropospheric errors remaining after the SF code-based RT-PPP deployment,
four different estimation combinations were considered in this work:

• SD strategy: Standard SD code-based RT-PPP estimation via EKF, with the regular 6 states;
• ZT strategy: SD code-based RT-PPP estimation via EKF, with 1 additional state to account for the

zenith wet tropospheric error;
• MP strategy: SD code-based RT-PPP estimation via EKF, with 𝑚 additional states to model the

SD multipath errors;
• ZT+MP strategy: SD code-based RT-PPP estimation via EKF, with 𝑚+1 additional states in order

to account for the zenith wet tropospheric error and the SD multipath errors.

A dynamic experimental test was carried out, which aimed at validating the investigated approaches
in the scope of CVAs (main focus of this work), as described in sequence.



4.1. Experimental Data Acquisition and Methodology

The dynamic test consisted of collecting L1 Coarse Acquisition (C/A) GPS observation data from an
automotive-grade u-blox C102-F9R receiver and an ANN-MB-01 antenna attached to a car on July
21, 2023, in Lavras-MG, Brazil. The car was driven for a couple of minutes through the streets of a
neighborhood close to the Federal University of Lavras (UFLA), executing all types of motion that
are typical for urban scenarios, such as curves, accelerations, decelerations, climbs, descents, stops,
etc (Figure 1). Along with the observation data, the BKG NTRIP Client (BNC) software was used to
collect the SSR RT-PPP products from the IGS RTS, namely, SSRA02IGS1, which is an IGS Kalman
filter combined solution that conveys satellite orbit, clock, and hardware bias corrections [20]. The
UNLP FCAG RT RIM products were collected directly from its File Transfer Protocol (FTP) server in the
IONEX format [21, 22]. As for the compensation of the tropospheric errors, the UNB3 empirical model
was adopted. To help in obtaining a reliable ground-truth solution for the test, the GPS observation
data and navigation message from a Continuous Operating Reference Station (CORS) located at Lavras
(acronym MGLA), belonging to the Brazilian Network for Continuous Monitoring (RBMC) of GNSS,
and distant to the car of about 1 km, were directly obtained from the Brazilian Institute of Geography
and Statistics (IBGE) repository.

After the GPS data acquisition and conversion (from proprietary .UBX format to Receiver INdependent
EXchange (RINEX) format version 2.11, via RTKLIB software [23]), the latter were analyzed and
processed offline using specialized MATLAB algorithms developed by the authors, which employed the
four aforementioned estimation strategies to compute the position solutions. The errors were calculated
w.r.t. the ground-truth profile, which was obtained by processing dual-frequency double-differenced
pseudorange, and integer-resolved carrier-phase observables from the same u-blox C102-F9R module

Figure 1: Ground-truth profile.



connected, via the internet, to the MGLA reference station.
To assess the effectiveness of the filtering-based estimation strategies under investigation, the hori-

zontal, vertical, and total Cartesian position errors of the GNSS receiver antenna were established as
metrics:

𝛿𝑟𝑒𝑒𝑎,𝐻 =
√︁
(𝛿𝑟𝑒𝑒𝑎,𝑁 )2 + (𝛿𝑟𝑒𝑒𝑎,𝐸)

2 (25)

𝛿𝑟𝑒𝑒𝑎,𝑉 =
√︁

(𝛿𝑟𝑒𝑒𝑎,𝐷)
2 (26)

𝛿𝑟𝑒𝑒𝑎,𝑇 =
√︁

(𝛿𝑟𝑒𝑒𝑎,𝑁 )2 + (𝛿𝑟𝑒𝑒𝑎,𝐸)
2 + (𝛿𝑟𝑒𝑒𝑎,𝐷)

2 (27)

where 𝛿𝑟𝑒𝑒𝑎,𝑁 , 𝛿𝑟𝑒𝑒𝑎,𝐸 , and 𝛿𝑟𝑒𝑒𝑎,𝐷 are the Cartesian position errors along north, east, and down directions,
respectively.

As the focus of this work is on CVA applications, we also checked the ability of the estimation
strategies to comply with the Society of Automotive Engineers (SAE) standard J2945 [24], which
establishes maximum horizontal and vertical position errors of 1.5 m and 3.0 m, respectively, at 68% of
probability (1𝜎).

4.2. Performance Analysis

Table 1 summarizes the results for the dynamic test in terms of mean position errors. Figures 2 to 4, in
turn, show the Cumulative Distribution Functions (CDFs) for the horizontal, vertical and total channel,
respectively. Tables 2 to 4, lastly, give the percentile of samples that are below some specific position
error thresholds for the horizontal, vertical, and total channels, also respectively. The best results are
highlighted in green and the worst in red. As can be seen, all four estimation strategies were able to
comply with SAE J2945 standard position accuracy requirements. While, for the horizontal channel,
the investigated strategies did not differ significantly in terms of delivered accuracy, for the vertical
channel, the ZT strategy (the best performing approach) improved over the regular SD strategy in about
8%, reducing the mean vertical position error in 12 centimeters. Worthy of note is the fact that, for
the vertical channel, the MP and ZT+MP strategies not only were unable to improve accuracy, as they
actually increased the mean vertical position error (in 30% and 35%, respectively). As a straightforward
consequence of the latter, the performance of the strategies in terms of total position error followed the
same pattern of the vertical channel’s.
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Figure 2: Horizontal Cumulative Distribution (errors are in meters).
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Figure 3: Vertical Cumulative Distribution (errors are in meters).
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Figure 4: Total Cumulative Distribution (errors are in meters).

A possible explanation for the bad performance of the strategies that tried to estimate the SD multipath
errors (MP and ZT+MP) might be associated to the lack of observability/estimability of the 𝑚 additional
states that were included in the EKF [25]. Also, the fact that the SD multipath error correlation times
identified in the dynamic test (showed in Table 5) were relatively small may have made them more

Table 1
Mean position errors for the dynamic test.

Error SD MP ZT ZT+MP
Horizontal [m] 1.19 1.19 1.19 1.19
Vertical [m] 1.44 1.94 1.32 1.87
Total [m] 2.01 2.45 1.92 2.39



Table 2
Horizontal position performance for the dynamic test.

Strategy Probability (%)
<0.5 m <1.0 m <1.5 m

SD 8.10 44.14 74.84
MP 8.53 44.99 73.77
ZT 8.10 44.14 74.84

ZT+MP 8.53 44.99 73.77

Table 3
Vertical position performance for the dynamic test.

Strategy Probability (%)
<1.0 m <2.0 m <3.0 m

SD 26.65 83.16 98.93
MP 20.68 76.76 94.03
ZT 29.21 87.42 98.94

ZT+MP 23.03 80.81 93.82

Table 4
Total position performance for the dynamic test.

Strategy Probability (%)
<1.0 m <2.0 m <3.0 m

SD 2.77 56.72 96.16
MP 2.99 51.81 91.04
ZT 3.41 64.61 97.01

ZT+MP 3.20 58.85 91.68

Table 5
SD multipath error correlation Times and PSDs.

SD error 𝜏𝑧(𝑠) 𝑆𝑤𝑧
(𝑚2/𝑠)

𝛿𝜌𝑝5𝑀,𝑎 8,047 0,0095
𝛿𝜌𝑝6𝑀,𝑎 5,806 0,0124
𝛿𝜌𝑝11𝑀,𝑎 11.000 0,0043
𝛿𝜌𝑝12𝑀,𝑎 11.000 0,0041
𝛿𝜌𝑝24𝑀,𝑎 40,803 0,0024
𝛿𝜌𝑝25𝑀,𝑎 10,494 0,0060
𝛿𝜌𝑝26𝑀,𝑎 34,658 0,0053

difficult for the EKF to identify (and estimate) from the pseudorange tracking noise. As analyzed by
Hu, Neupane, and Farrell [26], for a moving platform, the receiver moves relative to the reflective
surface; therefore, the multipath errors change much more rapidly (i.e., less correlated across time),
which makes them easier for the standard SD RT-PPP strategy (that does not try to model the multipath
errors as states) to filter out during the vehicle state estimation process. This behavior, and the superior
position estimation performance of the SD RT-PPP strategy, have been confirmed in our dynamic test
(see Tables 1 to 4 again).

5. Conclusions and Future Work

Accuracy in position estimation is of great interest in many commercial applications. This work investi-
gated the performance of advanced filtering techniques that aimed at mitigating residual pseudorange
errors that usually remain after the deployment of SF code-based RT-PPP. The first technique consisted



of estimating the residual zenith wet tropospheric error, which can vary with climate and weather, as
an additional state to the associated EKF, via suitable mapping functions. The second technique, in
turn, consisted of estimating the SD multipath errors by adding as many states as necessary to the EKF,
and determining appropriate correlation times and driven noise PSDs for the 1st-order GM processes
proposed to model them. A dynamic test was performed with a focus on complying with position
requirements for CVAs in Brazilian territory.

As the results showed, and possibly due to the lack of observability/estimability of the SD multipath
error states, as well as to the reduced correlation times identified for the latter, the strategies that at-
tempted to estimate the residual multipath errors, besides increasing the EKF complexity/computational
burden, did not bring any additional benefit in terms of position accuracy. The single additional state
that was proposed for estimating the residual zenith wet tropospheric error, in turn, proved to be able to
improve vertical positioning accuracy in about 12 centimeters, w.r.t. the standard SD RT-PPP approach,
which is inline with the predictions by Groves [7]. For future work, one has the performance evaluation
of the proposed filtering-based residual error mitigation techniques in the context of integrated Iner-
tial/Global Navigation Satellite Systems (INS/GNSSs), via SF code- and phase-based RT-PPP, specifically
aiming to improve observability/estimability constraints.
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