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Abstract

For the study, the main tasks were formulated as recognition of propaganda messages and
analysis of the spread of propaganda messages between groups, thereby finding propaganda
networks. The relevance, object and subject of the research are described. The influencing
public opinion means are studied, in particular propaganda, in particular russian propaganda.
A data search and review for the study is conducted. Several datasets of different structures
are selected for further research. The tagged data quality, the tags balance and the empty
values presence are checked. Several regularities of specific datasets are deduced (regarding
the length of messages, and the use of certain emoticons and keywords). Processing of text
data is carried out using a combination of different methods (conversion to lowercase,
extraction of characters through regular expressions, extraction of stop words, stemming).
The unique words present in the texts of the dataset are reviewed. A word frequencies table
is compiled, which demonstrates some regularities for certain words. The best parameters for
the binary classification of propaganda on machine learning models are selected, such as
logistic regression (1-2-3-grams, 5000 features). A classification accuracy of ~0.85 is
achieved. Binary classification is tested using artificial neural networks, namely: a simple fully
connected neural network with count vectors at the input, a neural network with embeddings
at the input, and a transformer. Different methods of measuring the similarity (distance)
between texts are tested: cosine similarity with different types of input vectors, Jaccard
similarity, Leventschein distance, cosine similarity on loaded word2vec-google-news-300
embeddings. The last method proved to be the best, so it is used further. On several datasets,
part of the messages was compared with each other, using the chosen method of distance
measurement. Similar messages are found, which most likely were retranslated, both within
the same group and between different groups. A method of calculating the number of
reinterpretations between groups has been created, which allows propaganda distribution
networks recognition.
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1. Introduction

The spread of disinformation, propaganda, and fake information has become a
particularly acute problem with the spread of the Internet and social media [1-3]. Now
anyone can create their site or group on a social network and share almost any
information. The problem has already been studied, but this area of research is still quite
young. In addition, the methods of creating and spreading dishonest information are
constantly changing and improving. In addition, during the war, the spread of russian
propaganda is a big problem for Ukraine and the whole world [4-6].

Misinformation is defined as "factually incorrect information that is not supported by
evidence." Disinformation in social networks has become an urgent and vital problem,
especially in areas related to the war in Ukraine. Such information obtained from social
media, including thematic online communities, can influence the results of public opinion
formation, control public sentiment, and accordingly affect the course of war as a whole
[1-3]. Concerns about misinformation have grown with the rise of requests for relevant
information on social media. The lack of safeguards during discussions in online
communities contributes to the spread and reinforcement of misinformation. The existing
literature mostly focuses on the detection of fake reviews and fake news; however, the
literature lacks a comprehensive theoretical framework designed to detect
misinformation, especially in the context of an online community. Considering the huge
amount of misinformation about the war in Ukraine that is spreading in the relevant online
communities, there is a need to develop an effective model to achieve automatic
detection of disinformation in the context of identification of inauthentic behaviour (bots)
of coordinated groups. Stopping the spread of disinformation in social networks during
an information war has long been a public concern, as the spread of such disinformation
can hurt the population as a consumer of this content and, accordingly, the course of the
war itself. Usually, the detection of thematic online disinformation is based on the
linguistic features of the content of the textual content of the publications. But they
multiply and spread faster than they can be identified and blocked. Therefore, identifying
the sources of similar content, potential authors, and distribution mechanisms, i.e.
analysis and identification of the behaviour of potential generators of fakes is a priority
task for improving the means of cyber-fighting against disinformation on the Internet.
Features of online disinformation can be classified into two levels: central (including
features of the topic) and peripheral (including linguistic features, features of attitudes
and features of user behaviour). Behavioural features need to be found to reflect user
interaction characteristics: discussion initiation, interaction involvement, sphere of
influence, relational mediation, and informational independence.

To build models and methods for identifying misinformation on the Internet, many
researchers have devoted themselves to identifying the features of misinformation.
Misinformation on social media can be seen as messages that are posted to persuade
other users. To identify effective misinformation detection functions in online health
communities, it is necessary to use a model that can help understand how misinformation
on the Internet, particularly in social networks and online communities, persuades users.
Users usually construct an attitude toward a message through both central and
peripheral routes. In the central route, users scrutinize the quality and strength of



information; whereas in the peripheral route, users care more about surface factors such
as source reputation, visual appeal, and presentation. In addition to the content of the
message, some secondary information (for example, the number of likes and stars)
significantly increases the validity and reliability of messages. Therefore, message
central-level functions persuade users based on message content, while peripheral-level
functions persuade users through the influence of message authors. The best features
for detecting misinformation in social networks may be those that look at user
characteristics, messages, topics, and user behaviour. The creation of a misinformation
detection model that combines central-level functions (in particular, topic features) and
peripheral-level functions (in particular, linguistic features, mood features, and user
behaviour features) requires further research. Based on these features, it is necessary
to evaluate their ability to automatically distinguish misinformation from truth within a
topical online community using various machine learning techniques. The developed
system for rapid identification of sources of disinformation should be based on the
analysis of the inauthentic behaviour of participants in the distribution of fakes. The
results have not only demonstrated the effectiveness of behavioural features in
disinformation detection but also offered both methodological and theoretical
contributions to disinformation detection in terms of integrating features of messages as
well as features of message authors. The project is aimed at the application of artificial
intelligence for the development and improvement of cyber warfare tools, in particular for
the fight against disinformation on the Internet, namely for the automatic detection of
sources of disinformation and inauthentic behaviour (bots) of coordinated groups.

The goal of the project is to increase the level of information security of the state by
developing mathematical models, methods and means of cyber-fighting against
disinformation, in particular, automatic detection of sources of disinformation and
inauthentic behaviour (bots) of coordinated groups on the Internet based on stylistic
analysis and linguistic processing of the text of fakes and propaganda, their features
distribution and reposting, as well as machine learning methods.

The main tasks of the project are to develop methods and tools for monitoring and
detecting misinformation on the Internet, in particular:

1) stylistic analysis and linguistic processing of disinformation to identify common
characteristic features of fakes of the same author's collective;

2) identification of disinformation that is potentially similar in style to form a set of
potential authors and patrticipants in the dissemination of propaganda;

3) identification of primary sources of the publication of disinformation based on the
analysis of the results of the search for distribution routes of thematically and content-
like texts to determine a set of criteria for evaluating the inauthentic behaviour of a group
of participants;

4) analysis of inauthentic behaviour of chat users to form their informational portraits
with their classification, in particular, into people/bots;

5) implementation of an information system for identifying sources of misinformation
and inauthentic behaviour of chat users, its experimental testing,
collection/processing/analysis of the obtained results to calculate the accuracy/efficiency
of functioning.



The purpose of the research is to recognize propaganda texts and ways of their
distribution on the Internet, in particular, in social networks. The objectives of the
research are:

1. Propaganda recognition in the text using computer linguistics and machine
learning.

2. Recognition of similar propaganda messages.

3. Identification of propaganda distribution networks.

The object of the research is the processes and mechanisms of influence on public
opinion through the dissemination of disinformation, propaganda and fake in mass
media.

The subject of the study is the methods and means of spreading propaganda
(especially russian) on the Internet.

The detection of propaganda in itself is not new, but it is also not fully researched,
and in the context of the war in Ukraine and the fight against russian information attacks,
this issue is more relevant than ever. Most of the research in this field was conducted on
American data, such as the analysis of the situation of the election of Trump as the
president of the United States. This study aims to adapt current knowledge to improve
the situation in Ukraine.

2. The current state of the problem

Online media and social networks allow rapid exchange of information, including
misinformation, both purposefully and randomly/chaotically [1-6]. Along with the main
advantage as an organization of quick access for all those who want operational and up-
to-date information, online media are often used to spread deliberately misleading
content such as fakes and propaganda about specific events, people or organizations,
including governments [7] Recently, vivid examples of the spread disinformation is the
russian government's attempts to control information during the war in Ukraine since
2014, for example, the MH17 plane crash [8]. In parallel, much online information are
subject to regional censorship in certain territorial regions due to political, economic,
social, religious and other factors, for example, to control/manage the opinion of the
people of that region, for example, in the occupied territories of russia to control the future
voters of the bunker president. It is easy for an average person to get lost and navigate
in this mass of content flow with contrary facts and causes of events/phenomena [9]. It
is unethical, illegal and impractical to control what to show/hide (censor) Internet content
to the average user in democracies without direct evidence of the presence of
disinformation/fake/propaganda for a purposeful violation of the information security of
an organization/country. This is one of the first steps in the transition to totalitarianism.
Providing information, for example, to journalists about a possible thematic fake for
conducting a journalistic investigation or warning the average reader about the possibility
of disinformation in this content/resource is, on the one hand, support for freedom of
speech, on the other hand, giving a person the opportunity to choose what to believe
and what not. This makes it possible to gain an understanding of events and orientation



in the flow of information both for solving everyday tasks and adjusting business
strategies, etc. [10-15].

Blocking disinformation and sources of its dissemination, as well as identification of
potential authors based on analysis of inauthentic behaviour, are usually the functional
responsibilities of authorized bodies, especially during information warfare. But it is now
so quickly and efficiently generated/distributed based on the use of modern information
technologies and artificial intelligence that no one can cope with this task 100% without
the use of new methods and tools based on machine learning [16-27]. Significant and
massive dissemination of (dis)information against the background of the war in Ukraine
without appropriate analysis potentially leads to panic among the relevant strata/region
of the population, significantly affecting the process of adjusting plans/strategies of
business, social services, etc. Against the background of the information war, a lot of
time and resources are spent on the appropriate collection, analysis and formation of
appropriate conclusions regarding the content of the relevant content. This is also
influenced by the language of the information, which may partially/significantly change
the content when translated. The system will not be able to completely replace human
activity in this direction. But it can be a significant helper for the rapid formation of
relevant bases of such content, stylistic and linguistic analysis of the disinformation text
to form an informational portrait of the authors, search for authors and distributors based
on the analysis of inauthentic behaviour and the results of the analysis of the style of
content writing, as well as responding to local changes or dynamics changes in the flow
of content, marking certain content as potentially fake in a certain percentage.

There will not be enough resources to fully analyze all new/old content. And by the
time the analysis is done, the disinformation itself will become obsolete. And here is the
quick formation/modification/replenishment of databases/databases of content marked
as blocked/unblocked in a certain region, sorted by appropriate metrics (time, topic,
blocking region, language, etc.) from relevant/relevant to less relevant for further analysis
by methods/technologies NLP/ML will significantly speed up the process of navigating
through the chaos of new information on the Internet. Determining the topic/reason for
content blocking (censorship) in a certain region will improve the quality of identifying
fakes/propaganda/disinformation on the relevant topic. Therefore, it is urgent and
necessary to develop a system for the automatic detection of sources of disinformation
and inauthentic behaviour of chat users in cyberspace. The system should be
implemented based on new principles of information security (data monitoring, threat
detection, forecasting), which will make it possible to identify, monitor, report on the
threat level and predict cyber threats, as well as the degree of probable informational
and psychological impact on public opinion. Because of this, this project is relevant,
relevant, timely and promising for increasing the degree of information security of the
state based on the identification, monitoring, forecasting and analysis of threats in the
cyberspace of Ukraine.

3. The project's novelty

The scientific novelty consists in the development of the following methods:



- stylistic analysis and linguistic processing of disinformation to identify common
characteristic features of fakes of one author's collective based on methods of
processing natural language and artificial intelligence, linguistic analysis of information
messages, classification/clustering of text, etc. to identify linguistic signs of destructive
and manipulative attempts to influence the reader;

- detection of potentially similar disinformation in terms of style to form a set of
potential authors and participants in the dissemination of propaganda based on the
collection/monitoring/detection/classification of information threats in the Internet space;

- identification of primary sources of disinformation publication based on the analysis
of the results of the search for distribution routes of thematically and content-similar texts
to determine a set of criteria for evaluating the inauthentic behaviour of a group of
participants based on the analysis of social networks through graph theory and intelligent
data analysis.

The practical novelty consists in the development of an information system for
detecting sources of misinformation and inauthentic behaviour of chat users,
experimental testing, collection/processing/analysis of the obtained results to calculate
the accuracyl/efficiency of functioning based on the implementation of the following
software modules as:

- a module for intelligent search, collection, marking, linguistic analysis and
classification of information messages for the further formation of a set of potential fakes,
as well as monitoring, management, detection and tracking of information threat data
based on machine learning;

- a module of stylistic analysis of a set of fakes for identification of similar styles for
one author collective with subsequent classification (human/bot) based on methods of
machine learning and linguistic statistical data analysis;

- a module for the analysis of inauthentic behaviour of chat users to form their
information portraits with their classification, in particular, into people/bots through the
study of optimization models of attackers’ actions based on the graph of reposts,
optimization models and scenarios of inauthentic behaviour of participants, methods of
intelligent search for disinformation distribution routes.

4. Related works

The only off-the-shelf solution similar enough to this research is Mantis Analytics (Fig.
1). Link: https://mantisanalytics.com/.

Mantis Analytics

Protect Cognitive
Security

in Real-Time

Figure 1: Mantis Analytics Home Page


https://mantisanalytics.com/

The website states that the program uses machine learning, Natural Language
Processing and Large Language Models to analyze a large amount of unstructured data
(Fig. 2). Although the website describes how the program works and what tasks it can
perform (Fig. 3), to use it, you need to enter your email address and request access to
the demo version. Most likely, the program is not available to the general public, so it will
not be considered further.

Mantis Analytics is ML-native. The platform is fully based
on modern machine learning technologies. It uses NLP
and LLM models to analyze huge amounts of
unstructured data quickly and effectively.

Deep Insights & » Propaganda Detection

Future Predictions » Future Prediction
» Disinformation / Fakes detection
+ Insights Feed

Processing = Summary Reports
& Analysis » Trends Analysis

Figure 2: A description of the program from Mantis Analytics
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Figure 3: Features of Mantis Analytics

5. Research Methodology

As the basis of the research methodology, we offer a synthesized technology based on
the methods of artificial intelligence, computer linguistics, machine learning, intelligent
data analysis, statistical data processing, systems theory and system analysis, computer
and simulation modelling, etc. The problem consists of two main components —
identifying a set of information as fake and, based on it, finding sources and analyzing
the inauthentic behaviour of participants.

The principle of operation of the information system of automatic detection of sources
of disinformation and inauthentic behaviour of chat users:

Stage 1. Defining a set of information as fake:



Step 1.1. Collection and integration of the content of the relevant language from
relevant resources in the Data Store.

Step 1.2. Checking whether content is blocked from a specific resource in a specific
region.

Step 1.3. Marking of each content as blocked/unblocked in a certain region with
corresponding additional metrics (time, resource, frequency of appearance of
blocked/unblocked duplicates, presence of relevant marked words in the
title/digest/annotation, for example, proper names, etc.).

Step 1.4. Formation of an intermediate database of branded sorted data.

Step 1.5. Applying top content NLP methods to calculate the potential of a fake and/or
topic as a reason for blocking content in a certain region based on dictionaries and a set
of metrics. NLP diagram of the content topic definition process:

1.5.1. Definition of a set of keywords of the relevant content and a set of available
marker words (proper names, abbreviations, top words of the relevant topic, etc.).
Determination, if possible, of the topic of the content (method of text classification).

1.5.2. If it is difficult to determine the topic by keywords - identify persistent phrases.
Define if possible the content topic.

1.5.3. If it is difficult to define a topic based on persistent keywords, perform a
semantic analysis and build an ontology. Define if possible the content topic.

1.5.4. If, according to the results of the semantic analysis, it is impossible to do this,
mark it accordingly and transfer it to the list for the work of the content moderator.

1.5.5. For a specific topic, if the content is marked as blocked, check with the list of
previously blocked topics in this region. If not, update the list. If there is to renew the
number of blocks of this topic as censorship in a specific region.

Step 1.6. Applying ML technologies to improve data analysis/labelling/NLP. Pre-
training ML models on a validated training dataset.

Step 1.7. Generating models/patterns of potential fakes to update the list of labelled
content sorting metrics in step 1.3 and metrics/dictionaries for NLP.

Step 1.8. Constant updating of the intermediate database of branded sorted data and
transfer of outdated content to the archive.

Step 1.9. Updating the training dataset to improve ML models. General scheme of the
training and training process of the disinformation analysis module:

Pipeline 1.9.1Pre-Labeled Data — NLP — ML — Models/Patterns/Metrics.

Pipeline 1.9.2. Input new data — Data labelling (blocked/unblocked) — NLP — ML —
Content labelling (fake/not fake) or finding a potential reason for blocking (not fake, but
this particular event/topic is banned in a certain region for the average audience). The
general scheme of the system is presented in Fig. 4.

Stage 2. Identification of sources and analysis of inauthentic behaviour of
participants.

Step 2.1. Creation of a disinformation detection model that combines central-level
features (in particular, topic features) and peripheral-level features (in particular,
linguistic features, mood features, and user behaviour features).

Step 2.2. Evaluating the ability of central and peripheral features to automatically
distinguish misinformation from truth within a topical online community using different
machine learning techniques.
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Figure 4: General scheme of the system for identifying disinformation, fakes and

propaganda
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Step 2.3. Intelligent search for fakes based on machine learning.

Step 2.4. Finding a set of stylistically similar fakes for one author.

Step 2.5. Finding the sources of the fake on the main analysis of the distribution graph.

Step 2.6. Analysis of the behaviour of the author/team/bot over a long period to form
a set of main characteristic behavioural traits.

Step 2.7. Finding other fakes of the author by his writing style and behaviour.

Step 2.8. Formation of a portrait of the author's behaviour and behaviour prediction
models.

Step 2.9. Based on the analysis of information portraits of various authors, form
forecasts of the development and spread of fakes (frequency, density, subject matter),
for example for informational and psychological operation (PSYOP).

6. Experiments, results and discussions

The goal of the project is to recognize propaganda and ways of its dissemination. To do
this, we will analyze several datasets to study the parameters and markers of
disinformation. The first dataset (Fig. 5) is the Twitter ru Propaganda Classification. The
author is Bohdan Mynzar. The data are available in two copies - in English and Ukrainian.
Among the important features: it contains almost 13 thousand records and has three
useful features - date + time of creation, message text, and label (propaganda / not
propaganda). Link to the dataset:
https://www.kaggle.com/datasets/bohdanmynzar/twitter-propaganda-
classification?resource=download. The second dataset (Fig. 6) is russian propaganda
tweets. The author is Darius Alexandru. The dataset consists of two files - one contains
only propaganda messages, and the other contains only non-propaganda messages.
There are no labels in the dataset, but the very knowledge of broken files covers their
absence. Of the important features, the dataset has 22,000 records, more than 30
features, but most of them are not very useful because they have a lot of empty values
(90+%). Important and filled-in features are the date of posting the message, the time of
posting, the name of the group that posted, and the text of the message. Link to the
dataset: https://www.kaggle.com/datasets/dariusalexandru/russian-propaganda-tweets-
vs-western-tweets-war?select=russian_propaganda_tweets.csv.
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twitter_dataset.csv (2.43 MB) &

Detail Compact Column 5 of 5 columns v

About this file

Dataset originally scraped from Twitter in 2022 comprising Russian propaganda and non-propaganda tweets

# = eid = O created_at = A text

is_propaganda =

Tweet ID timestamp tweet body

true
120979 6495 50
unique values false
o 3248 :159959493 1523501272 Somran 2022-05-23 6495 50
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Figure 7: View of the third dataset

The third dataset (Fig. 7) — russian invasion of Ukraine | Live News. The author is
Hladkiy lvan. The dataset consists of one file containing messages from the Telegram
social network. Contains more than 400 thousand records. Contains three important



features - group name, publication date, and message text. Link:
https://www.kaggle.com/datasets/falloutbabe/russian-invasion-of-ukraine-live-news-
dataset. For simplicity, the first dataset will be used at the beginning, as it contains
enough, but not too many records and features, and has English text and labels.

The project is implemented in the Google Colab environment in Python Notebook.
The advantages of working in Python Notebook are the ability to conveniently run small
blocks of code and write program comments in separate text blocks. The advantages of
using Google Colab are the ability to easily connect to various Google services and the
ability to work from any place where you can enter your browser and your account.

First, we will download the datasets to our Google Drive, and then use google.colab
library + the drive function and the pandas library, we will transfer the first dataset from
the drive to the collab notebook.

[ 1 from google.colab import drive [ ] dimport pandas as pd

drive.mount('/content/drive")

[ 1 df = pd.read csv("/content/drive/MyDrive/twitter dataset.csv")
=¥ Mounted at /content/drive df

This is what the dataset looks like in the notebook:

Unnamed: @ id created_at text is_propaganda
1] 1749 1514553915580329988 2022-04-14 10:39:27+00:00 ‘Woman who held up poster of Marine Le Pen and .. False
1 2409 1510803460320632839 2022-04-04 02:16:28+00:00 %Ze\ensky Around 150,000 people trapped in M... False
2 2463 1475560113536741379 2021-12-27 20:12:00+00:00 RT @natomission_ru: ms#Russia Deputy FM Sergey.. True
3 116 1527722359314075649 2022-05-20 18:46:08+00:00 #Azovstal fully liberated — Russian military\n... True
4 2742 1517110124325879808 2022-04-21 11:56:54+00:00 RT @BloombergUK: "He was almost foaming at the.. False
12985 2245 1510987155669143558 2022-04-04 14:26:25+00:00 "There is real genocide - what you have seen h... False
12986 887 1522561095738793985 2022-05-06 12:57:07+00:00 45 Finland imported 70% less crude oil from Ru.. False
12987 909 1521600250053644289 2022-05-03 21:19:04+00:00 Can Congress legalise abortion if Supreme Cour... False
12988 2276 1481491727257153537 2022-01-13 05:02:07+00:00 RT @mod_russia: In total 2,241 Russian and for._ True
12989 1491 1522315572024954880 2022-05-05 20:41:30+00:00 Karine Jean-Pierre will replace White House Pr... False

12990 rows x 5 columns

In the dataset, the first two columns do not carry important information, so we discard
them.

df = df.drop(columns=["'Unnamed: @', 'id'])

created_at text is_propaganda

1) 2022-04-14 10:39:27+00:00 ‘Woman who held up poster of Marine Le Pen and ... False

1 2022-04-04 02:16:28+00:00 %Zelensky: Around 150,000 people trapped in M... False

2 2021-12-27 20:12:00+00:00 RT @natomission_ru: me#Russia Deputy FM Sergey. . True

3 2022-05-20 18:46:08+00:00 #Azovstal fully liberated — Russian military\n... True

a4 2022-04-21 11:56:54+00:00 RT @BloombergUK: "He was almost foaming at the . False
12985 2022-04-04 14:26:25+00:00 "There is real genocide - what you have seen h__. False
12986 2022-05-06 12:57:07+00:00 % Finland imported 70% less crude oil from Ru... False
12987 2022-05-03 21:19:04+00:00 Can Congress legalise abortion if Supreme Cour... False
12988 2022-01-13 05:02:07+00:00 RT @meod_russia: In total 2,241 Russian and for... True
12989 2022-05-05 20:41:30+00:00 Karine Jean-Pierre will replace White House Pr... False

12990 rows x 3 columns

Let's check how well-marked the data are, since the assessment of whether a
message is propaganda is a subjective decision of the author of the dataset. To do this,


https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fwww.kaggle.com%2Fdatasets%2Ffalloutbabe%2Frussian-invasion-of-ukraine-live-news-dataset
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fwww.kaggle.com%2Fdatasets%2Ffalloutbabe%2Frussian-invasion-of-ukraine-live-news-dataset

we output ten random messages, analyze their text and evaluate whether the label is
well placed.

2659
RT @BBCNews: UK Rwanda asylum plan against international law, says UN refugee
False

6579
Should courts decide if hijab is essential in Islam?

import random https://t.co/DEU14u7VIi
False
for i in range(10): 10835
n = random.randint (8, 12000) [D#Zakharova: We urge #Poland to take necessary action to stop the unlawful .
print(n, '\n', df.text[n], ‘\n', df.is_propaganda[n], *\n') True

In our opinion, the dataset is labelled adequately. Next, we check whether the dataset
is balanced.

o df.is propaganda.value counts()

S+ is_propaganda
False 6495
True 6495
Mame: count, dtype: int64d

The dataset contains an equal number of positive and negative labels, so it is perfectly
balanced.

[ 1 df.isnull().sum()

=+~ created_at 0
text %]
is_propaganda 5]

dtype: inted

It also does not contain empty values. For further checks, add a column with the length
of the message to the dataframe.

df['len_pre_cleaning'] = [len(t) for t in df.text]

created_at text is_propaganda len_pre_cleaning

0 2022-04-14 10-39:27+00-00 Waoman who held up poster of Marine Le Pen and False 115

1 2022-04-04 02:16:28+00:00 %Zelensky: Around 150,000 people trapped in M... False 140

2 2021-12-27 20:12:00+00:00 RT @natomission_ru: m#Russia Deputy FM Sergey... True 140

3 2022-05-20 18:46:08+00:00 #Azovstal fully liberated — Russian military\n__. True 99

4 2022-04-21 11:56:54+00:00 RT @BloombergUK: "He was almost foaming at the__. False 140
12985 2022-04-04 14:26:25+00:00 "There is real genocide - what you have seen h... False 140
12986 2022-05-06 12:57:07+00:00 1,5 Finland imported 70% less crude oil from Ru.__. False 140
12987 2022-05-03 21:19:04+00:00 Can Congress legalise abartion if Supreme Cour. False 93
12988 2022-01-13 05:02:07+00:00 RT @mod_russia: In total 2,241 Russian and for... True 140

12989 2022-05-05 20:41:30+00:00 Karine Jean-Pierre will replace White House Pr... False 140



An interesting feature is that many messages are 140 characters long.

print(df['text'][1])
477Zelensky: Arcund 158,000 people trapped in Mariupol.

In an interview with CBS, Ukrainian President Volodymyr Ze.. https://t.co/XIeCe5LgrM

TV e B g m

print (df[ "text’'][2])

ymission_ru: me#Russia Deputy FM Sergey #Ryabkov: We must stop #NATO eastward expansion, exclude Ukraine’s joining MATO, guarantee

The texts of the messages are probably truncated. This may be caused either by the
desire of the author of the dataset or by the fact that at one time the maximum message
length on Twitter was 140 characters. Also interesting is that Google Colab understands
emoticons from messages. Using the matplotlib library, we will display the average
length of messages as a graph.

140
120 ~
100
80 1
import matplotlib.pyplot as plt 60 1
. .. 40
fig, ax = plt.subplots(figsize=(5, 5))
plt.boxplot(df.len_pre_cleaning)
plt.show() 20 O

Most messages are close to the maximum length. This is probably because, in the
news, proper names, first names and surnames of politicians are often used, which takes
up a lot of characters. We are interested in emoticons from those messages, so let's
analyze them a little. First, let's output all the unique characters that are in the texts.

—

unique_chars = set(df._text.sum())

—

len(unique_chars)

516

4]

—

unique_chars

2 {'\n’,

"\r’,

[

Iy

In total, there are 516 unique symbols, most of them are letters, numbers, all kinds of
symbols and emoticons. We do not see the point in analyzing them all, but we will



analyze some of them through the author's substring_check function, which accepts a
certain string as input, not necessarily a smiley, counts all the texts of messages
containing this string, and outputs how many of such messages are propaganda and
how many not.

def substring_check(substring):
i# nepesipka Wae 3 gaHux opuriHansHoro gatacety “df"

# CTBOpHWW TWMYacoBWiA paTadpeim
dataframe = pd.DataFrame()

dataframe[ 'text'] = df['text']
dataframe[ 'label’] = df['is_propaganda’]

# BMganAw 3 HLOrO BCl pAAKM WO He MicTATb 3agauuid substring
for row in range(dataframe.shape[@]): [ ] substring check('mms")
if substring not in dataframe['text'][row]:

dataframe = dataframe.drop([row]) —):v label
True 679
print(dataframe.label.value_counts()) Mame: count, dtype: inté4

For example, all 679 messages containing the russian flag emoticon are propaganda.

[ 1 substring_check('4")

S+ label
False 1659
True 67

Mame: count, dtype: intéd

From my own experience, the lightning emoticon is often found in Ukrainian groups,
so it is expected that the proportion of normal messages will be higher.

[ 1 substring_check('Zakharova')

S+ label
True 577
False 1

Name: count, dtype: inté4

99% of messages containing the surname "Zakharova" are propaganda.

To continue working with the text, it is necessary to remove everything unnecessary
for this task (noise). This means uppercase letters, punctuation marks, emoticons, and
SO on.

To do this, we will write one large function, into which you can pass text and receive
processed text that has passed all the planned stages. The following methods will be
used in the function: converting to lowercase, cleaning up redundant character structures
like links, mentioning people in messages, and everything else, with the help of the "re"
regular expression library. Also, with the help of the "nltk" library, we will remove stop
words from the texts (for example, the, are, or...) and conduct word stemming so that
words in different forms are counted as one (for example, imported -> import, replace -
>replac...).



import re

import nltk

nltk.download( ' punkt®)

nltk.download( " stopwords")

from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords

from nltk.stem import PorterStemmer

[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.

[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.

# HaragyeaHHAa [0 pEryiapHUX Bupasis

# \w - byab-akui alphanumerical (bykea, uudpa uM HWXHE nigxkpecnedHa) Ta npobin
# \s - npobin

# \S - byab-wo Kpim npobiny

def preprocess(text):

# nepeBefeHHA B HUXHiW pericTp
text = text.lower()

# npubupaHHa nocunavb
text = re.sub(r'www\S+|https?\S+', '', text, flags=re. MULTILINE)

# npubupaHHA 3ragyBaHb, Hanpukaag @mistermax

text = re.sub(r'@\w+', "', text)
# 3aminva byab-uoro, wo He € BykeBow uu npobinom, Ha npobin; pobuTbcA Ana po3ainoBMX 3HaKiB, cMaWNMKiB, yucen
text = re.sub(r'[*a-z_]"', " ', text)

# Tokenizauia, pobuTbca gna QyHkuid npubupaHua cTon-caiB i cTemiHry
words = word_tokenize(text)

# npubupaHHa cTon-cnie
stop_words = set(stopwords.words('english'))
words = [word for word in words if word not in stop_words]

# cTemuHr
stemmer = PorterStemmer()
words = [stemmer.stem(word) for word in words]

# 0b6'egHaHHA TOKeH1E Hazaj B TekcT

result = ' '.join(words)

return result

Now we will apply the function on the texts from the dataset, the Before and After view
is shown below.

text_processed = df['text'].apply(preprocess)
text
Woman who held up poster of Marine Le Pen and ...
ZbZeIensky: Around 150,000 people trapped in M...
RT @natomission_ru: me#Russia Deputy FM Sergey...

#Azovstal fully liberated — Russian military\n...

] woman held poster marin le pen presid putin dr...

RT @BloombergUK: "He was almost foaming at the... 1 zelenski around peopl trap mariupol interview ...
2 rt russia deputi fm sergey ryabkov must stop n...

3 azovst fulli liber russian militari

"There is real genocide - what you have seen h.__ a4 rt almost foam mouth pier morgan say donald tr...

4> Finland imported 70% less crude oil from Ru... 12985 real genocid seen today visit bucha evid civil...
o 12986 finland import less crude oil russia sinc febr...
CaniCongressliegaliselabomtionlifl premelCours 12987 congress legalis abort suprem court overturn r...
RT @mod_russia: In total 2,241 Russian and for... 12988 rt total russian foreign citizen deliv militar...
12989 karin jean pierr replac white hous press secre...

Karine Jean-Pierre will replace White House Pr Name: text, Length: 12998, dtype: object



We will also demonstrate the Before and After view on the example of one random
message.

df [ "text'][46]

'45 No humanitarian corridors two days in a row. \n\nRussian troops didn’t agree to a Ukrainian ceasefire proposal alo.. https://t.c
o/EgoHWT1eL1"

text_processed[46]

"humanitarian corridor two day row russian troop agre ukrainian ceasefir propos alo’

Add the Message length column after processing to the dataframe, and save this
dataframe as a clean_df file for convenience.

After processing the messages, it was noticed that the length of some texts became
0.

clean_df.info()|

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12998 entries, @ to 12989
Data columns (total 5 columns):

#  Column Non-Null Count Dtype
- T S TTTTTTTTToT 7777 clean_df[clean_df.isnull().any(axis=1)]
@ created_at 12990 non-null object
; E:izropaganda 1;23; :22::5%1 Esgjc‘: created_at text is_propaganda len_pre_cleaning len_post_cleaning
3 len_pre_cleaning 12990 non-null int64 1697 2022-01-14 16:53:39+00:00 NaN True 142 0
4  len_post_cleaning 12998 non-null int64
- o - . 9966 2022-02-25 17:53:21+00:00 NaN T 142 0
dtypes: bool(1l), int64(2), object(2) “ @ rue
memory usage: 418.7+ KB 10473 2022-04-21 08:30:00+00:00 NaN True 23 0

There are only 3 such lines and, most likely, they did not contain useful information,
so they became zero. Therefore, we simply discard them from the dataset and update
the indices of other rows both in clean_df and in the original df.

clean_df.dropna(inplace=True)

clean_df.reset_index(drop=True, inplace=True)
clean_df.info() df.drop(index = [1697, 9966, 10473], inplace=True)

df.reset_index(drop=True, inplace=True)

<class 'pandas.core.frame.DataFrame'> df.info()

RangeIndex: 12987 entries, 8 to 12986

Data columns (total 5 columns): <class 'pandas.core.frame.DataFrame'>

#  Column Non-Null Count Dtype Rangelndex: 12987 entries, @ to 12986

B e P T PR T e T e Data columns (total 3 columns):

@ created_at 12887 non-null object #  Column Non-Null Count Dtype
1 text 12987 non-null object R
2  is_propaganda 12987 non-null bool 8 created_at 12987 non-null object
3  len_pre_cleaning 12987 non-null inte4d 1 text 12987 non-null object
4 len_post_cleaning 12987 non-null inte4 2 is_propaganda 12987 non-null bool
dtypes: bool(1), int64(2), object(2) dtypes: bool(1l), object(2)

memory usage: 418.7+ KB memory usage: 215.7+ KB

Next, let's check how many unique words there are in the dataset. To do this, we
import CountVectorizer from the sklearn library.



from sklearn.feature_extraction.text import CountVectorizer
c_vec = CountVectorizer()

c_vec.fit(clean_df.text)

c_vec.get _feature_names_out()

array(['aa', 'ab', 'aba', ..., 'zuckerberg', 'zug', 'zuiev'], dtype=object)

len(c_vec.get_feature_names_out())
11747

We will also compile a word frequency table, which shows which words are used most
often in general, in propaganda and non-propaganda. To do this, import the numpy
library and use the already created CountVectorizer.

[ 1 import numpy as np

[ 1 neg_doc_matrix = c_vec.transform(clean_df[clean_df.is_propaganda == False].text)
pos_doc_matrix = c_vec.transform(clean_df[clean_df.is_propaganda == True].text)

neg_tf = np.sum(neg_doc_matrix,axis=0)
pos_tf = np.sum(pos_doc_matrix,axis=0)

neg = np.squeeze(np.asarray(neg_tf))
pos = np.squeeze(np.asarray(pos_tf))

term_freq_df = pd.DataFrame([neg,pos],columns=c_vec.get_feature_names_out()).transpose()

[ 1 term_freq_df.columns = ['normal’, ‘propaganda’]
term_freq_df[ 'total’] = term_freq_df[ normal’'] + term_freq_df[ propaganda’]

We will display the top 10 words by frequency of appearance from the table.

° term_freq_df.sort_values(by='total', ascending=False).iloc[:18]

4

normal propaganda +total

rt 703 1868 2571
russian 1113 1195 2308
russia 973 1139 2112
ukrain 1235 729 1964

us 376 627 1003
presid 420 417 837

ukrainian 465 360 825
minist 308 435 743
foreign 108 536 644

zakharova 1 579 580

The table shows that the word "rt" comes across most often. This is the name of a
propaganda group, and most likely there are many messages from it in the dataset,
which is why the word is so common. Given the topic of the dataset, frequent words such
as russia, russian, Ukraine and Ukrainian are also expected. The table also shows
interesting dependencies. For example, in propaganda, the word foreign is often used,
that is, "foreign”, probably to set the population against everything foreign. Also, what
has already been found, 99% of messages containing the surname "Zakharov" are
propaganda. Let's display the next top 10 words.



[ 1 term_freq_df.sort_values(by="total', ascending=False).iloc[10:28]

a4 normal propaganda total

say 440 121 561
war 400 144 544
new 307 225 532
forc 320 185 505
putin 193 309 502
lavrov 13 449 462
militari 188 271 459
year 196 231 427
peopl 225 179 404
eu 183 205 388

Interesting finds continue. Propaganda rarely uses the word "war". This is probably
because they do not like this word there, and more often they use words like "special
operation". Also, approximately 99% of messages with the surname "lavrov" are
propaganda.

The next step will be to describe methods of text classification, to search for the best
parameters.

The first idea for recognizing propaganda was a binary classification (propaganda /
not propaganda). There was also the idea of a multi-class classification to understand
what specific type of propaganda was used (appeals to authority, cult of personality,
labelling...). However, large datasets were not necessary for this, so we settled on binary
classification.

To do this, we will first use simple models, for example, logistic regression, and then
we will try to build artificial neural networks. To assess the quality of the model, it is
necessary to determine the minimum baseline accuracy. Then you can choose the best
parameters, such as the number of n-grams in the text and the number of features, and
train the model on such data.

First, let's convert the labels True and False into numbers 1 and 0, and also split the
data into training, testing, and validation using the train_test split function from the
sklearn library.

[ 1 from sklearn.model_selection import train_test_split
class_labels = {'False': @, "True': 1}
clean_df.is_propaganda = clean_df.is_propaganda.replace(class_labels).astype(int)

[ 1 x = clean_df.text
y = clean_df.is_propaganda
seed = 42

[ ] x_ train, x validation_and_test, y_train, y_validation_and_test = train_test_split(x, y, test_size=0.2, random_ state=seed)

[ 1 x_validation, x_test, y_validation, y_test = train_test_split(x_validation_and_test, y_validation_and_test,
test_size=.5, random_state=seed)

We determine the baseline accuracy by the number of positive labels in the validation
set.

[ 1 round(len(x validation[y validation == 1]) / len(x validation), 3)



This means that if just any text is classified as propaganda, the accuracy will be 0.514.
Therefore, future models should be more accurate than this.
We import and check the finished TextBlob solution.

[ ] from textblob import TextBlob
from sklearn.metrics import accuracy_score

[ ] textblob_result = [TextBlob(i).sentiment.polarity for i in x_validation]
textblob_pred = [8 if n<® else 1 for n in textblob_result]

[ 1 accuracy score(y_test, textblob_pred)

=¥ 0.49884526558891457

It turned out to be about the same as the baseline accuracy, even a little worse, so it
doesn't fit.

Let's try to use logistic regression for classification, selecting the best parameters in
parallel.

We will check: which vectors are better, Count or TF-IDF, the number of h-grams and
the number of features.

To check all this, we will write the function optimal features and the auxiliary function
accuracy_pipeline to it.

[ ] from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
[ 1 LR = LogisticRegression()
n_features = np.arange(1000,11501,500) # [1eee, 1500, 2000, 2500...]
c_vec = CountVectorizer()
[ 1 def accuracy pipeline(pipeline, x_train, y train, x_test, y_test):
sentiment_fit = pipeline.fit(x_train, y_train)
y_pred = sentiment fit.predict(x_test)
accuracy = accuracy_score(y_test, y_pred)

return accuracy
[ 1 def optimal_features(vectorizer=c_vec, n_features=n_features, ngrams=(1, 1), classifier=LR):

2]
2]

max_accuracy
max_features

for n in n_features:
vectorizer.set_params(max_features=n, ngram_range=ngrams)

checker_pipeline = Pipeline([
('vectorizer', vectorizer),
('classifier’, classifier)
1
nfeature_accuracy = accuracy_pipeline(checker_pipeline, x_train, y_train, x validation, y_wvalidation)
if nfeature_accuracy > max_accuracy:
max_accuracy = nfeature_accuracy

max_features = n

return max_accuracy, max_features

First, we check the Count vectors:



—

print("lna 1 rpam: ", optimal_features())

4]

Nna 1 rpam: (0.8414164742109315, 6600)

—

print("lna 1-2 rpam: ", optimal_features(ngrams=(1, 2)))

4]

Nna 1-2 rpam: (0.8521939953810623, 4500)

print("na 1-3 rpam: ", optimal_ features(ngrams=(1, 3)))

M ©

Nna 1-3 rpam: (0.852963818321786, 5000)

—

print("Ana 1-4 rpam: ", optimal_features(ngrams=(1, 4)))

4

Nna 1-4 rpam: (0.8514241724403387, 6500)

The best result is an accuracy of 0.8529 on 1-2-3 grams and several features of 5000.
We check the same for TF-IDF vectors.

[ 1 from sklearn.feature_extraction.text import TfidfVectorizer

[ ] t_vec = TfidfVectorizer()

print("lna 1 rpam: ", optimal_features(vectorizer=t_vec))

fna 1 rpam: (0.8352578086851424, A4000)

)

—

print("Lna 1-2 rpam: ", optimal_features(vectorizer=t_vec, ngrams=(1, 2)))

4)

L 1-2 rpam: (0.8406466512702079, 7500)

—

print("lna 1-3 rpam: ", optimal_features(vectorizer=t_vec, ngrams=(1, 3)))

4)

Ina 1-3 rpam: (0.844495765973826, 9500)

—

print("lna 1-4 rpam: ", optimal_features(vectorizer=t_vec, ngrams=(1, 4)))

)

Ina 1-4 rpam: (0.8421862971516552, 8500)

The best result is 0.8444 on 1-2-3 grams and the number of signs is 9500.

On these Count data, vectors provide greater accuracy and on a smaller number of
features, so these vectors and optimal parameters will be used further.

The next step will be to use neural networks for text classification.

Let's use neural networks to classify propaganda. | will start with a simple fully
connected neural network, but before that, we need to bring the data into such a format
that it can be given to the input of the neural network. We convert texts into vectors using
the TextVectorization layer from the TensorFlow library:

[ 1 import tensorflow as tf

[ 1 vectorizer = tf.keras.layers.TextVectorization(output_mode='count', ngrams=(1, 3), max_tokens=5808, pad_to_max_tokens=True)
vectorizer.adapt(x_train)

[ 1 x_train_v = vectorizer(x_train)
x_test_v = vectorizer(x_test)

Now the texts look like this:



[ ] x train_v

—Zv <tf.Tensor: shape=(18389, 5000), dtype=int64, numpy=
array([[12, 1, @, ..., @, 8, o],
[11, o, 1, ..., @, 6, @],
[8 o 9o, ..., 8 0, o],

P
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Neural network structure: Input is fed to a Dense layer of 256 neurons, from it to the
next Dense layer of 256 neurons, and then to the output Dense layer of 2 neurons, which
classifies the input as propaganda or hon-propaganda.

[ 1 class FFNNClassifier(tf.keras.Model):
def _ init  (self, hidden_dim: int, n_classes: int, *args, **kwargs):
super(FFNNClassifier, self)._ init_ (*args, **kwargs)

self.densel = tf.keras.layers.Dense(units=hidden_dim, activation='relu')
self.dense?2 = tf.keras.layers.Dense(units=hidden_dim, activation='relu')
self.out = tf.keras.layers.Dense(n_classes)

def call(self, inputs, training: bool):
x = self.dense2(self.densel(inputs))
return self.out(x)

Neural network parameters: optimizer — Adam, loss function — sparse categorical
cross-entropy, metrics — accuracy.

model = FFNNClassifier(hidden_dim=256, n_classes=2)
model . compile{optimizer="adam', loss='sparse_categorical_crossentropy’, metrics=['accuracy'])

Training the network for 5 epochs:

[ ] hist = model.fit(
x=x_train_v,
y=y_train,
epochs=5,
batch_size=128,
validation_data=(x_test_v, y_test)

)

3> Epoch 1/5

82/82 — 45 36ms/step - accuracy: ©.6400 - loss: 0.8256 - val_accuracy: 0.8253 - val_loss: ©.5553
Epoch 2/5
82/82 ————————— 55 29ms/step - accuracy: ©.8908 - loss: 0.5301 - val_accuracy: 0.7521 - val_loss: 0.6176
Epoch 3/5
82/82 ———————— 25 38ms/step - accuracy: ©.8009 - loss: ©.6148 - val_accuracy: 0.6351 - val_loss: ©.6931
Epoch 4/5
82/82 —————————— 25 37ms/step - accuracy: ©.6562 - loss: ©.6031 - val_accuracy: 0.6351 - val_loss: ©.6031
Epoch 5/5
82/82 ———————— 3¢5 3ims/step - accuracy: ©.6404 - loss: ©.6931 - val_accuracy: 0.6351 - val_loss: ©.6931

The best result was on the first epoch, where the validation accuracy val_accuracy =
0.8253. The result is a couple of percent worse than it was in logistic regression.

We will try to improve the result by using embeddings instead of ordinary vectors to
represent texts. To do this, we divide the texts into tokens, then each token is
represented as a vector. | will also slightly improve the structure of the neural network.

[ ] embedding_dim = 160

[ 1 from tensorflow.keras.preprocessing.text import Tokenizer



[ 1 tokenizer = Tokenizer()
tokenizer.fit_on_texts(clean_df.text)

x_train_s = tokenizer.texts_to_sequences(x_train)
x_test s = tokenizer.texts_to_sequences(x_test)

dict_length = len(tokenizer.word_index)
print("ldosxuHa cnoeuuka:", dict_length)

5} NloBkuHa cnoBHuka: 11765

Now the input looks like this:

[ ] x_train_s

S+ [[1, 336, 5, 489, 17, 1160, 399, 872, 56, 382, 394, 29, 31, 105, 2268],
[368, 21, 64, 8@, 19, 381, 358, 2, 91, 3043, 1604, 2780, 963, 22],
[6, 15, 184@, 153, 681, 19, 18, 130, 7520],
[1e8, 487, 439, 2230, 688, 3, 1136, 217, 86, 276, 6362, 9816],

We determine the average and maximum length of tokens:

[ 1 token_lengths = [len(sequence) for sequence in x_train_s]
mean_length = np.mean(tocken_lengths)
max_length = int(mean_length + 2 * np.std(token_lengths))

print("CepenHa foBxuHa TokeHa™, mean_length)
print("Ha#binbwa goexuna:", max_length)

max_length += 1

o> CepenHn moBwuHa TokeHa 10.484647223024353
HaWbinbwa posxuHa: 16

We add padding to the tokens so that they are all the same size:

[ ] from tensorflow.keras.preprocessing.sequence import pad_seguences

[ 1] x train p = pad sequences(x train s, maxlen=max length, padding='post')
x_test p = pad sequences(x_test s, maxlen=max_length, padding='post')

New neural network structure: embedding layer, LSTM (Long short-term memory)
layer, followed by the same Dense layers with 2 output classes.

[ 1 model_embed = tf.keras.models.Sequential([
tf.keras.layers.Embedding(input_dim=dict_length+20, output_dim=embedding dim),
tf.keras.layers.LSTM(units=100),
tf.keras.layers.Dense(units=256, activation='relu"),
tf.keras.layers.Dense(units=256, activation='relu"),
tf.keras.layers.Dense(units=2, activation="softmax')

1

The network training parameters remain the same.

[ ] model embed.compile(
optimizer="adam',
loss="sparse_categorical crossentropy',
metrics=["'accuracy"']



[ 1 hist2 = model_embed.fit(
x_train_p,
y_train,
epochs=3,
batch_size=128,
validation_data=(x_test_p, y_test)
)

5> Epoch 1/3

82/82 —————————— 14s 73ms/step - accuracy: ©.6344 - loss: ©.6@25 - val_accuracy: ©.8345 - val_loss: ©.3892
Epoch 2/3
82/82 —————————————— 12s 93ms/step - accuracy: ©.9822 - loss: ©.2463 - val_accuracy: ©.8360 - val_loss: ©.3740
Epoch 3/3
82/82 —————————————— 65 48ms/step - accuracy: ©.9438 - loss: 0.1543 - val_accuracy: 0.8260 - val_loss: 0.4587

Of the three epochs, the second with val_accuracy = 0.8360 had the highest
accuracy. Better than the previous neural network, but still not better than logistic
regression.

Let's try to use a transformer. To do this, we will build a transformer block.

class TransformerBlock(tf.keras.layers.Layer):
def _ init (self, embed dim, num_heads, ff_dim, rate=08.1)
super().__init_ ()

self.att = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)

self.ffn = tf.keras.Sequential(
[tf.keras.layers.Dense(ff_dim, activation="relu"),
tf.keras.layers.Dense(embed_dim) ]

)

self.layernorml = tf.keras.layers.LayerNormalization(epsilon=1e-6)}
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)

self.dropoutl = tf.keras.layers.Dropout(rate)
self.dropout? = tf.keras.layers.Dropout(rate)

def call(self, inputs):
attn_output = self.att(inputs, inputs)
attn_output = self.dropoutl(attn output)
outl = self.layernorml(inputs + attn_output)
ffn_output = self.ffn(outl)
ffn_output = self.dropout2(ffn_output)
return self.layernorm2(outl + ffn_output)

We will also use embeddings here, and for this, we will build an embedding layer.
[ 1 !pip install --upgrade keras

[ 1 from keras import ops
[ 1 class TokenAndPositionEmbedding(tf.keras.layers.Layer):
def _ init_ (self, maxlen, vocab_size, embed_dim):
super().__init_ ()

self.token_emb = tf._keras.layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
self.pos_emb = tf.keras.layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

def call(self, x):
maxlen = ops.shape(x)[-1]
positions = ops.arange(start=8, stop=maxlen, step=1)
positions = self.pos_emb(positions)
x = self.token_emb(x)
return x + positions
° num_heads = 2
£f_dim = 256



The structure of the model itself: input layer, embedding layer, transformer block,
pooling layer, dropout layer, fully connected layer, dropout again, output fully connected
layer for 2 neurons that classifies.

[ 1 inputs = tf.keras.layers.Input(shape=(max_length,)
embedding_layer = TokenAndPositionEmbedding(max_length, dict_length+1l, embedding_ dim)
x = embedding_layer(inputs)
transformer_block = TransformerBlock(embedding_dim, num_heads, ff_dim)
x = transformer_block(x)
tf.keras.layers.GlobalAveragePoolinglD() (x)
tf.keras.layers.Dropout(8.1)(x)
tf.keras.layers.Dense(ff_dim, activation="relu")(x)
tf.keras.layers.Dropout(8.1)(x)
outputs = tf.keras.layers.Dense(2, activation="softmax")(x)

®oX X X
mwononon

transformer = tf.keras.Model(inputs=inputs, outputs=outputs)

Learning parameters are unchanged:

[ 1 transformer.compile(
optimizer="adam",
loss="sparse_categorical_crossentropy”,
metrics=["accuracy"]

)

Model training on 5 epochs:

hist_t = transformer.fit(
x_train_p,
y_train,
epochs=5,
batch_size=128,
validation_data=(x_test_p, y_test)

)

3% Epoch 1/5

82/82 ——— 15s 112ms/step - accuracy: 0.6185 - loss: 0.6304 - val_accuracy: 0.7868 - val loss: 0.4632
Epoch 2/5
82/82 ——— 10s 127ms/step - accuracy: 0.8874 - loss: 0.2630 - val_accuracy: ©.8268 - val_loss: 0.3843
Epoch 3/5
82/82 —————————— 10s 128ms/step - accuracy: 0.9396 - loss: ©.1577 - val_accuracy: ©.8191 - val_loss: 0.4468
Epoch 4/5
82/82 ————————— 19s 107ms/step - accuracy: 0.9553 - loss: ©.1170 - val_accuracy: ©.8183 - val_loss: ©.5322
Epoch 5/5
82/82 ———————————————— 13s 142ms/step - accuracy: 0.9647 - loss: 0.0949 - val_accuracy: ©.8206 - val loss: 0.6321

The best result was on the second epoch with val_accuracy = 0.8268.

For some reason, neural networks cannot outperform logistic regression. In our
opinion, it depends on the data, and on such a small dataset of 13 thousand records, the
neural network cannot obtain sufficient generalizing properties.

The next step is to find the most suitable way to measure the distance between texts.

The task is to find chains of propagation of propaganda between groups. To do this,
we will search for similar texts and, using metadata such as the date and time of the
message, we will investigate how these similar messages were distributed.

But before that, it is necessary to choose a method of measuring the similarity of
messages. We plan to test lexical and semantic methods.

First, we manually find several messages of varying degrees of similarity to compare
the methods. To do this, | will display all messages containing the keyword, the surname
"kyrilenko".



L]

key_word = 'kyrylenko®
clean_df[clean_df.text.str.contains(key word)]

= created_at text is_propaganda len_pre_cleaning len_post_cleaning
26 2022-05-12 00:53:02+00:00 governor russia shell almost everi settlement . V] 140 105
151 2022-05-03 23:11:22+00:00 accord governor donetsk oblast pavlo kyrylenko... 0 140 7
1162 2022-05-14 03:58:32+00:00 russian forc Kill injur civilian donetsk oblas... V] 140 92
1393 2022-05-19 22:49:46+00:00 russian attack kil civilian wound donetsk obl._. V] 139 a3
2843 2022-04-12 17:40:39+00:00  donetsk oblast governor peopl kill mariupol pa... 0 140 71
3249  2022-05-11 11:49:14+00:00 mariupol defend civilian evacu azovst may done... 0 140 81
4192 2022-04-22 04:08:00+00:00 kramatorsk largest citi region mariupol remain... 0 124 67
6980 2022-05-21 20:30:55+00:00 russian shell kill civilian donetsk oblast pav... 0 140 96
7488 2022-05-03 11:27:28+00:00 least peopl kill russian attack donetsk oblast. . 0 140 91
11316 2022-04-24 10:35:11+00:00 russian easter shell kill two children donetsk. .. 0 140 &9
11628 2022-04-14 09:26:47+00:00 donetsk oblast governor civilian Kill region s... V] 140 80
12510 2022-04-27 02:04:58+00:00 kyrylenko also said possibl identifi one wound. .. V] 140 &1

To see what specific messages looked like before and after processing the text, we
will write the showme function, in which we will enter the indexes of the messages we
are interested in.

[ 1 def showme(num 1):
print("MoeigomnenHa B, num_1)
print("3 ounwenux panux", "-'*80)
print(clean_df.text[num_1])
print('\n3 HeounweHux paHux', °-'*80)
print(df.text[num_1], "\n")
Several messages were selected using this function:
1162 - it will be the main one, with which | will compare the others
1393 - a message that is very similar to the main one
11628 is slightly smaller but still similar to the main one
12510 — contains several common words with the main one
6666 - not at all similar to the main one (as far as the nature of the dataset allows)

[ 1 showme(1162)

=+ [osigomnenna W 1162
3 OUMIIEHMX IBHMX == == === == = = = = == = o e oo
russian forc kill injur civilian donetsk oblast donetsk oblast governor pavlo kyrylenko said

3 HEOMMUEHMX JAAHWK — == === = == == == = m = m o m o
%Russian forces kill 1, injure 12 civilians in Donetsk Oblast.

Donetsk Oblast Governor Pavlo Kyrylenko said on M.. https://t.co/gyD61MtSPZ
# nyxe cxoxe
showme(1393)

4
4

NoeigomnenHa N 1393
3 OUMIEHMX JIAHMX = = = = = == = = = = o = o o oo
russian attack kill civilian wound donetsk oblast may donetsk cblast governor pavlo kyrylenko

[

3 HEOUMUEHMX JBAHMX — = = === = = === - = o m = m o oo o
%Russian attacks kill 5 civilians, wound 6 in Donetsk Oblast on May 19.

Donetsk Oblast Governor Pavlo Kyrylenko.. https://t.co/ONLKdaTQz]



[ 1 # cxoxe
showme (11628)

2~ MosimomnenHa N 11628
3 ouMWeHMX AaHnX
donetsk oblast governor civilian kill region sinc feb accord pavlo kyrylenko peo

3 HEOYMIEHNX JAHMK — == === = === === = o
ﬁ%DDnetsk Oblast governor: 238 civilians killed in the region since Feb. 24.
According to Pavlo Kyrylenko, 772 peo.. https://t.co/L4KKKegBDHz

[ 1 # Tpoxu iHwe
showme (12510)

3+ Mosimomnenns N 12510
3 OUMIEHUR JLBHAX == == = == == = == == = o o e e e e e e e oo
kyrylenko also said possibl identifi one wound mariupol exact number victim mariu

3 HEOUMIEHMX [LBHMNX == = === = == = = = = = o e e e e e e e e e e e e e e e e e oo

Kyrylenko also said while it was possible to identify one wounded in Mariupol, the exact number of victims in Mariu.. https://t.co/u
[ 1 # 3oBcim iHwe

showme (6666)

=~ [loeigomnenus N 6666
3 OUMUEHUX BHNX == == == = = = == = = = o o o e e e e e oo
moscow kiev exchang prison side deliv peopl russian commission human right tatyana

3 HEOMMIEHNX [AHMX === = == = = = == = = == = — — o o
Moscow and Kiev exchange prisoners, both sides delivering 86 people - Russian Commissioner for Human Rights Tatyana.. https://t.co/s

Now let's write the compare_distances function for a quick comparison of text
similarity measurement methods.

[ 1 def compare_distances({method):
print("Oyxe cxoxi", method(clean_df.text[1162], clean_df.text[1393]),
"\nCxoxi", method(clean df.text[1162], clean_df.text[11628]1),
"\nTpoxn eigpaneni"”, method(clean df.text[1162], clean_df.text[1251@]),
"\n3oecim pisHi", method(clean_df.text[1162], clean_df.text[6666]))

Next, we will write functions for measuring cosine similarity (on Count and TF-IDF
vectors), Jaccard similarity and Levenshtein distance. After that, we will compare their
results.

[ 1 from sklearn.metrics.pairwise import cosine_similarity
[ ] def count_cos_sim(textl, text2):
texts = [textl, text2]
vectorizer = CountVectorizer()
tfidf matrix = vectorizer_fit_transform(texts)
similarity = cosine similarity(tfidf matrix[@], tfidf matrix[1])[@][@]
return round(similarity, 5)
[ 1 def tfidf_cos_sim(textl, text2):
texts = [textl, text2]
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(texts)
similarity = cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[@][@]
return round(similarity, 5)
[ 1 def jac sim(textl, text2):
setl = set(textl.split())
set2 = set(text2.split())

inters = setl.intersection(set2)
union = setl.union(set2)

return round(len(inters) / len(union), 5)



[ 1 def levenstein(textl, text2):
lenl = len(textl) + 1
len2 = len(text2) + 1

res = np.zeros((lenl, len2))

for 1 in range(lenl):
res[i][@] = 1

for j in range(len2):
res[@]1[J] = ]

for i in range(l, lenl):
for j in range(1l, len2):
cost = @ if textl[i-1] == text2[j-1] else 1
res[i][j] = min(res[i-1][j] + 1, res[i][j-1] + 1, res[1-1][j-1] + cost)

return round(res[-1][-1], 5)

The results:
[ ] compare_distances(count_cos_sim) . ) .
[ ] compare_distances(tfidf_cos_sim)
5¥ [lyxe cxoxi ©.82353 5% fyxe cxoxi 0.7026
Cxoxi ©.63013 Cxoxi ©.4792
Tpoxu BigpnaneHi ©.14003 Tpoxu Bimnaneni 8.87625
3oBCciMm pizHi 0.07001 JoBcimM pisHi 0.03673

[ ] compare_distances(jac_sim)
[ 1 compare distances(levenstein)

S~ llyxe cxoxi ©.57143 . )
Cxowi ©.4375 =¥ Jlyxe cxoxi 26.0

Tpoxu Bimpaneni ©.09524 Cxoxi 56.0

3oBcim pisHi ©.04545 Tpo“? FLAananen 74.0
3oBcim pl3Hl 75.0

The closest to what we want to get is shown by cosine similarity on count vectors, on
TF-IDF vectors the value is closer to 0, in Jaccard similarity the value is closer to 0.5,
and as for the Levenshtein distance, we realized that it is not very suitable for this task

at all.
Now let's try to take into account the semantic content. To do this, download word2vec

embeddings from Google News.

[ 1 import gensim.downloader as api
from scipy.spatial.distance import cosine

[ 1 model = api.load('word2vec-google-news-388")

[==================================================] 108.0% 1662.8/1662.8MB downloaded

Let's write a function for cosine similarity on embeddings embed_cos_sim and an
auxiliary function get_word2vec.

[ 1 def get word2vec(tokens_list, vector, k=300):
if len(tokens list) < 1:
return np.zeros(k)

vectorized = [vector[word] if word in vector else np.zeros(k) for word in tokens_list]

length = len(vectorized)

summed = np.sum(vectorized, axis=0)
averaged = np.divide(summed, length)
return averaged



° def embed cos_sim(sl, s2):
vectorl = get_word2vec(sl.split(), model)
vector?2 = get_word2vec(s2.split(), model)

cosine_distance = cosine(vectorl, vector2)
return round(1l - cosine_distance, 5)

Result:

[ ] compare_distances(embed cos_sim)

S~ [yxe cxoxi ©.94035
Cxoxi ©.80581
Tpoxu Bimganeni ©.28318
Joecim pizHi 0.64394

This is exactly what we wanted to get, but for some reason, completely different texts
have more similarities than slightly different ones. But it already depends on how these
embeddings were trained.

The next step is to search for propaganda networks by examining messages with
similar texts.

Using the selected method of measuring the distance between texts (cosine similarity
on word2vec-google-news-300 embeddings), we want to find similar messages among
the entire dataset. To do this, we create 2 dataframes containing only propaganda
messages (since we are investigating the spread of propaganda). The first will contain
the texts in their original form, and the second in a cleaned form.

° df_prop_orig = df[df.is_propaganda == True]
df_prop_orig.reset_index(drop=True, inplace=True)
df_prop_orig

— created_at text is_propaganda
0 2021-12-27 20:12:00+00:00 RT @natomission_ru: ms#Russia Deputy FM Sergey... True
1 2022-05-20 18:46:08+00:00 #Azovstal fully liberated — Russian military\n... True
2 2022-04-08 16:00:00+00:00 ‘Intense battle’ | Russian army surrounds last. .. True
3 2022-04-25 22:00:01+00:00 Russia’s FSB has released footage reportedly s.. True

[ 1 df_prop = clean_df[clean_df.is_propaganda == True]
df_prop.reset_index(drop=True, inplace=True)

df_prop
_Z' created_at text is_propaganda
0 2021-12-27 20:12:00+00:00 rt russia deputi fm sergey ryabkov must stop n... 1
1 2022-05-20 18:46:08+00:00 azovst fulli liber russian militari 1
2 2022-04-08 16:00:00+00:00 intens battl russian armi surround last nation._.. 1
3 2022-04-25 22:00:01+00:00 russia fsb releas footag reportedli show arres... 1

Let's write a small function to compare each message with each other.

[ 1 def calc_sim(dataframe, n):
distances = []

for i in range(n):
for j in range(n):
distances.append([dataframe.text[i],
dataframe.text[j],
embed_cos_sim(dataframe.text[i], dataframe.text[j])])

return distances



Did a test run with 100 x 100 messages, measured the time it took and realized we
didn't have the computing power to compare all 6500 x 6500 messages. However, the
research is not finished yet, so let's take a small fraction of 300 x 300 messages and
work with them.

[ ] distances = calc_sim(df_prop, 380)

[ ] distances

—E [['rt russia deputi fm sergey ryabkov must stop nato eastward expans exclud ukrain join nato guarante'
'rt russia deputi fm sergey ryabkov must stop nato eastward expans exclud ukrain join nato guarante'
1],
['rt russia deputi fm sergey ryabkov must stop nato eastward expans exclud ukrain join nato guarante',
‘azovst fulli liber russian militari',
0.563761,
['rt russia deputi fm sergey ryabkov must stop nato eastward expans exclud ukrain join nato guarante',
‘intens battl russian armi surround last nationalist fighter mariupol”’,
9.44574],

.

.

For better clarity, we create a data frame from the result.

[ 1 df_sim = pd.DataFrame(distances, columns=['text_1', '"text_2', 'similarity'])
df_sim.reset_index(drop=True, inplace=True)

df_sim
_Zv text_1 text_2 similarity
1] rt russia deputi fm sergey ryabkov must stop ni... rt russia deputi fm sergey ryabkov must stop ni... 1.00000
1 rt russia deputi fm sergey ryabkov must stop n___ azovst fulli liber russian militari 0.56376
2 rt russia deputi fm sergey ryabkov must stop ni... intens battl russian armi surround last nation... 0.44574
3 rt russia deputi fm sergey ryabkov must stop n___ russia fsb releas footag reportedli show arres. 062803
4 rt russia deputi fm sergey ryabkov must stop n... hundr activist gather washington dc commemort... 0.47246

If you represent the result of the comparison as a matrix, then there will always be
ones on the main diagonal, since there the message is compared with itself. Therefore,
we select from the results only those that are less than one, and at the same time those
that are greater than 0.8, that is, very similar messages that are potentially overwritten.

[ 1 df_sim.loc[df_sim['similarity’'] >= 0.8].loc[df_sim[ similarity’] < 1]

_Zv text_1 text_2 similarity
11058 presid vladimir putin telephon convers presid .. presid vladimir putin telephon convers presid .. 0.80417
28995 rt brief russian defenc ministri rt brief russian defenc ministri spokesperson 0.88783
30468 Jjoe biden told barack obama run presid hill joe biden made ha ha russian oligarch comment __. 0.80046
31158 presid vladimir putin telephon convers presid ... presid vladimir putin telephon convers presid ... 0.80637
39781 russia halt ga suppli bulgaria amp poland coun...  poland ramp revers ga suppli germani russia ga... 0.80256
50501 joe biden made ha ha russian oligarch comment joe biden fold barack obama run presid hill 0.80046

To conclude whether the messages are similar, we want to look at their original
appearance. But after comparing 300 x 300 in the resulting dataframe, all the indexes
went astray. However, knowing how these indices were formed allows us to return to the
original indices. For example, if the result is a message with index 302, it is clear that
this is the second message compared to the third, because the first 300 records (0 - 299)
are comparisons of the first message with all others, and starting from 300 (300 - 599)
there are comparisons second message with all others.



In this way, to get the index of the first message, you need to perform a special division
"/I" operation on the index from the result, which returns only the whole part (floor
division), and for the second index, perform a "%" operation on the remainder of the
division (modulus).

[ 1 def showorig{num):
print(df_prop_orig.text[num // n_texts])
print({'\n\n')
print (df_prop_orig.text[num % n_texts])

We are interested in this line, so we will generate original views for it.

39781 russia halt ga suppli bulgaria amp poland coun...  poland ramp revers ga suppli germani russia ga... 0.80256

[ 1 showorig(39781)

-Zv Russia halts gas supplies to Bulgaria &amp; Poland as countries refuse ruble payment https://t.co/yVoHI1094X

Poland ramps up reverse gas supplies from Germany

Russia’s Gazprom closed taps after Warsaw refused to pay for del.. https://t.co/Kn3a54YirR

In these messages, some links were followed and made sure that the messages could
be called the same.

Link:

https://x.com/RT_com/status/1519692929065009155

https://x.com/i/web/status/1519292781226868742

They both say that russia is stopping gas supplies to Poland because it does not want
to pay for gas in rubles.

This is a success in terms of finding similar messages, but both of these messages
came from the same group, a day apart. We want to find connections between different
groups. To do this, | download a second dataset containing message metadata such as

date, time, and group, and in the process of downloading, | select only those columns
that interest us.

[ ] df = pd.read_csv("/content/drive/MyDrive/prop_tueets.csv")

df - df[['date’, 'time', 'username', ‘tueet']]
df

= date time username tweet
0 2/24/2022 14:01:58 tinkzorg https./it.co/4dvHUFQVA4
1 2024/2022 14:24:32 mia_russia (=) President Viadimir Putin: We have to take bo...
2 2/24/2022 14:42:53 mia_russia () Viadimir Putin: Over the past 30 years we ha...
3 2/24/2022 14:50:06 russianembassy President #Putin: For 8 years Russia has been _._
4 2/24/2022 14:56:54 mia_russia (=) Viadimir Putin: A veritable “empire of lies”_..

22597 10/5/2022 2:54'57 garlandnixon BREAKING NEWS: Germany is really pissed at Rus. .
22598 10/5/2022 2:56:08  pelmenipusha @mdfzeh I'm not certain that's even the same g
22599 10/5/2022 2:56:36 pelmenipusha If you mainsplain to me I'm going fo block you...
22600 10/5/2022 2:57:28 pelmenipusha  @SurelyYoulest1 @Kyivindependent If Russia los...
22601 10/5/2022 2:59:47 pelmenipusha Cathedral of the Armed Forces of the Russian F._.

22602 rows = 4 columns

We use the old function for text processing:



[ ] proc_text 2 = df.tweet.apply(preprocess)
proc_text_2

)

]

1 presid vladimir putin take bold immedi action ...
2 vladimir putin past year patient tri come agre...
3 presid putin year russia everyth possibl settl...
4 vladimir putin verit empir lie creat insid us ...

22597 break news germani realli piss russia victori day

22598 certain even guy ye awar
22599 mainsplain go block without warn stop
22600 russia lost tf ukrain need money weapon
22601 cathedr arm forc russian feder

Name: tweet, Length: 226082, dtype: object

We create a dataframe for cleaned texts:

— date time username text
(] 2/24/2022  14:01:58 tinkzorg
1 2/24/2022 14:24:32 mfa_russia  presid vladimir putin take bold immedi action
2 2/24/2022 14:42:53 mfa_russia  viadimir putin past year patient tri come agre.
3 2/24/2022 14:50:06 russianembassy presid putin year russia everyth possibl settl...
4 2/24/2022 14:56:54 mfa_russia vladimir putin verit empir lie creat insid us
° clean_df_2 = pd.DataFrame()
clean_df_Z [ "date" ] - df.date 22597 10/5/2022 2:54:57 garlandnixon break news germani realli piss russia victori day
c lean_df_Z [ "time" ] = df.time 22598 10/5/2022  2:56:08 pelmenipusha certain even guy ye awar
C ]_ean_df_2 [ 'username” ] = df.username 22599 10/5/2022 2:56:36 pelmenipusha mainsplain go block without warn stop
clean_df_2["text'] = proc_text_2 22600 10/5/2022 2:57:28  pelmenipusha russia lost tf ukrain need money weapon
22601 10/5/2022 2:59:47 pelmenipusha cathedr arm forc russian feder
c leanid'F72 22602 rows x 4 columns

We use the old function to compare messages, this time 1000 x 1000:

[ ] sims_2 = calc_sim(clean_df 2, 1000)
sims_2

0

fusr/local/lib/python3.1@/dist-packages/scipy/spatial/distance.py:636: RuntimeWarr
dist = 1.0 - uv / np.sqrt(uu * vv)
e, i,

[
‘presid vladimir putin take bold immedi action peopl republ donbass ask russia b
special militari oper’,

11,

[
‘vladimir putin past year patient tri come agreement regard principl equal indiv
lie attempt pressur blackmail®,

11,

We transfer the result to the dataframe:

© df sim2 - pd.DataFrame(sims_2, columns-['text_1', ‘text_2', ‘similarity’])

df_sim 2
= text_1 text_2 similarity
0 1.00000
1 presid viadimir putin take bold immedi action __. 1.00000
2 viadimir putin past year patient tri come agre... 1.00000
3 presid putin year russia everyth possil settl_. 1.00000
4 viadimir putin verit empir lie creat insid us ... 1.00000
999995 twitch sure twitch twitch dutch afghanistan america done cheap effect do... 0.23084
999996 twitch sure twitch twitch exactli 1.00000
999997 twitch sure twitch twitch total mad 026795
999998 twitch sure twitch twitch oh god dad everi fuck issu sinc like rich 0.32985
999998 twitch sure twitch twitch twitch sure twitch twitch 1.00000

1000000 rows = 3 columns

It seems that after processing, some texts became empty, but they will still be rejected
when selecting messages with a similarity of less than 1.



[ 1 candidates = df_sim_2.loc[df_sim 2[ similarity"] »>= @.8].loc[df_sim 2[ similarity’] < @.9]
candidates

b1]

text_1 text_2 similarity

1006 presid viadimir putin take bold immedi action . presid putin dpr amp Ipr ask russia help decis... 0.81571
3339 presid putin year russia everyth possibl seftl . clearli issu russia perog wast anymor time bel... 0.81281
3460 presid putin year russia everyth possibl setil_. nato first time histori activ nato respons for. . 0.81022
3855 presid putin year russia everyth possibl settl... nato ultim goal alway complet destruct russia ... 0.80627
6001 presid putin dpr amp lpr ask russia help decis. .. presid viadimir putin take bold immedi action .. 0.81571
909300 presid viadimir putin telephon convers presid ... presid viadimir putin telephon convers iranian._. 0.84930
925196 video ukrainian beat russian pow amp forc shou...  russian mod declar achiev everyth want today g... 0.82307
925907 video ukrainian beat russian pow amp forc shou_. russia nato direct militari confront real poss... 0.80092
946467 fuck stupid solv noth show xenophob fuck 0.82142
959477 sound like nazi jew estonian like nazi 0.83397

182 rows = 3 columns

We create a function similar to the previous one for viewing the original appearance
of messages.

[ 1 def showorig2(num):
print(df.tweet[num // 100071)
print('\n\n")
print(df.tweet[num % 1000])

We check this line:

6001 presid putin dpr amp Ipr ask russia help decis... presid viadimir putin take bold immedi action ... 0.81571
[ ] showorig2(6001)

E}- President #Putin: #DPR &amp; #LPR have asked #Russia for help. Decision to carry out a special military operation made in accordanc

(=) President Vladimir Putin: We have to take bold and immediate action. The People’s Republics of Donbass have asked Russia for hel

Both messages are about the beginning of a full-scale invasion, and they both say
that "the people of the DNR and LNR are asking russia for help, and according to Article
51 of the United Nations Charter, russia is launching a 'special operation' in those lands".

The texts are similar, now it's worth checking where they were taken from.

[ 1 print(df.loc[[600l // 1000]])

2 date time username \
6 2/24/2022 15:17:49 russianembassy

tweet
6 President #Putin: #DPR &amp; #LPR have asked #...

[ 1 print(df.loc[[6001 % 1660]])

o> date time username \
1 2/24/2022 14:24:32 mfa_russia

tweet
1 [ President Vladimir Putin: We have to take bo...

The messages were posted on the same day, with an hour difference, and from
different groups. It should be taken into account that it was such a large-scale event that
it is possible that all the groups wrote about it. However, the text of the messages itself
is so similar that we believe it is evidence of a propaganda network. In the mfa_russia



group, the message was posted at 14:24, and in the russianembassy group - at 15:17,
the chain looks like this: mfa_russia — russianembassy.
Let's try to write a function to automate the search for such chains.

[ 1 def find_nets(dataframe):
result = []

for row in candidates.index:
if df.username[row // 1000] != df.username[row % 1060]:
result.append([df.username[row // 1000] + ' " + df.username[row % 1000]])

return result
[ 1 links = find_nets(candidates)
links = list(np.squeeze(links))
links

4

['mfa_russia__ russianembassy’,
'russianembassy__ thesiriusreport’,
'russianembassy__ thesiriusreport’,
'russianembassy__ russ_warrior',
'russianembassy__ mfa_russia’,
'alexxal721__ thesiriusreport’,
'russianembassy__ alexxal721°",
'russianembassy__ russ_warrior',
'russianembassy  mfa russia’,
'colonelhomsi_ alexxal721l',
‘mfa_russia___ russianembassy’,
'russ_warrior__ thesiriusreport’,
'russ_warrior__ geromanat’,
‘alexxal721__ thesiriusreport’,
‘alexxal721__ russ_warrior',
'russ_warrior__ geromanat’,

We compile a dictionary from the obtained results using the collections library:

[ 1 from collections import Counter
[ 1 Counter(links)

E} Counter({ 'mfa_russia__ russianembassy': 2,
'russianembassy__ thesiriusreport': 2,
'russianembassy__ russ_warrior': 2,
'russianembassy__ mfa_russia': 2,
‘alexxal721__ thesiriusreport': 4,
'russianembassy  alexxal721': 1,
‘colonelhomsi  alexxal721': 1,
'russ warrior  thesiriusreport': 2,
'russ warrior  geromanat': 3,
'alexxal721  russ warrior': 3,
'russ warrior  alexxal721': 3,
'jacksonhinklle  colonelhomsi': 1,
'colonelhomsi__ mfa_russia': 1,
'thesiriusreport__ rwapodcast': 1,
'ghazov___ angieskys': 2,

'ghazov__ geromanat': 2,
‘angieskys__ geromanat': 4,
‘angieskys_ alexxal721': 5,
'rwapodcast___ thesiriusreport': 1,
'thesiriusreport__ alexxal721': 4,

Next, you can combine those cases when there are symmetrical chains, that is, from
the first group to the second and from the second to the first. Then you can look at the



number, how many cases of reinterpretation there are between groups, and based on
this, conclude the presence of a propaganda network. You can also build longer chains
of 3-4 or more groups. Potentially, you can further write functions that will themselves
look at numbers from the dictionary and conclude the existence of the network.

However, this is where our research ends, as we do not have sufficient computing
power to cover all available data. We could not process 6500 x 6500 messages, and in
this dataset, there are as many as 22500 x 22500. Therefore, here we end our review
and, accordingly, research.

7. Conclusions

At the beginning of the research, the topic of the project is formulated in the article,
and the purpose and tasks of the research are described:

1. Recognition of propaganda messages.
2. Analysis of the spread of propaganda messages between groups, thereby
finding propaganda networks.

The relevance, object and subject of the research are described. The means of
influencing public opinion are studied, in particular propaganda, in particular russian
propaganda. During the war with russia, the methods of combating information attacks
of the enemy are extremely important. A search and review of data for the study was
conducted. Several datasets of different structures were selected for further research.
The quality of tagged data, the balance of tags and the presence of empty values are
checked. Several regularities of specific datasets are deduced (regarding the length of
messages, and the use of certain emoticons and keywords).

Processing of text data was carried out using a combination of different methods
(conversion to lowercase, extraction of characters through regular expressions,
extraction of stop words, stemming). The unigue words present in the texts of the dataset
were reviewed. In particular, a table of word frequencies was compiled, which
demonstrates some regularities for certain words (for example, frequent use of the word
"foreign" in propaganda). The best parameters for the binary classification of propaganda
on machine learning models were selected, such as logistic regression (1-2-3-grams,
5000 features). A classification accuracy of ~0.85 was achieved.

Binary classification was tested using artificial neural networks, namely: a simple fully
connected neural network with count vectors at the input, a neural network with
embeddings at the input, and a transformer. Unusually, neural networks were unable to
outperform logistic regression. Different methods of measuring the similarity (distance)
between texts were tested: cosine similarity with different types of input vectors, Jaccard
similarity, Leventschein distance, and cosine similarity on downloaded word2vec-
google-news-300 embeddings. The last method proved to be the best, so it was used
further. On several datasets, part of the messages were compared with each other, using
the selected method of distance measurement. Similar messages were found, which
most likely were reinterpreted, both within the same group and between different groups.



A method of calculating the number of reinterpretations between groups has been
created, which allows the recognition of propaganda networks.
The results of the project:

1. For the first time, the fundamentals and main principles of the synthesized
information technology for the automatic detection of sources of disinformation
and inauthentic behaviour of chat users were developed, which will allow
timely detection of destructive and suspicious communities in various social
networks, identify their leaders and curators, identify information threats in
user messages, prevent the spread of fake and harmful information.

2. For the first time, a method of stylistic analysis and linguistic processing of
disinformation was developed to form an information portrait of the author/text
content generation bot as part of the search parameters for both similar author
content and distribution channels.

3. Developed criteria and parameters of inauthentic behaviour of chat users for
the formation of information portraits of potential disinformation disseminators
and detection of distribution routes and mechanisms, frequency of fake
generation, topics and keywords characteristic of the relevant group.

NLP of the process of identifying content as fake/not fake is a complex process, as it
depends not only on the speed/quality of pre-collected/integrated and processed content
(blocked/unblocked in a certain region, content topics) but also on an effectively selected
machine learning model on training sessions datasets. Usually, the fake is not blocked.
The purpose of its creation is to spread it as quickly as possible both throughout the
world and in those regions where usually true information (not fake) can potentially be
blocked (not guaranteed). If non-fake information is blocked in a certain territory, and the
opposite (fake) information is distributed from this territory, then the chance of identifying
a fake increases. If the non-fake is not blocked and the fake is freely distributed in
parallel, NLP methods will not help here. They can only label two sets with opposite
explanations for an event/phenomenon. And only with additional statistical research, it is
possible to identify which set is fake and which is not. The difficulty lies in the language
of the content itself, in particular Ukrainian. In comparison with English-language content,
Ukrainian/russian languages are quite difficult to automatically process, especially when
analyzing semantics and building an ontology. Standard and traditional methods used
for processing English-language tests are not suitable for processing Slavic languages,
including for identifying disinformation and stylistic features of authors who generate
fakes and propaganda. Similarly, in addition to the fact that the inauthentic behaviour of
chat users, both people and bots, is different, people with different motivations (belief in
propaganda, work for money, just one of the types of vandalism and, so to speak,
leisure), nationality, education, gender, mentality, level of knowledge of the language of
the text, degree of faith, intelligence, etc. All this significantly affects the process of
determining the criteria for the behaviour of different communities and within the same
community, which in turn significantly affects the formation of an informational portrait of
the inauthentic behaviour of users of various chats (what is typical for a Muslim



propagandist is significantly different for a representative of a rashka as russia or,
respectively, Ipr/dpr).

Justification of the practical value of the planned results of the project for the economy
and society:

- Reducing the amount of disinformation, fakes and propaganda and the
frequency/regularity of publication by tracking stylistically similar content and distribution
routes.

- Reducing the negative impact of disinformation on public sentiment and reducing
the degree of control of public opinion through the spread of propaganda in information
warfare. For example, suppressing the psyche of young people (including mental
disorders, leading to lethal consequences), encouraging them to engage in antisocial
behaviour, forming groups of civil disobedience or aggressive behaviour on fabricated
pretexts, analyzing the social consequences of cyberattacks, etc.

- Reducing the cost of finding, identifying and blocking disinformation,
authors/targeted distributors and sources.

The development of the above-described methods is aimed at identifying threats,
third-party intervention (attacks) in the early stages, classifying threats by type, and
further countering each type of threat. Description of the ways and methods of further
use of the results of the project in social practice.

1. Implementation of information security in the form of response to cyber threats
related to the spread of fakes and propaganda in information warfare is an
important modern practice in the USA and in many countries of Asia and the
European Union.

2. The results of this project can be used in the information security organization
of Ukraine to identify not only disinformation but also targeted groups with
primary sources of dissemination. This synthesized information technology
will make it possible to significantly reduce the overall negative impact on
public sentiment and opinion, eliminate deceptive elements of public opinion
management in society, and also reduce the cost of automatically finding,
processing and blocking disinformation/distribution sources.

3. In the future, the results of the project may have a long-term social impact in
the information sphere, in particular for the implementation of PSYOP among
such directed groups in favour of Ukraine to ensure the cyber security of the
state and inflict damage on the enemy in the information war.

The following risks may affect the implementation of the project:

e the risk associated with the war in Ukraine, the conduct of hostilities on the
territory of the country, periodic mass shelling and the possibility of a blackout;

¢ the risk associated with the instability of economic legislation and the current
economic situation;

¢ incompleteness and inaccuracy of information on the dynamics of technical
and economic indicators, parameters of new equipment and technology.



Organizational, production and financial risks are not assumed. Possible technical
risks are that the level of automation of the stages may not fully satisfy the initial
requirements. It is possible to involve elements of the manual implementation of some
tasks with the adjustment of the corresponding methods; a possible replacement in the
use of basic mathematical methods of the project for the development of new models
and methods. Then there will likely be a transition to traditional approaches or new ones
(if new approaches and information technologies are developed in the world in the next
two years); the development of individual methods and tools may go beyond the
established deadlines. Then, during the implementation of the demo version of the
system, traditional approaches will be applied to ensure the minimal functionality of the
methods.
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