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Abstract 
The paper is devoted to MCDM supporting multifactor combinatory analysis using optimal planning 
of experiments based on the remarkable properties of the proposed combinatorial configurations, 
namely the concept of “Ideal Ring Bundles” (IRBs). These combinatorial structures are ring-ordered 
positive integers that form a finite set of integers from 1 to the sum of all these numbers using both 
these numbers and all their consecutive terms. The application of Ideal Ring Bundles provides for 
finding optimal solution problems by reducing the volume of experiments in fuzzy decision analysis 
while maintaining on validity of the analysis. It is possible to use a simple algorithm to design an 
optimized multifactor combinatory analysis for MCDM support. 
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1. Introduction 

Modern methods of Multi-Criteria Decision Making (MCDM), as well as Multi-Criteria Decision 
Analysis (MCDA), are the most accurate methods of decision-making, and they can be known 
as a revolution in this field [1,2]. The underlying methods differ from each other in some aspects 
which were regarded and discussed in [3]. Publications in this field concern many decision-
making problems not only in differing branches of science and technology but for everyday 
problems in human lives also, for example, to find the best solution if the price and quality of 
the processes are among the most common criteria in many differ variants for decision-making 
[4]. These methods are related to the complexity level of algorithms, the way of representing 
preferences evaluation criteria, weighting methods for criteria, uncertain data possibility, and 
other factors [5]. To interpret solving an MCDM problem can be selecting different ways. The 
process there is the most preferred way for solution choosing the best alternative from a set of 
other alternatives. If there are manifold preference sets of grouping alternatives then opt for a 
small set from them. These are feasible possibilities to define the alternatives that are efficient 
in rejecting non-dominated ones. A comprehensive review of the application of different 
MCDM methods is presented [6], where we can see a list of application fields and appropriate 
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examples of the application focus, including education with contextual learner modeling in 
personalized and ubiquitous learning, E-learning, career and job, supply chain management, 
and other fields and examples (Table 1). 

Table 1 
List of application fields and appropriate examples of the application focus 

 
The main decision-making methods that consider more than one criterion in the decision-

making process are regarded in [7]. The authors give you an idea about using MCDMs in 
different fields and are one of the most common decision-making methods, as well as propose 
to classify considering them for different aspects. This paper aims to discuss the important 
concepts, applications, and types of MCDM methods.  Based on the results of investigating the 
popularity of MCDM methods in different subject areas this paper was focused on many 
complementary studies. 

2. Ideal Ring Bundles 

Let us regard a numerical n-stage chain sequence of distinct positive integers {k1, k2,…,kn} as 
being cyclic so that kn is followed by k1. We call this a ring sequence. A sum of consecutive 
terms in the ring sequence can have any of the n terms as its starting point as well as any 
number of terms from 1 to n-1 (Table 2). 

Application fields Examples of the application focus 

Education Contextual learner modeling in personalized and 
ubiquitous learning, E-learning 

Career and job Occupational stressors among firefighters, personnel 
selection problems, job choice 

Supply chain 
management 

Supporting sustainable supplier selection, green supplier 
evaluation, and selection 

Civil engineering Flood disaster risk analysis 

Finance/economics Project portfolio management 

Energy sector 
Ranking renewable energy sources, techniques for energy 

policy 

Engineering and 
production 

Engineering, material selection for optimal design, 
optimum process parameters 

Organizations and 
corporates 

The system selection process in enterprises, corporate 
sustainability 

Transportation 
Urban passenger transport systems, integrated 

transportation systems 

Healthcare 
The assessment of COVID-19 regional safety, occupational 

health, and safety risk assessment 



Table 2 
Sums of consecutive terms in the ring sequence 

Each numerical pair (pj, qj),  pj ,qj{1, 2,…, n},  corresponds to sum Sj = S (pj,qj), and can be 
calculated by equation (1), pj ≤ qj. 
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In case     pj  > qj  a ring sum is 
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Easy to see from table 2, that the maximum number of distinct sums Sn of consecutive terms of 
the ring sequence is 

  𝑆 = 𝑛(𝑛 − 1) + 1 (2) 

An n-stage ring sequence Kn= {k1, k2, ... ,ki, ... kn} of natural numbers for which the set of all 
Sn sums of consecutive terms in the ring sequence consists of the numbers from 1 to Sn= n(n–
1) +1, each number occurring exactly once is called "Ideal Ring Bundle" (IRB) [8]. 
Here is a graphical representation of an Ideal Ring Bundle containing five (n=5) elements {1, 3, 
10, 2, 5}   (Figure 1). 
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Figure 1: A graph of Ideal Ring Bundle containing five (n=5) elements {1, 3, 10, 2, 5}. 

Consecutive terms in the numerical ring sequence {1,3,10,2,5} with parameters n= 5, Sn= 
n(n–1) +1 = 21 presents in Table 3. 

Table 3 
Consecutive terms in the ring sequence {1,3,10,2,5} 

pj qj 

1 2 3 4 5 

1 1 4 14 16 21 
2 21 3 13 15 20 
3 18 21 10 12 17 
4 8 11 21 2 7 
5 6 9 19 21 5 

Table 3 was calculated in a similar way to the above, using equations (1) – (3). Table 3 
contains the set of all Sn= n(n–1)+1= 5(5–1)+1 = 21 sums to be consecutive elements of the 5-
stage (n=5) ring sequence {1,3,10,2,5}, and each circular sum from 1 to Sn –1= 20  occurs exactly 
once. So, the numerical ring sequence {1,3,10,2,5} is the Ideal Ring Bundle (IRB) with information 
parameters n= 5, and Sn= 21.  

2.1. IRB structure as a finite field 

The study of IRB structure as a finite field uses modern mathematical methods for optimization 
of systems that exist in the theory of combinatorial configurations [8], and algebraic 
constructions based on cyclic groups in extensions of Galois fields [8]. A finite field exists for 
any prime power q, namely GF(q).  The multiplicative group of GF(q) is cyclic; thus it is 
generated by any of its φ (q – 1) elements of order q – 1. These generating elements are primitive 
roots and for prime p, the residues 0,1,…, p- 1  form a field concerning addition and 
multiplication modulo p.  GF(qm) is represented by the set of all m-tuples with entries from 
GF(q). In this representation, addition is performed component-wise wise but multiplication is 
more complicated. Associate with the m-tuple am-1 , am-2 , …, a1 , a0  the polynomial am-1 xm-



1 +…+ a1x + a0. Then, to multiply two m-tuples, multiply instead their associated polynomials 
and reduce the result modulo any fixed mth degree polynomial f(x) irreducible over GF(q). The 
coefficients of the resulting polynomials constitute the m- tuple which is the product of the 
original two. For multiplicative purposes it is more convenient to represent GF(qm) in terms of 
a primitive root α; in which case, GF(qm)  consists of  0, α 0 , α1, α2, α3,…,    αr-2   where r = 
qm . 

Multiplication then becomes a simple matter of reducing exponents modulo qm – 1, but 
addition is more complicated. Both these representations of GF(qm) are used in the proof of 
Singer’s theorem. Singer discovered a large class of difference sets related to finite projective 
geometries [written PG (N, q)]. These have parameters  υ = S = (qN+1 – 1)/(q – 1),    k = n = (qN 
– 1)/(q – 1),    λ = R =  (qN-1 – 1)/(q – 1),  for N ≥ 1  and they exist whenever q  is a prime power.   

Example 1. This represents the set of elements for finite projective geometry PG (2,3), of 
dimension N=2 over GF(3), with  f(x) = x3 – x – 1: 
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  (modd 3, x3 – x –1) 

(4) 

Easy to see, that xi ↔ i, i = 0,1,…, S - 1= n(n – 1) = 12, where n = 4.  Here a sequence of all 
fixed elements of zero coefficients by x2 are as follows: 1, x, x+1, x+2. We regard the PG(2,3) as 
a central symmetrical figure {0, 1, …,12}of order  S  = 13, where elements  1, x, x+1, x+2  generate 
a ring sequence of positive integers {1, 2, 6, 4} as a set of angular distances between diverged 
lines of projective geometry PG (2,3). 

 

3. Application of Ideal Ring Bundles for optimal multifactorial 
planning of experiments 

An optimal combinatorial plan of an experiment is known and can be developed using so-called 
Latin squares and their complete sets [9]. A Latin square of order p forms p×p - matrix, which 
contains each symbol in each row as well as in each column exactly once. And two Latin squares 
of order p are called "mutually orthogonal Latin squares" [9]. 



If putting one square on the other of it provides each symbol from one square occurs with 
each symbol from the other square exactly once. A combination of numbers a row, a column, 
and a symbol form the sub-set of factor levels for the first, the second, and the third factors of 
the optimal combinatorial measure plan. So, a single Latin square measure model of order p 
consists of three factors with p its levels. However, it is considerable only p2 variety 
combinations of the factor levels instead of p3 combinations. Thanks to it this plan of 
experimental measures allows us to cut the volume of work for p times. For the development 
of a factors measure plan that is well applicable to a system by two orthogonal squares, for five 
or more factors plans can apply to several orthogonal Latin squares accordingly.  

The maximum number of factors under study F, the maximum number of levels R for each 
of these factors, and the maximum number N of pairwise orthogonal Latin squares of the M-th 
order, which forms the matrix M×M, chosen to build an optimal plan for a multivariate 
experiment, are interconnected by a system of simple equations: 

𝐹 = 𝑅 = 𝑛 (5) 

𝑁 = 𝑀 − 1 (6) 

𝑀 = 𝐹 − 2 (7) 

where n is the order of IRB. 
From equations (5)-(7) it is easy to see that to draw up optimal multifactor experimental 

plans, it is necessary to construct a system of pairwise-orthogonal Latin squares of the 
appropriate order n. 

The optimal combinatorial measurement plan based on IRB elements can be generated using 
the next calculating actions. 

1. Form based on n - sequence of numbers k1, k2, k3, ..., kn the IRB of order n, build an 
auxiliary matrix of numerical symbols P for numbering rows of Latin squares: 
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(8) 

where i, j – row and column number of the set P, respectively; i, j = 1, 2, . . , p – 1= 4; 
Sn= n(n–1)+1. 

2. Build a supporting matrix C for numbering columns of Latin squares: 
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Construction to continue until the requirement is satisfied 
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If requirement (7) is not satisfied, continue the construction of matrix C using the formulas 
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Similarly to the construction of the matrix C, all other matrices can be found, and the 
formulas for calculating the z-th (z = 1, 2, ... , n – 1) of additional auxiliary matrices M(z) take 
the following form: 

 

(12) 

 

4. Synthesis of optimal multifactorial plans of experiments 

4.1. Constructing a system of pairwise orthogonal Latin squares 

As an example of the implementation of the above algorithm, we construct a system of pairwise 
orthogonal Latin squares based on IRB (1, 3, 10, 2, 5), where k1=1, k2=3, k3=10, k4= 2, k5= 5; n = 5.  

1. Calculate a set of numbers P for numeration of Latin squares rows by elements k1, k2, k3, ..., kn  

The set P for the numeration of Latin squares rows forms the P-matrix (Table 4). 

Table 4 
The set P for numeration of Latin squares rows (P-matrix) 

    4 14 16 21 
  11 13 18 19 
    3   8   9 12 



    6   7 10 20 

2. Calculate a set of numbers C for the numeration of Latin squares columns of elements in the 
C-matrix. 

The set C for the numeration of Latin squares columns forms the C-matrix (Table 5). 

Table 5 
The set C for numeration of Latin squares columns (C-matrix) 

3 6 16 18 

12 14 19 20 

4 9 10 13 

7 8 11 21 

3. To calculate the rest three (n–2= 3) of numerical sets M(z) for finding the complete set of 
Latin squares in the manner that above. 

The family M(z) of numerical sets, z = 1,2,3, for finding the complete set of Latin squares 
represents Tables 6, 7, and 8. 

Table 6 
The set M(1)  for finding the complete set of Latin squares 

6 9 19 21 

8 18 20 4 

7 12 13 16 

10 11 14 3 

Table 7 
The set M(2)  for finding the complete set of Latin squares 

16 19 8 10 
18 7 9 14 
4 6 11 12 
20 21 3 13 

Table 8 
The set M(3)  for finding the complete set of Latin squares 

18 21 10 12 
20 9 11 16 
6 8 13 14 
19 3 4 7 

4. According to the coordinates of the sets P and C, we construct Latin squares Q1, Q2, Q3. 
To obtain the first line in each of these squares in a normalized form (1,2,3,4), we carry out the 
corresponding renumbering of sets M(z). As a result, we get the pairwise orthogonal Latin 
squares: 



 
These squares form a complete set (all family) of the matrix to design n-factors (n=5) optimal 

measure plan, each factor can have four (n–1= 4) levels. So, a plan built on 3 squares can be 
applied in a 5-factor experiment, where the levels of the first factor correspond to the column 
numbers, the second to the row numbers, and the levels of the remaining three factors to the 
symbols of the first, second and third squares. An example of the application of the mentioned 
algorithm for composing the 5-factor optimal measure plan for the fuzzy process is below. 

Let fuzzy process is characterized by the following physical parameters A, B, C, D, and E, 
each of which makes some mutual correlation as well as influence on static and dynamic 
behavior observed too.  The range of parameter changing is subdivided into elected parts, and 
each of the ranges is described by four (n–1=4) characteristic levels. Of course, it is possible to 
regard measurable parameters as well as non-measurable too. 

We have built a system of three orthogonal squares. Now the optimal plan of experiments 
with five (n=5) influence factors (for example, A, B, C, D, E) and four (n–1=4) discrete levels for 
each of the factors can be generated simply by choice of the levels of the first, the second and 
the third factors as correspond symbols (numbers) which are the same cell's co-ordinates in 
each Latin squares. Just the numbers of the fixed coordinates give us the levels of the fourth 
and the fifth factors. For example, we can make the first experiment selecting the first discrete 
level (symbol 1) of the factors A, B, C, D, E; the second experiment can be fulfilled taking the 
first level of the factor A while the second level (symbol 2) of the factors B, C, D, E; the third 
experiment involves the 1st level of A and the 3-rd of B, C, D, E; the fourth - 1st of A and 4th of 
B, C, D, E; the next experiment includes in the action the combination 2- A, 1- B, 3- C, 2- D, 4- 
E, and so on. So, this plan provides the fulfillment only (n–1)2 = 42 = 16 experiments (Table 9) 
instead of (n–1)3 = 64 in comparison with the standard plan of multifactorial experiments. 

Table 9 
The optimal plan of experiments with five (n=5) influence factors  

Factor                       
No 

Experiment No 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

A 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 

B 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

C 1 2 3 4 3 4 1 2 2 1 4 3 4 3 2 1 

D 1 2 3 4 2 1 4 3 4 3 2 1 3 4 1 2 



E 1 2 3 4 4 3 2 1 3 4 1 2 2 1 4 3 

In general case each of 16 observed results can be considered measurable as well as any non-
measurable factor or linguistic values. 

The system consists of three Latin squares. A plan built from as many squares as can be used 
in a five-factor experiment, where the levels of the first factor correspond, for example, to 
column numbers, the second factor - to row numbers, and the levels of the remaining three 
factors correspond to the symbols of the first, second, and third squares. The described 
algorithm is developed based on the technique of constructing a finite projective plane in affine 
form and the existing relationship between IRB and the theory of combinatorial configurations. 
According to the algorithm, a program has been compiled that allows generation of multifactor 
optimal experimental plans on a computer with the exclusion of undesirable effects in static 
studies and creating application packages for machine synthesis of plans with specified 
properties. 

4.2. Results of the pairwise orthogonal Latin squares applications 

Variance analysis is also used to identify promising or the best combinations of levels of 
qualitative factors in the study of multifactor systems. Here, the experiment is set to optimize, 
which consists of finding the optimal qualitative composition of the system in the early stages 
of research, very often a large number of factors have to be included in the experiment so as 
not to miss any of the potentially significant ones, since further experiments may lose all 
meaning if some strongly influential factor is not included in the research program. Here is a 
need to conduct a screening experiment, the purpose of which is to isolate a group of essential 
factors and weed out insignificant ones. At the next stage of the study, the influence of 
significant factors can be studied in more detail. To build multi-level plans during the screening 
of experiments, combinatorial configurations, such as hypercubes, Latin squares, and Greco-
Latin squares, are widely used, which can significantly reduce the enumeration of options. For 
any real experiment, the presence of various kinds of heterogeneities is very typical, the 
influence of which is desirable to exclude when comparing the levels of the main factors. If we 
are talking about planned experiments, then a variety of plans are proposed here, allowing the 
processing of data to exclude what distorts the influence of inhomogeneities. Here is a need to 
conduct a screening experiment, the purpose of which is to isolate a group of essential factors 
and weed out insignificant ones. At the next stage of the study, the influence of significant 
factors can be studied in more detail. To build multi-level plans during the screening of 
experiments, combinatorial configurations, such as hypercubes, Latin squares, and Greco-Latin 
squares, are widely used, which can significantly reduce the enumeration of options. For any 
real experiment, the presence of various kinds of heterogeneities is very typical, the influence 
of which is desirable to exclude when comparing the levels of the main factors. If we are talking 
about planned experiments, then a variety of plans are proposed here, allowing the processing 
of data to exclude what distorts the influence of inhomogeneities. 

An experimental plan designed to investigate the effect on the effective attribute of four 
factors, each of which has levels. The plan of this type allows several times to reduce the number 
of observations compared to a four-factor analysis of variance. This assumes the absence of the 
influence of the interaction of factors on the effective attribute. It is obtained by superimposing 
on the Latin square another Latin square of the same dimension and "orthogonal" first. In this 
case, orthogonality means that each letter of both the Latin squares appeared only once in each 



row and each column. Usually in the second Latin square Greek letters are used, hence the 
name. For example, to construct an optimal 5-factor (F = 5) experimental plan with five (R = 5) 
levels for each of these factors, one should find three (N = 3) pairwise orthogonal Latin squares 
of the four (M = 4) order using the IRB of the five (n = 5) order. An example of the pairwise 
orthogonal Latin squares applications of material selection for optimal design combinatory 
analysis with five (n=5) influence factors is illustrated in Table 10. 

Table 10 
The table shows the results of experiments with an assessment of the level of achieved 
indicators according to various optimality criteria. 

Conclusion 

The application of IRBs in fuzzy decision analysis provides for the minimizing of experiments 
while maintaining on validity of the analysis. It is possible to use a simple algorithm to design 
the optimal multifactorial plan of experiments in matrix form. The proposed algorithm can be 
well applicable for analysis of the influence of a lot of physical parameters as well as some other 
factors on the behavior of the analyzed fuzzy object or its model. This approach makes it 
possible to provide sufficiently less of computing in fuzzy decision analysis while maintaining 
on validity of the analysis. The application of Ideal Ring Bundles provides for finding optimal 
solution problems by reducing the volume of experiments in fuzzy decision analysis while 
maintaining on validity of the analysis. It is possible to use a simple algorithm to design of 
optimized multifactor combinatory analysis for MCDM support. 

Fact
or             
No 

Experiment No 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

A 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 
B 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
C 1 2 3 4 3 4 1 2 2 1 4 3 4 3 2 1 
D 1 2 3 4 2 1 4 3 4 3 2 1 3 4 1 2 
E 1 2 3 4 4 3 2 1 3 4 1 2 2 1 4 3 

Results of experiments  
Crit
erio
n X 

5,1 4,4 4,5 3,8 3,4 5,1 4,4 4,5 3,8 3,4 4,2 5,1 4,4 4,5 3,8 5,1 

Crit
erio
n Y 

2,3 3,2 3,8 3,4 2,5 3,4 1,9 3,8 3,4 4,2 2,8 3,8 3,4 2,7 4,3 2,6 

- - - 

Crit
erio
n Z 

3,2 2,3 3,5 4,3 3,4 3,4 3,3 3,6 4,4 2,7 3,1 2,9 4,4 2,7 3,1 2,9 
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