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Abstract 
This article introduces a novel method for tackling the reverse dictionary task, utilizing text 
segmentation into subwords. We focus on physical texts written in Ukrainian, dividing words into 
subwords that include morphemes, individual characters, and their combinations. Unlike word-level 
segmentation, the subword vocabulary is limited, thereby eliminating the issue of unknown lexical units. 
Unlike character-level segmentation, each subword retains a certain degree of semantic information, 
which allows for the construction of meaningful embeddings. We explore various combinations of 
language models using different levels of segmentation in the context of reverse dictionary 
development. This approach represents a significant advancement towards automating terminological 
work through the utilization of machine learning methods applied to terminology science. The findings 
enhance the linguistic capabilities of artificial intelligence, helping it to process terminology research 
with a human-like comprehension. Furthermore, the consideration of the Mixture of Experts (MoE) 
architecture is proposed to integrate both traditional word-based and innovative subword-based 
approaches. This hybrid method aims to leverage the strengths of both segmentation levels, thereby 
enhancing the performance of multimodal large language models (LLMs) in processing and 
understanding intricate linguistic structures. 
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1. Introduction 

One significant aspect of natural language processing (NLP) tasks involves the generation or 

prediction of text or words. Reverse dictionaries, as outlined by Hill et al. (2016) and Yan et al. 

(2020), hold promise in this domain, where machine-generated lexical units are proposed based 

on their definitions. 

Within this framework, employing subwords as fundamental linguistic units offers notable 

advantages over conventional methods. Compared to approaches using complete words as the 

smallest units, utilizing subwords circumvents issues associated with unseen words, allowing for 

the construction of new words using an existing subword vocabulary. Unlike character-based 

approaches, subword employment maintains a connection to underlying semantics (Chaudhary 

et al., 2018; Zhang et al., 2020; Aguilar et al., 2021). Consequently, the decomposition of words 

into constituents has been investigated in various NLP tasks focusing on text generation, 

prediction, and speech recognition (Chaudhary et al., 2018; Sennrich et al., 2016; Arčan et al., 

2019; Church, 2020). 
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It is important to highlight that the prevalent byte-pair-encoding method for word 

segmentation, grounded in mathematical statistics, exhibits several drawbacks (Aguilar et al., 

2021). Among these, the most unpleasant is its tendency to erroneously segment compound 

words like “electroneutral” as “electron-eu-tral” or so instead of “electro-neutral” (Church, 2020). 

At the same time, one of the major difficulties in the terminology work is conditioned by the 

need to process huge amounts of terminological data (L’Homme, 2013) which motivates their 

automated processing. In particular, an important part of terminology management is the 

prescriptive step where, according to ISO 704 (2000:vi), the prescribed (recommended) term 

should be chosen or created on the basis of its definition (see Drewer and Ziegler, 2011, 164). In 

this sense, the process of attributing designations to concepts in terminology science corresponds 

to reverse dictionary task in NLP. 

Such formulation of terminological (and, more generally, linguistic) tasks in terms of machine 

algorithms contributes to linguistic competency of an artificial personality with artificial 

intelligence (see Shevchenko et al., 2023, 27-29) that manifests the person’s ability for human-

like thinking, effective lingual communication, and the so-called “accurate report”. The last is 

considered, in turn, a significant sign of consciousness in mammals (Seth et al., 2004). 

Little work of this kind has been done heretofore on the data coming from low-resource 

languages such as Ukrainian. This paper aims to address this gap by employing symptomatic 

statistical and analytical methods from the field of terminology science. Specifically, we will 

present two subword vocabularies tailored to the Ukrainian language within the domain of 

physics based on the “Explanatory dictionary on physics” (Vakulenko and Vakulenko, 2008). The 

two obtained texts will contain the simple and composed segmentation into the combined and 

individual subwords, respectively, that is the first step towards a reverse dictionary and other 

NLP tasks. We will discuss also the most efficient ways to create a reverse dictionary in the field 

of physics and adjacent fields by means of deep learning. From a more general perspective, this 

paper makes a step towards linguistic competency of an artificial personality with artificial 

intelligence (AI) that will be able to create new terms using human-like algorithms. This way, the 

typical assignments of terminology science that usually require much human work, will be 

translated to machines with elements of a linguistically competent AI. 

2. Method and material 

In this study, we undertake a supervised learning task focused on creating reverse and domain-

specific dictionaries, necessitating the compilation of a linguistic unit vocabulary during the pre-

processing phase. As highlighted earlier, subword segmentation emerges as the most viable 

method for preserving semantics, in contrast to character-level analysis, and for circumventing 

the challenge of unknown words, as opposed to word-level scenarios. 

This segmentation of Ukrainian texts relies on the set of Ukrainian morphemes (affixes) 

sourced from specialized dictionaries (Sikorsjka, 1995; Karpilovsjka et al., 1998; Poljugha, 2001). 

A curated collection comprising 2,000 Ukrainian roots, encompassing both commonly used and 

domain-specific units, has been manually introduced. 

Our initial approach involves the utilization of individual subwords. It is important to note that 

subwords exhibit significant homonymy, wherein the same combination of letters may occur in 

different parts of distinct words with varying meanings. We anticipate that incorporating 

individualized subwording into the neural network will yield averaged sense embeddings, similar 

to those at the word level (cf. Loureiro et al., 2021, p. 388). Additionally, as an analogue to 

contextual embedding models for words, we will elaborate on a vocabulary of combined 

subwords, wherein each sense corresponds to a combination of elementary subwords, if 

applicable. We hypothesize that this second approach will yield a more specific neural network 



output. A comparative analysis of the results obtained from the aforementioned approaches can 

provide insights into the extent to which neural network predictions rely on the preliminary 

preparation of input data. 

The definitions and explanations of terms are drawn from the “Explanatory dictionary on 

physics” (Vakulenko and Vakulenko, 2008) which, after the removal of in-text cross-references, 

comprises 6,068 distinct entries. The resulting subword vocabularies contain approximately 

28,000 units each. The free Microsoft transliteration tool has been utilized to facilitate automatic 

text segmentation based on rules embodying both approaches. 

To range the predicted terms according to their applicability, we suggest using the apt term 

criteria formulated in a machine-friendly manner (see Vakulenko, 2024): 

1. Exactness (the concordance between the term meaning and its morphological structure) is 

understood as the cosine similarity (degree of entailment) between the definition and 

corresponding vocabulary entry. 

2. Essentiality (coverage of key aspects of the concept and absence of false associations) is 

determined as the ratio between the largest entailment degree and the second-largest degree, as 

taken from the dictionary explanations. 

3. Plainness (a clear inner form of a term) is calculated as the ratio of the number of subwords 

in the term coinciding with the sub-words in its definition, to the total number of subwords. 

4. Derivativity (the ability to easily create derivatives of the word) is estimated as the absence 

of “nnja” and “ttja” in the word ending and the ability to add subwords to the existing word stem. 

The transliteration is carried out according to the National transliteration standard (DSTU, 2022; 

see also Vakulenko, 2023b). 

5. Good sound (the agreement with phonotactic rules) is regarded as the absence of clusters 

of more than two different consonants (except “str”, “zdr”, “spr”, “zbr”, “skr”, “skl”, “stv”, “zdv”, 

“ntr”, “ndr”, “ntv”, “ndv”); the absence of “ngh” following with a consonant or in the word end; 

absence of “shr” and “zhr”; the absence of two different neighboring vowels (except the second 

“u”); absence of “ry”, “ghy”; the absence of “bv”, “bf”, “pv”, “pf”,“mf”, “mv”, “lr”, “ljr”, “ljs”, “ljsh”; the 

absence of final consonant clusters (except “sk”, “lk”, “nt”, “st”, “stj”). 

6. Systemic feature, or systemness (reflection in the designation belonging to a particular 

class of concepts) is assessed as the availability of the same form among other dictionary entries 

resulting in meronyms or hypernyms (hyponyms). 

7. Organic nature, or organicity (conformance with spelling and language tendencies) is 

evaluated as the inverse number of maximum-length subwords. 

8. Compatibility (the ability to be combined in terminological combinations) is estimated as 

the valence of the term or its closest analogs, if newly coined. 

9. Unambiguity is estimated as an inverse total number of definitions in the dictionary 

corresponding to the term entry. 

10. Nominativity (as opposed to descriptive attribute) is calculated according to the formula 

Knom = 1/(1+nconj+nend), where nconj is an inverse number of conjunctions in the collocation, and nend 

is the number of verb endings “ty”, “tysja”, “tysj”.  

11. Brevity is estimated as an inverse number of symbols in the term (or an inverse number 

of sounds). 

This selection of criteria is preferable to those described previously in rules regulating 

terminological work. In particular, the German standard DIN 2330 (1993, 8) determines the 

following basic lingual requirements for terms:  

exactness (Ger. Genauigkeit), brevity (Ger. Knappheit), orientation towards accepted language 

usage (Ger. Orientierung am anerkannten Sprachgebrauch), motivation (Ger. Motiviertheit), 

derivability (Ger. Ableitbarkeit), absence of connotations (Ger. Konnotationsfreiheit), speakability 

(Ger. Sprechbarkeit), linguistic correctness / logic (Ger. sprachliche Korrektheit / Logik), clarity 



(Ger. Eindeutigkeit) (see Drewer and Ziegler, 2011, 173-175). For example, exactness is 

understood here as a complex requirement combining one-to-one correspondence between a 

notion and a corresponding name with motivation clarity of a term. Such complex benchmarks 

should be split into simple ones that has been carried out in our apt term criteria.  

3. Results  

The pieces of codes generating the vocabulary of simple and combined Ukrainian subwords 

(Phys-Ukr) have been presented in (Vakulenko, 2024). 

Here is an example of the subworded text (individual subwords): 

&зор&і& &по&дв&ій&н&і& [&зір&к&и& &по&дв&ій&н&і&] &астр&. @ 

– &фіз&ич&н&а& &си&стем&а& &з& &дв&ох& &зір&ок&, &як&і& &з&в'яз&ан&і& 

&сил&ами& &тяж&і&нн&я& &і& &рух&а&ють&ся& &на&в&кол&о& &с&піль&н&ого& 

&центр&а& &мас&. 

&зор&і& &с&палах&ов&і& [&зір&к&и& &с&палах&ов&і&] &астр&. @ 

– &з&мін&н&і& &зор&і&, &як&і& &різ&к&о& &та& &непер&і&од&ич&н&о& 

&з&мін&ю&ють& &сві&й& &блиск&. &Іноді& &ц&им& &терм&ін&ом& &по&зна&ч&а&ють& 

&ус&і& &евол&юц&і&йн&о& &молод&і& &з&мін&н&і& &зір&к&и&, &але& &част&іш&е& – 

&ц&е& &син&онім& &з&мін&н&их& &тип&у& &U&V& &Кит&а&. &Перш&а& &з&. &с&. 

&за&реєстр&ов&а&н&а& &в& &1&9&2&4&, &си&стем&а&ти&ч&ні& &до&слідж&е&нн&я& 

&ц&их& &зір& &про&вод&ять&ся& &з& &кін&ц&я& &4&0&-&х& &рок&ів& &Х&Х& 

&стол&іт&т&я&. &З&. &с&. &ма&ють& &низь&к&у& &світ&н&ість&. &Вік& &від&ом&их& 

&з&. &с&. &від& &1&0&5& &до& &1&0&1&0& &рок&ів&. &С&палах&ов&а& &акт&ив&н&ість& 

&зір&к&и& &з& &вік&ом& &з&менш&у&єть&ся&. 

&з&рідж&е&нн&я& @ 

&=& &с&крапл&е&нн&я&. 

&з&сув& &2&, -&у& (&де&форм&ац&і&йн&ий&) @ 

– &най&прост&іш&а& &де&форм&ац&і&я& &тіл&а&, &з&у&мовл&ен&а& 

&до&тич&н&ими& &на&пруж&е&нн&ями&; &про&явл&я&єть&ся& &у& 

&с&по&твор&е&н&н&і& &кут&ів& &елем&ент&ар&н&их& &пара&лел&епі&п&е&ді&в&, &з& 

&як&их&, &мож&на& &в&важ&а&ти&, &с&клад&а&єть&ся& &тіл&о&. 

&з&сув& &3&, -&у& (&ен&ерг&ет&ич&н&ий&) @ 

– &з&міщ&е&нн&я& &рівн&ів& &ен&ерг&і&ї& &один& &від&нос&н&о& &одн&ого&. 

&з&сув& &ізо&топ&іч&н&ий& @ 

– &з&міщ&е&нн&я& &один& &від&нос&н&о& &одн&ого& &рівн&ів& &ен&ерг&і&ї& &та&  

&спектр&аль&н&их& &лін&ій& &атом&ів& &різ&н&их& &ізо&топ&ів& &одн&ого& 

&хім&іч&н&ого& &елем&ент&у&; &про&явл&я&єть&ся& &так&о&ж& &в& 

&оберт&а&льн&их& &і& &колив&а&льн&их& &спектр&ах& &молекул&, &як&і& 

&міст&ять& &різ&н&і& &ізо&топ&и& &одн&ого& &елем&ент&у&. 

The full text of “Explanatory dictionary on physics” subworded into simple (individual) and 

combined (composite) subwords, is available on GitHub: https://github.com/Mova-

2020/Subworded-Explanatory-Dictionary-on-Physics-/tree/main. 

4. Discussion 

The same character combinations may necessitate different segmentation in various words, a 

phenomenon that can be observed within a terminology science framework utilizing a 

symptomatic statistical method (Vakulenko, 2014, 19–23; Vakulenko, 2023a, 123–132). Unlike 

mathematical statistics, which deals with strict quantities, symptomatic statistics focuses more 

https://github.com/Mova-2020/Subworded-Explanatory-Dictionary-on-Physics-/tree/main
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on qualitative occurrences and tendencies. Consequently, segmentation based on symptomatic 

statistics may differ from that favored by mathematical statistics, which tends to prioritize 

subword division according to the most "frequent" character combinations, disregarding 

alternative variants. However, accounting for different combinations of subwords leads to 

various patterns with differing probabilities.  

For example, the letter combination "abcd" may be split into "ab&cd" with a 50% probability, 

"a&bcd" with a 30% probability, and "abc&d" with a 20% probability. Initially, the first variant 

may seem preferable, but this preference can change significantly with the addition of another 

letter. For instance, the split "ab&cde" may have a 10% probability, leaving 90% for "abc&de". 

The subword vocabulary derived from the “Explanatory dictionary on physics” (Vakulenko 

and Vakulenko, 2008) contains numerous such units. For instance, the formant “vys” may appear 

in words like “vysylaty” (‘emit’) where the first two letters belong to the prefix and the third is 

the initial letter of the root, as well as in “vysity” (‘hang’), where this formant represents the root. 

To differentiate the formant “vysl” appearing in the words “provyslyj” (‘sagging’) and “vyslanyj” 

(‘emitted’), we introduce the additional subword combination &vy&sl&a&n& working for the last 

word. Similarly, to distinguish the homonymic formants “dal” as in “dala” (‘gave’) and in “dalekyj” 

(‘far’), we use the subwordings &da&l&a& and &dal&ek&, respectively. The formant “ynni” may 

belong to the adjective “polovynni” (‘half’) containing the suffixes “yn” and “n”, and to the noun 

“rjabotynni” (‘ripples’) with the differing suffixes “y” and “nn”. In this case, the most detailed 

segmentation is provided, which enables all possible variants: &y&n&n&i&. 

Moreover, the frequencies of such divisions may vary significantly depending on the domain.  

Given that many terms are internationalisms, the neural network is expected to predict terms 

composed of international elements. To accommodate this, subwords corresponding to 

international roots and affixes are introduced. For example, the stem “vizualjn” (‘visual’) is 

segmented into &viz&u&alj&n&. 

This application of the symptomatic statistical method mirrors human-generated knowledge, 

which is pertinent to the reverse dictionary task. On the other hand, the predictions of the neural 

network align with the analytical method, imbuing the methods of terminology science with a 

machine learning interpretation, which represents a significant step toward intelligent execution 

of various terminological tasks. This supervised training enables the machine to emulate human 

thinking processes. 

The text of the “Explanatory dictionary on physics” (Vakulenko and Vakulenko, 2008) 

subworded based on the described vocabularies, contains on average 4-5 subwords per word and 

is devoid of errors such as "*electron-eutral". Terms stemming from indigenous Ukrainian roots 

exhibit more similarity with their explanations compared to international terms. 

The practical implementation of the proposed approach consists, first of all, in training of 

embeddings for Ukrainian subwords (composed and simple) using transformers and other 

architectures.  

At the same time, taking into account the significant prior work in creating vector databases 

within the framework of the traditional approach using word dictionaries, it is advisable to 

consider the combination of the proposed approach to segmentation based on morphemes with 

known methods of tokenization and vector embedding of whole words. This can significantly 

improve the performance of NLP models, including those designed for reverse dictionary creation 

tasks. 

The concept of effective integration of traditional and proposed methods may consist of the 

use of various technologies covering the key stages of textual data processing. 

First of all, we are talking about hybrid tokenization with the segmentation of texts 

simultaneously at the level of morphemes and words. This dual approach allows the language 

model to track both the semantic nuances provided by morphemes and the contextual 



information encapsulated in full words. In some cases, especially for processing unknown words 

or for lexical units with less clear morphological boundaries, character-level segmentation should 

also be included as an additional level of subword analysis. 

The next object of modification is the stage of vector embeddings, where changes can be made 

in three important directions: 

 embedding based on morphemes, which will allow displaying the semantic and syntactic 

properties of vector embeddings for the entire variety of morphemes. This can be 

achieved by training on a large corpus of morphologically annotated texts or by adapting 

existing word embeddings to morphemes using subword information; 

 word embedding with morphological awareness, which consists of combining the process 

of morpheme embedding with the formation of word embeddings, ensuring that the 

resulting word vectors will reflect the contribution of individual morphemes. Appropriate 

unification can be done using weighted averaging or based on special neural architectures 

trained to compose embedding morphemes into word embeddings; 

 contextual embedding using language models such as bidirectional encoder 

representations from transformers (BERT) or its derivatives capable of generating 

context-sensitive embeddings. These models can be fine-tuned on morpheme-segmented 

text to produce embeddings sensitive to the morphological structure of words in a given 

context. 

Tuning the architecture of the language model covers two main aspects: (i) the inclusion of 

morphological information in the input layer of the language model and (ii) the corresponding 

adaptation of the attention mechanism. For example, the large language model (LLM) input layer 

should be designed to accept morpheme representations alongside traditional word tokens. This 

can be implemented using parallel channels of input of relevant data or on the basis of a unified 

representation that combines information at the level of morphemes and words, for example, as 

part of a concatenation operation. Changes in the attention mechanism are driven by the need to 

allow the model to focus on relevant morphemes or word segments when predicting or 

generating representations. This is especially useful for tasks that depend on understanding 

subtle semantic differences. 

The learning strategy of LLM-modified architecture is based on joint learning on 

morphological and semantic tasks. Training should consist of a combination of tasks that require 

both morphological understanding (e.g., segmentation of morphemes, marking parts of speech) 

and semantic tasks (e.g., recognition of word meanings, reverse dictionary entry). This prompts 

the model to develop its representations that are informative at both levels. 

Transfer learning and fine-tuning procedures can be used to simplify the learning process with 

the involvement of a pre-trained embedding and a language model as a starting point, with their 

further refinement on the corpus of text annotated with morphological information. This 

approach can significantly reduce the training time and improve the performance of the language 

model, relying on the existing linguistic knowledge. 

Specific evaluation metrics that take into account both morphological accuracy and semantic 

relevance can be used to evaluate training effectiveness, ensuring that the integrated approach 

effectively supports the NLP target tasks. 

It should be noted that integrating morpheme-based segmentation with traditional 

tokenization and embedding methods will initially require iterative refinement based on 

feedback and task-specific requirements. However, thanks to the well-thought-out integration of 

morpheme-based segmentation with traditional NLP methods, one can hope for the creation of 

Ukrainian-language models that will take linguistic nuances into account and be reliably 

contextual. This will lead to improved LLM performance in a wide range of language 

understanding tasks, including but not limited to reverse dictionary creation. 



Looking at the positive aspects of combining word vectors with subword or morpheme vectors 

in a wider range of aspects, it is important to emphasize that this can significantly improve the 

ability of NLP models to understand and process language. At the same time, the beneficial effect 

of grouping words with similar meanings into common clusters will be preserved and 

strengthened, which will affect the process of finding synonyms and working with language 

structures in several ways. In particular, semantic accuracy will improve because integrating 

morpheme or subword vectors with whole word vectors can help models better understand the 

semantic relationships between words, especially since many words share morphemes that 

indicate relatedness or semantic proximity. For example, words with the same prefixes or suffixes 

often have similar meanings or belong to the same semantic category. This can make the process 

of finding semantic cognates more accurate and efficient. 

In addition, the use of morpheme vectors allows us to enrich the vector space by providing 

additional dimensions to distinguish between words that may appear similar in meaning but have 

differences in usage or connotation. This will allow the LLM to better navigate the nuances of 

language and distinguish between words with subtle differences in meaning. 

Integrating morpheme vectors with whole word vectors can make the search process of 

synonyms, antonyms, heteronyms, and other semantically related lexical units more flexible. 

Through morpheme analysis, language models can identify such units not only based on complete 

similarity of word forms but also based on commonality of morpheme components, which can 

reveal a wider range of semantic relationships. 

Another positive effect is the improvement of the processing of newly created words. Models 

that use both whole word and morpheme vectors do better with newly created or rarely used 

words because they can interpret their meaning based on known morphemes. This enhances the 

model's ability to find semantically related units and understand language even when LLMs 

encounter unfamiliar terms. 

Thus, the integration of morpheme vectors with word vectors not only preserves the beneficial 

effect of grouping similar words into common cluster groups but also greatly expands the 

potential of NLP models for understanding and processing linguistic data. This allows us to better 

perceive semantic relations, enrich the vector space, and increase accuracy and flexibility when 

finding synonyms of words. This approach makes it possible to create deeper and more extensive 

language models, capable of understanding not only the surface content of the text but also the 

deep structure and meaning of individual language units. 

The option of combining two different types of vector data at the LLM input is not the only 

possible solution. Another approach is to use two different LLMs independently, one focused 

exclusively on processing traditional word vectors and the other on embedding only subword 

vectors. The idea is to further combine these different architectures into one through a special 

merge operation. This approach using different LLMs to process traditional word vectors and 

embeddings of subword vectors is a new strategy for building complex NLP systems. This 

approach allows one to use specialized models for different aspects of language analysis and then 

combine their strengths to achieve better performance on specific tasks. Let’s consider its main 

stages in more detail. 

Step 1. Preparation of two variants of language models. 

A model for traditional word vectors is trained or fine-tuned for NLP tasks using standard 

word vector bases. It can be, for example, a BERT, a generative pre-trained transformer (GPT), a 

Mistral, or any other model optimized for working with full-format words and their context. 

The subword vector embedding model specializes in parsing and using subword vectors, such 

as morphemes or character grams. This model can be adapted for a deeper understanding of the 

morphological structure of language and used for tasks that require more detailed linguistic 

analysis. Each model is trained independently to process input data in its specialized domain to 



solve the tasks of classification, information summarization, semantic analysis, etc. The output of 

these LLM variants is vector representations or other forms of output specific to a particular task. 

Step 2. Fusion of model outputs 

After obtaining the results from both types of models, these results are combined using several 

different methods. 

The simplest way to combine is to concatenate the outputs of both models into one longer 

vector before further processing or classification. For a more refined combination, an attention 

mechanism can be applied, which determines the importance of each element of the output of 

both models for a specific task. It is also possible to develop and train an additional layer or neural 

network that specializes in merging the outputs from the two models, optimizing the merging 

process for specific tasks. 

The effectiveness of this approach depends on the ability of the fusion procedure to 

qualitatively integrate information from both sources. The approach of combining the 

conclusions from different models makes it possible to use each model taking into account its 

maximum advantages, providing flexibility and the possibility of deeper data analysis. At the 

same time, models of different sizes and different numbers of layers can be used. However, such 

text processing also requires careful planning and tuning of the fusion process and can increase 

computational costs due to the need to manage multiple models. 

Table 1 
The main methods to merge language models in the Mergekit framework (Goddard, 2024) 

Method Multi-Model Uses base model 

Linear (Model Soups)  
(Wortsman et al., 2022) 

✅ ❌ 

SLERP (Spherical Linear 
IntERPolation) 

❌ ✅ 

Task Arithmetic (Ilharco et 
al., 2023) 

✅ ✅ 

TIES (TrIm, Elect Sign & 
Merge) (Yadav et al., 2023) 

✅ ✅ 

DARE (Drop And REscale) 
(Yu et al., 2023) 

✅ ✅ 

 
A more advanced option for merging different LLMs, which has been intensively developing 

recently, is to combine their architectures using a special Mergekit framework (Goddard, 2024). 

Its feature is the possibility to obtain the resulting model of the same size and the same number 

of parameters as in the models that were subjected to the merging procedure. The list of the main 

methods of this type is presented in Table 1. 

Fig. 1 is an illustration of the process of combining 4 pre-trained language models into one 

using the DARE TIES combined method. In this way, for example, a language model of a physical-

technical orientation can be implemented, if not only the physical dictionary of subwords 

considered above, but also a technical dictionary formed similarly would be used to train the 

combined models. 



 

Figure 1: Merging of a few trained LLMs 

An alternative option for combining models with the embedding of word vectors and subword 

vectors is to use the switched mixture of experts (MoE), which was developed by the team of 

developers of the LLM family of the Mixtral type (Mistral, 2023). 

One of the first works promoting this type of architecture is the monograph by Zhi-Hua Zhou 

(2012). In the corresponding structure of the expert system (Fig. 2), it was assumed to control 

the weight vectors of the output results of several experts with the help of a special control 

gateway.  

  

Figure 2: The classic structure of a mixture of experts (Zhou, 2012, 94) 

This approach is very close to the operation of the multiple LLM merging procedure described 

above. In this way, the outputs of LLMs with input word embeddings and individual LLMs with 

subword embeddings must be combined by weight processing controlled by a special gateway. 

The modern concept of MoE is an advanced approach in machine learning, which allows to 

create highly adaptive models by combining the conclusions from a set of “expert” subnetworks. 

This approach was developed in the context of LLMs such as Mixtral to improve the efficiency and 

adaptability of models to different tasks or data domains. 



The main idea behind MoE is to distribute input data between different “expert” models based 

on their specialization. Each expert is optimized to handle a specific type of information or task. 

After processing the input data by several selected experts, the results of their work are combined 

using a switch that determines the weight of each expert for the final output of the model. At the 

same time, the rest of the experts are not involved, as shown in Fig. 3 (Chen et al., 2022), that 

saves computing costs and allows reducing the requirements for available hardware resources. 

In the context under consideration, each of the MoE experts is proposed to be replaced by a 

pair of LLMs, one of which works with traditional word embedding, and the other with a vector 

base of subwords in the appropriate task modality. 

 

Figure 3: Switched mixture of experts (Chen et al., 2022)  

The gating mechanism is also implemented on the basis of a separate language model, which 

decides how to distribute input data between the experts available in the structure and how to 

combine their conclusions. Routers can be trained to determine which expert is best to handle a 

given incoming request. This principle of operation allows for dynamic load distribution, 

adaptively changing the flow of input data between experts depending on the task or the involved 

context. 

Thus, the MoE concept makes it possible to create models that can adapt to a variety of data 

types and tasks using specialized expert clusters. Adding new experts to handle additional data 

types or tasks is relatively straightforward, allowing for easy scaling of the model. Due to the 

ability to distribute the computational load among experts, MoE can be more efficient than 

traditional approaches, especially under resource-constrained conditions. 

In the context of LLMs such as Mixtral, the MoE has been used to build models capable to 

efficiently handle a wide range of linguistic data and tasks, from text classification to speech 

generation. The MoE application option proposed by the authors makes it possible to use 

different expert models to process, for example, traditional word vectors and subword vectors, 

and then integrate their outputs to obtain a comprehensive understanding of the text. This 

approach opens new opportunities for the development of language models, allowing to creation 

more powerful, flexible, and adaptive natural language processing systems. 

Using separate experts for processing words and separate experts for processing subword 

vectors in the context of MoE opens up opportunities to improve the flexibility and efficiency of 

language models and opens a possibility to involve different levels of linguistic analysis, 



combining a deep understanding of the morphological structure of language with contextual 

analysis at the level of whole words or phrases. At the same time, expert models having various 

architectures, a wide range of sizes, and quantization levels can be used. This will make it possible 

to compensate for the increase in the volume of dictionaries of subwords compared to the 

traditional structures of vector bases of whole words, choosing architecture variants with a 

higher level of quantization of weight coefficients for the construction of expert models with 

morpheme embedding. 

As an illustration, Fig. 4 shows the relation between the memory requirements and the 

number of tokens for different quantization levels (Q8, Q6 and Q5) obtained by the authors from 

the results of the inference procedure for LLM Dolfin 2.6 without GPU. Corresponding scores were 

calculated using the LM Studio framework. As expected, the memory requirements increase with 

the maximum number of tokens processed (horizontal axis) at all quantization levels. 

Significantly, such a dependence is linear, which has not been obvious. Also, higher quantization 

levels (Q8) require more memory than lower ones (Q6 and Q5), indicating that quantization 

effectively reduces memory requirements. 

  

Figure 4: Memory requirements vs. number of tokens for different quantization levels 

The numerical values of the data given in Fig. 4 are presented in Table 2. 

Thus, LLM quantization within MoE is a key method to minimize computing resources for MoE 

LLM operation. 

The division of tasks between experts in the MoE enables each of them to specialize in a 

specific aspect of language analysis. For example, whole-word experts may focus on semantic and 

contextual relationships, while subword experts may focus on morphological parsing and 

linguistic unit analysis at a finer level. 

Combining input from experts specializing in different levels of linguistic analysis can lead to 

a deeper and more comprehensive understanding of a text. This is especially important for 

complex language tasks such as understanding allusions, idioms, or ambiguities. 

 
Table 2 
Memory requirements vs. number of tokens for different quantization levels 



Tokens  Memory 
Requirements (GB) 

 

8 quants (Q8) 6 quants (Q6) 5 quants (Q5) 

1024 7,60 5,92 5,15 

2048 7,74 6,05 5,28 

4096) 7,99 6,32 5,54 

8192 8,52 6,84 6,07 

16384 9,57 7,89 7,12 

32768 11,67 9,99 9,22 

 
Overall, the MoE approach makes it easy to adapt the model to a variety of tasks or domains, 

dynamically changing the input of different experts depending on the context or specificity of the 

data. However, despite these advantages, training and integrating multiple specialized experts 

can add additional complexity to the model development and optimization process. In addition, 

effectively combining the findings from different experts requires careful selection and tuning of 

the switching mechanism to ensure an optimal distribution of weights among the experts. In 

doing so, it is important to ensure that no single expert dominates the decision-making process, 

as this may lead to insufficient consideration of input from other experts. 

When scaling the considered approach to multimodal tasks, it is advisable to match image, 

video, or audio vectors to the embedding vectors of not only whole words but also different 

variants of subwords. 

Similarly, in addition to the vectorization of entire images or videos, it is suggested to use a 

vector base of image fragments or parts of video frames. In particular, a separate augmentation 

of the vectorized base of video recordings by vectorizing the joints of adjacent frames in video 

streams can be useful, which will allow a better perception of the dynamics of interframe changes 

in video scenes. It is quite obvious that additional embedding of fragments or parts of video 

frames opens up new opportunities for deeper analysis of visual content. This is especially 

important for multimodal applications where visual and textual data must be matched, including 

embedding vectors not only for whole words but also different variants of subwords. The fact is 

that by analyzing individual fragments of images or parts of video frames, we can reveal details 

that may remain unnoticed when analyzing a complete image or video. This will provide a better 

understanding of the rendering scene, elements in the background, as well as smaller objects or 

actions that occur in the frame. Vectorization of the joints between adjacent frames allows us to 

more holistically and predictably perceive the dynamics of scenes, changes in the location of 

objects, facial expressions, or movements, providing information about the movement and 

interactions of all components of video content. This significantly improves the model's ability to 

understand video, including its verbal description. 

The positive effect of multimodal interaction in the proposed way is to strengthen the 

correspondence between visual and textual data. In multimodal applications, it is important to 

establish an exact correspondence between visual elements (images, videos) and textual data 

(words, phrases). Vectorization of both visual and textual content at a finer level gives the model 

the ability to better understand the relationships between different modalities. In addition, the 

augmentation of the vector base due to the compatible vectorization of frame joints and subwords 

enriches the information space on which the model is trained, allowing it to better adapt to 

various tasks and contexts. This may include improving the ability to determine context, 

understanding intentions and emotions, and providing additional degrees of freedom for 

generalizations. 



Although vectorizing image, audio, or video fragments increases the amount of data to process, 

using efficient algorithms and architectures optimized for performance can help manage this 

increase. At the same time, it is necessary to ensure effective coordination between different 

modalities, using such approaches as alignment or joint representation algorithms to integrate 

and synchronize vector spaces of visual and textual data. In general, the development and training 

of models that effectively use the extended vector base will require the use of advanced methods 

of deep learning and the adaptation of existing architectures to new requirements. In particular, 

the use of a set of small language models as part of MoE (Slyusar et al., 2024), which specializes 

in certain areas of combinations of subword embeddings with niche modalities, bypassing the 

involvement of more universal models of large sizes, deserves attention. 

The use of these approaches opens up new perspectives for creating more powerful and 

adaptive multimodal systems that can effectively handle the complex tasks of analyzing, 

understanding, and generating diverse content. 

Fine-tuning embeddings trained in other languages is a viable elaboration. It holds promise to 

benchmark the proposed method against the byte-pair-encoding technique and establish a gold 

standard for cosine similarity between dictionary definitions and predicted terms. Utilizing 

predicted terminology can augment machine translation systems, elevating translation quality. 

This methodology can extend to other Slavic and world languages. The created subword 

vocabularies can expand beyond physics to encompass various domains, including general 

dictionaries. Ultimately, we anticipate the development of a neural network adept at 

autonomously suggesting terms for emerging concepts, representing an advanced AI technology 

capable of performing terminological tasks. However, these pursuits necessitate dedicated 

investigation and computation beyond the scope of this study. 

5. Conclusion 

So, in this paper, we have introduced a novel method for subword segmentation essential for the 

pre-processing phase of reverse dictionary tasks and other natural language processing (NLP) 

challenges, thereby embodying the principles of terminology science within a machine learning 

framework. We also have established criteria for term suitability in a format compatible with 

machine processing, and discussed possible ways to carry out machine learning to obtain on this 

basis a reverse dictionary. 

The resulting subworded text mitigates errors commonly encountered in widely used byte-

pair-encoding algorithms, which rely solely on mathematical statistics. By employing 

symptomatic statistical and analytical techniques from terminology science within machine 

learning, we take a significant step towards executing various terminological tasks intelligently, 

effectively imparting human-like thinking to AI systems. Furthermore, the neural network 

trained to autonomously generate terms for novel concepts holds the potential to evolve into 

advanced AI technology capable of handling all terminological work. 
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