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Abstract
In the last few years there have been rapid developments in SMT solving for finite fields. These include new
decision procedures, new implementations of SMT theory solvers, and new software verifiers that rely on SMT
solving for finite fields. To support interoperability in this emerging ecosystem, we propose the SMT-LIB theory
of finite field arithmetic (FFA). The theory defines a canonical representation of finite field elements as well as
definitions of operations and predicates on finite field elements.

1. Introduction

Finite fields are the basis for a large body of security-critical code. They are used in public-key cryptog-
raphy: elliptic curves over finite fields are used in nearly all web browser connections for key exchange
or digital signatures [1, 2, 3]. They are used in private-key cryptography: in both the Poly1305 message
authentication code [4] and Galois counter mode (GCM) [5]. They are also the basis of most protocols
for secure computation. For instance, many zero-knowledge proof systems prove and verify predicates
expressed as finite field equations [6, 7, 8, 9]. Also, many secure multi-party computation protocols
evaluate circuits over finite fields [10, 11]. Finally, some homomorphic encryption schemes apply to
data in a finite field [12, 13].

The importance and prevalence of (finite-)field-based programs creates a need for tools that can
formally verify them. Ideally, such tools would be partially or fully automated. The natural approach
is SMT-based verification, as taken by prior tools like Dafny [14] and Boogie [15]. In this approach, a
software verifier reduces the correctness of the program to logical formulas which it dispatches to a
satisfiability modulo theories (SMT) solver. Applying this approach to field-based software generally
requires an SMT solver that can solve finite field equations.

One way to solve field equations is by encoding them as integer equations, which many SMT solvers
already comprehend. Consider (for the moment) a finite field of prime order 𝑝. Such a field is isomorphic
to the integers {0, . . . , 𝑝 − 1} with addition and multiplication modulo 𝑝 [16]. Thus, (non-linear)
equations mod 𝑝 can be encoded as (non-linear) integer equations. In this encoding, an equation 𝑥𝑦 = 𝑧
over field variables 𝑥, 𝑦, 𝑧 would be encoded as (𝑥′𝑦′ − 𝑧′) mod 𝑝 = 0, where 𝑥′, 𝑦′, 𝑧′ are the integer
representatives of the field variables. These equations can now be solved using an integer solver. Or,
since all terms can be bounded, they can be solved as bit-vector (bounded integer) equations. However,
prior experiments have shown that existing integer and bit-vector solvers perform poorly when given
inputs that encode finite field arithmetic [17, 18].

To overcome the limitations of encoding, two direct SMT theory solvers for finite fields have recently
emerged. The first is an MCSat [19] solver that is implemented in Yices [20, 21, 22, 23, 24]. The second is
a CDCL(T) solver that is implemented in cvc5 [17, 25, 26]. Currently, these solvers accept field terms and
equations expressed using a bespoke extension to SMT-LIB. This extension has not been standardized.

These SMT solvers have already enabled a variety of research projects and tools for automatically
verifying systems that use zero-knowledge proofs (ZKPs). One project builds an automatically verifiable
compiler pass for CirC: a compiler used with ZKPs [27]. Another builds a tool QED2 that automatically
verifies ZKP code in the Circom language [28, 29]. Another builds a tool for automatically verifying
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ZKP code written using the Halo2 library [30]. All of these projects use an SMT solver with finite field
support.

Given the long-term importance of finite fields to security-critical software, the emergence of multiple
SMT solvers with finite field support, and the emergence of multiple automatic verification tools
expecting finite field support, we think the time is ripe to specify finite fields as an SMT-LIB theory. In
this short paper, we do exactly that. In our specification, we consider all finite fields: those of prime
order and their extensions. We consider fields of arbitrary size. Many cryptosystems require large fields
(such as a prime order field with 𝑝 ≈ 2256 or the binary extension field of order 2128), but some can
also operate over smaller fields (such as 32-bit or 64-bit fields) [31, 32].

Related Work There is already much work on verifying cryptographic implementations through
interactive theorem proving and verification languages. Examples of secret-key and public-key cryp-
tography include Fiat cryptography [33], Easycrypt [34], HACL* [35], and Jasmin [36]. There is also
some work on interactive verification for ZKPs in the context of the Leo compiler [37], and by using
refinement proofs [38, 39]. With better SMT-level support for finite fields, ITP proof automation for
finite field lemmas could be improved through ITP-SMT bridges, like SMTCoq [40].

Further afield, some cryptographic implementations have been modeled and analyzed using automated
symbolic analysis tools like Tamarin [41] and ProVerif [42]. The benefit of these tools is their high level
of interpretability and automation, which allows them to be applied to protocols of realistic complexity,
such as Signal [43]. However, they struggle to accurately model algebraic structures [44]. SMT-level
algebraic reasoning would complement this research.

Another line of research develops SMT solvers for non-linear integer and real arithmetic using
CDCL(T) [45, 46, 47, 48, 49, 50, 51, 52] and MCSat [53, 54, 55]. Some works specifically consider local
search [56, 57, 58] and quantifier elimination [59, 60]. This research serves as good inspiration into
techniques for finite field solving.

2. Background

We provide a brief summary of the relevant concepts of finite fields. A comprehensive overview can be
found in [61, 62, 63] as well as in many other algebra textbooks.

Fields. A field F consists of a set of elements 𝑆 on which the two binary operators addition “+” and
multiplication “·” are defined. 𝑆 is closed under both operators, i.e. when applied on two elements of
𝑆, the result is in 𝑆. Both operators are commutative, associative, and have distinct neutral elements
(denoted as zero (0) and one (1), respectively). Each element in 𝑆 has an additive inverse element and all
elements in 𝑆 ∖ {0} have a multiplicative inverse element. Further, distributivity of multiplication over
addition holds. Informally speaking, a field is a set with well-defined operations addition, subtraction,
multiplication, and division (with the exception of division by 0). Well known examples of fields are the
rational number Q and the real numbers R.

Finite Fields. A field F where 𝑆 is finite is called a finite field.1 The size of 𝑆 is the order of F. It has
been shown that every finite field has order 𝑞 that is a prime power 𝑞 = 𝑝𝑛. We distinguish between
prime fields with 𝑛 = 1 and extension fields with 𝑛 > 1. All fields of equal order are isomorphic (i.e.
equivalent up to relabelling of elements), thus the field of order 𝑞 is unique (up to isomorphism).

Prime Fields. The prime field of order 𝑝 can be represented as 𝑆 = {−
⌊︁
𝑝−1
2

⌋︁
, . . . , 0, 1, . . . ,

⌊︀𝑝
2

⌋︀
}2

and is denoted F𝑝. Let the function smod𝑝 : Z → 𝑆 be defined to map 𝑧 ∈ Z to the unique element

1In honor of French mathematician Évariste Galois, finite fields are also called Galois fields.
2In the (isomorphic) representation 𝑆 = {0, . . . , 𝑝− 1}, (with addition and multiplication modulo 𝑝), small “negative” values
(such as −1) are instead represented as large positive values (such as 𝑝− 1), which can be unintuitive to read. We choose our
representation because small negative values are common in many applications.



of 𝑆 that is equivalent to 𝑧, modulo 𝑝. The function is called “smod𝑝” because it outputs a signed
representation of its input.

Addition and multiplication on 𝑆 are defined by the usual integer operations followed by an applica-
tion of smod𝑝. Due to the construction of 𝑆, finding the additive inverse is as simple as flipping the
sign (assuming odd 𝑝).

Example 1. The finite field F5 can be represented by the integers {−2,−1, 0, 1, 2}. In this representation
of F5, 2 + 1 = −2, 2 · (−1) = −2, and (2 + 1) · 2 = 1 hold.

Extension Fields. Let F𝑝[𝛼] be the set of univariate polynomials in variable 𝛼 with coefficients from
F𝑝, and let 𝑓 ∈ F𝑝[𝛼] have degree 𝑛 and be irreducible (i.e. it cannot be represented as the product of
two non-constant polynomials). The extension field of order 𝑝𝑛 is denoted F𝑝𝑛 and can be represented
as polynomials in F𝑝[𝛼] of degree less than 𝑛, with (polynomial) addition and multiplication modulo 𝑓 .
Note that, in this representation, {0, 1} ⊆ F𝑝 ⊆ F𝑝𝑛 .

Example 2. The finite field F32 is represented by the following polynomials of F3[𝛼] modulo 𝛼2 − 𝛼− 1:

{0, 𝛼, 𝛼+ 1, −𝛼+ 1, −1, −𝛼, −𝛼− 1, 𝛼− 1, 1}

Over F32 it holds that (𝛼+ 1) · 𝛼 = (−𝛼+ 1).

As the choice of 𝑓 is not unique in general, different (isomorphic) representations of F𝑝𝑛 exist, even if
the representation of F𝑝 is fixed. Note that no finite field is an ordered field. That is, there is no total
ordering on 𝑆 that is compatible with the field operations.

Conway Polynomials Algebraic tools have many choices for how to represent fields internally. But,
to facilitate interoperability, the computer algebra community has agreed upon a canonical family of
irreducible polynomials that should be used to represent elements of an extension field F𝑝𝑛 in tool
interfaces. These are called the Conway polynomials 𝐶𝑝,𝑛 ∈ F𝑝[𝛼], where 𝑝 is a prime and 𝑛 > 1.
The precise definition of the Conway polynomials is not important for our purposes.3 There is an
algorithm for finding them [64] and they have been pre-computed for many 𝑛 and 𝑝 [65]. The Conway
polynomials are used by all prominent computer algebra libraries: Sage, Magma, GAP, Singular, etc.
We will use the Conway polynomials to define an SMT-LIB syntax for extension field element literals
(Sec. 3.3).

Example 3. The Conway polynomial 𝐶3,2 is 𝛼2 − 𝛼− 1, which is the irreducible used to represent F9 in
Example 2.

3. A Theory of Finite Fields

This section presents the SMT-LIB (version 2.6) theory of finite field arithmetic (FFA). Based on the
theory of finite field arithmetic are the logics of quantifier-free finite field arithmetic QF_FFA as well as
its quantified version FFA.

3The Conway polynomial 𝐶𝑝,𝑛 is the lexicographically minimal monic primitive polynomial of degree 𝑛 over F𝑝 that is
compatible with 𝐶𝑝,𝑚 for all 𝑚 dividing 𝑛. Let 𝑟 = (𝑝𝑛 − 1)/(𝑝𝑚 − 1) (which is an integer). Then, 𝐶𝑝,𝑛 ∈ F[𝛼] is
compatible with 𝐶𝑝,𝑚 ∈ F[𝛼] if for every root 𝛼0 ∈ F𝑝𝑛 of the former, 𝛼𝑟

0 is a root of the latter. The lexicographic ordering
used is also slightly non-standard. Define the alternating-sign coefficient representation of polynomial 𝑓 ∈ F[𝛼] to be
𝑓 =

∑︀𝑑
𝑖=0(−1)𝑖𝑐𝑑−𝑖𝛼

𝑑−𝑖 = 𝑐𝑑𝛼
𝑑−𝑐𝑑−1𝛼

𝑑−1+ · · ·+(−1)𝑑𝑎0, with 𝑐𝑖 ∈ {0, . . . , 𝑝−1}. Then, the order is lexicographic
over the tuples (𝑐𝑑, . . . , 𝑐0).



3.1. The Finite Field Sorts

The theory of finite fields defines two kinds of finite field sorts, prime field sorts and extension field sorts
for prime and extension fields, respectively (Sec. 2). They are represented by an indexed sort identifier
of the form (_ FiniteField 𝑝) and (_ FiniteField 𝑝 𝑛) for prime and extension field sorts,
respectively. The indexes 𝑝 and 𝑛 are numerals specifying the finite field order 𝑞 = 𝑝𝑛. The index 𝑝
must be a prime number in both cases. For extension field sorts, 𝑛 > 1 must hold, as otherwise the
resulting sort would be a prime field. Providing a non-prime number as 𝑝 may result in unspecified
solver behavior, although solvers are encouraged to report an error.4 As is usual for an indexed sort,
two finite field sorts with a different order are different sorts. Solvers implementing this theory are
not required to support extension field sorts and may report an error in case an extension field sort is
specified.5

For the rest of this chapter, a finite field sort is a prime or extension field sort with an arbitrary fixed
order.

Example 4. Set the logic to non-linear finite field arithmetic and define finite field sorts of size 5 and 9:

(set-logic QF_FFA)
(define-sort FF5 () (_ FiniteField 5))
(define-sort FF9 () (_ FiniteField 3 2))

3.2. The Domain of Finite Field elements

A finite field of a given order is uniquely defined up to isomorphism. Thus, for the sake of defining an
SMT theory for finite fields, a canonical representation for a finite field of a given order needs to be
fixed. Otherwise different solvers might present the same model differently.

For a prime field with prime order 𝑝, the elements are represented by the integers of the set
{−

⌊︁
𝑝−1
2

⌋︁
, . . . ,

⌊︀𝑝
2

⌋︀
}. Operations are performed with regard to the function smod as defined in Section 2.

For an extension field of order 𝑝𝑛 the field elements are represented by univariate polynomials over the
prime field of order 𝑝. The implied field is F[𝛼]/𝐶𝑝,𝑛, where 𝐶𝑝,𝑛 is the Conway polynomial (Sec. 2).
All polynomial operations are performed modulo the Conway polynomial 𝐶𝑝,𝑛.

3.3. Finite Field Literals

In the theory of finite fields, each element of a finite field sort is represented by a literal. To avoid
confusion with the theories of integer and reals, finite field literals are prefixed with the string ff. We
further say that a literal is normalized when it stands for an element from the fixed field representation
as defined in Section 3.2. Non-normalized literals are allowed as an input and are mapped to the
corresponding normalized literal, however, solvers are required to resort to normalized literals when
printing a value.

Prime field literals. As stated in Section 2, elements of prime fields can be represented as integers
modulo the field size. This property is used to define literals in the form of ff𝑁 , where 𝑁 is an integer
value. Given a prime field sort (_ FiniteField 𝑝) with prime order 𝑝, elements represented by the
literals ff𝑁 for all values 𝑁 ∈ {−

⌊︁
𝑝−1
2

⌋︁
, . . . ,

⌊︀𝑝
2

⌋︀
} are normalized. Every literal outside this set is

mapped to the corresponding normalized literal by utilizing smod(𝑁). Using this operation, the input
gets mapped to the (unique) normalized representative of the same congruence class modulo 𝑝. In the

4We recommend that solvers test 𝑝’s primality probabilistically, for example with a 40-repetition Miller-Rabin test [66]. If 𝑝 is
not prime, the solver can report an error. If 𝑝 is prime or if the test is inconclusive, the solver may assume that 𝑝 is prime and
continue.

5We choose different syntaxes for prime fields and their extensions so that a user who is only interested in prime fields need
not understand or even be aware of extension fields.



field type order syntax syntax type

prime field 𝑝 (_ ff𝑁 𝑝) indexed
ff𝑁m𝑝 shorthand
(as ff𝑁 (_ FiniteField 𝑝)) annotated

extension field 𝑝𝑛 (_ ff𝑁.· · · .𝑁 𝑝 𝑛) indexed
ff𝑁.· · · .𝑁m𝑝p𝑛 shorthand
(as ff𝑁.· · · .𝑁 (_ FiniteField 𝑝 𝑛)) annotated

Table 1
Different ways to define literals

presence of finite field theory, the user may not define their own symbols of form ff𝑁 (nor may they
shadow other theory-defined symbols).

Example 5. Given the defined sorts of Example 4, then examples of normalized elements of FF5 are ff1,
ff0, and ff-2. The (non-normalized) literals ff4 and ff10 describe the same element as the normalized
literals ff-1 and ff0, respectively.

Extension field literals. Elements of extension field sorts are polynomials. Literals representing
elements of extension field sorts are uniquely describing polynomials by specifying their coefficients.
As described in Section 2, an element of a finite field of order 𝑞 = 𝑝𝑛 with 𝑛 > 1 is a polynomial
𝑃 ∈ F𝑝[𝛼] of degree at most 𝑛 − 1. Let 𝑃 = 𝑐0 + 𝑐1𝛼

1 + · · · + 𝑐𝑛−1𝛼
𝑛−1 where 𝑐𝑖 ∈ F𝑝, then

the element 𝑃 is represented by the literal ff𝑐0.𝑐1.· · · .𝑐𝑛−1 where all 𝑐𝑖 are integers. Tailing zeros
may be omitted, e.g. in (_ FiniteField 3 6) the literals ff1.0.-1.0.0 and ff1.0.-1 both
represent the element 1 − 𝛼2. This further ensures that elements in F𝑝 ⊆ F𝑝𝑛 have the same literal
representation in both (_ FiniteField 𝑝) and (_ FiniteField 𝑝 𝑛). A (polynomial) literal of
(_ FiniteField 𝑝 𝑛) is normalized when all integer coefficients are normalized with regard to 𝑝
and all tailing zeros are omitted. Specifying a literal with more than 𝑛 coefficients is invalid.

Example 6. Again, given the defined sorts of Example 4, normalized literals of FF9 are all (normalized)
literals of (_ FiniteField 3): ff0, ff1, and ff-1, as well as literals representing the further (poly-
nomial) elements of F32 , for example ff-1.1, ff0.1, and ff-1.-1 representing the elements 𝛼− 1, 𝛼,
and −𝛼− 1, respectively. Note that ff2.1 and ff1.0 are both non-normalized versions of ff-1.1 and
ff1, respectively.

Well-Sortedness of literals. Since the defined literals are overloaded (for example, every finite field
has a one element, thus ff1 is of undetermined sort), the order of the literal’s field must be specified in
order to satisfy the well-sortedness requirements of SMT-LIB. There are three ways of specifying the
sort of a finite field literal. (i) By indexing the literal (_ ff. . . 𝑝) and (_ ff. . . 𝑝 𝑛) with the finite
field order 𝑝 and 𝑝𝑛, respectively. This allows the literal’s sort to be derived, as the order of the finite
field specifies the sort uniquely. (ii) Similar to the theory of bit-vectors, there is a shorthand to avoid the
_ keyword and specify the sort as part of the literal symbol. This is done by appending the literal with
m𝑝 and m𝑝p𝑛 for prime field sort of order 𝑝 and extension field sort of order 𝑝𝑛, respectively.6 (iii) Since
𝑝 might be a large number, a short-cut is provided by (as ff. . . 𝑆) where 𝑆 is a finite field sort.
Using the define-sort command, one can assign a symbol to a finite field sort to be used for all its
literals. Table 1 gives an overview of all three variants. When printing finite field elements, solvers are
free to choose between the first two notations.

Example 7. The expressions (_ ff1 5) and (_ ff1 3 2) denote the multiplicative identity (one) of
F5 and F32 , respectively. In the shorthand notation, the same literals can be written as ff1m5 and ff1m3p2.
Using the defined sorts from Example 4, (as ff1 FF5) and (as ff1 FF9) can be used alternatively.
6Here, “m” denotes modulo and “p” denotes power. But, note that F𝑝𝑛 and Z𝑝𝑛 are not isomorphic for 𝑛 > 1.



3.4. Finite Field Operations

All of the following operator definitions represent well known semantics from algebra. Thus, an explicit
definition of their semantics is omitted and we refer to Section 2 for further details. Operations always
operate on one specific finite field sort 𝑆, i.e. all parameters have sort 𝑆 and an element of 𝑆 is returned.
All functions are defined for all prime field sorts as well as all extension field sorts. For the sake of
brevity, the extension field sort variants of the functions are omitted. Table 2 gives an overview of all
operations.

Binary arithmetic. For each finite field order, we define operations that take two finite field elements
of one finite field sort and return an element of the same sort. Given two inputs, the operations represent
sum, difference, product, and quotient, respectively.7

(ff.add (_ FiniteField 𝑝) (_ FiniteField 𝑝) (_ FiniteField 𝑝) :left-assoc)

(ff.sub (_ FiniteField 𝑝) (_ FiniteField 𝑝) (_ FiniteField 𝑝))

(ff.mul (_ FiniteField 𝑝) (_ FiniteField 𝑝) (_ FiniteField 𝑝) :left-assoc)

(ff.div (_ FiniteField 𝑝) (_ FiniteField 𝑝) (_ FiniteField 𝑝))

As hinted by the :left-assoc keyword, occurrences of ff.add and ff.mul may contain more
than two arguments and multiple arguments are grouped left associatively. However, note that both
operations are associative anyway.8

Unary arithmetic. For each finite field sort, there are the following unary operations:

(ff.neg (_ FiniteField 𝑝) (_ FiniteField 𝑝))
(ff.recip (_ FiniteField 𝑝) (_ FiniteField 𝑝))

Here, ff.neg returns the unary negation (usually written as −𝑥 for an element 𝑥), i.e. the inverse
element with regard to addition. The operation ff.recip returns the reciprocal value (usually written
as 𝑥−1 for an element 𝑥), i.e. the inverse element with regard to multiplication. Note that ff.recip
has total semantics but is unspecified for the zero element.

Division by zero. Two operators (ff.div, ff.recip) represent mathematical operations with only
partial semantics. Mathematically speaking, division by zero is undefined, and computing the reciprocal
of zero is undefined. Yet, SMT-LIB requires functions to have total semantics. We require solvers to
interpret the reciprocal of zero as zero. Moreover dividing any value by zero gives zero. This choice is
somewhat arbitrary. It is acceptable because it easy for solvers to meet and for verification tools to use.

A solver can meet this requirement using a preprocessing transformation. First, it encodes division as
multiplication by the divisor’s reciprocal. Second, it encodes the reciprocal relation 𝑧 = (ff.recip 𝑥)
by the following (reciprocal-free) formula:

[(𝑥 ̸= 0) ∧ (𝑥𝑧 = 1)] ∨ [(𝑥 = 0) ∧ (𝑧 = 0)]

This ensures that 0’s reciprocal is 0. The are other encodings of reciprocal that do not explicitly contain
a disjunction. For example, as (𝑧𝑧𝑥 = 𝑧) ∧ (𝑧𝑥𝑥 = 𝑥).

This requirement is also easy for verification tools that use SMT to work with. In particular, a
verification tool can create an SMT query where division or reciprocal have different semantics by
wrapping them with an if-then-else term that implements those semantics when the appropriate input
is zero.
7Since ff.neg and ff.recip are defined as well, ff.sub and ff.div are redundant. However, we believe that all common
mathematical operations should have operations in the finite field theory. Furthermore, other arithmetic theories in SMT-LIB
also define redundant subtraction and division operators.

8Note that ff.div is not Euclidean division, rather it is multiplication by an inverse in the field. Thus, the remainder of a
division, i.e. ff.rem, would not be meaningful.



Identifier Sort Meaning

ff.add 𝐹 × 𝐹 → 𝐹 finite field addition
ff.sub 𝐹 × 𝐹 → 𝐹 finite field subtraction
ff.mul 𝐹 × 𝐹 → 𝐹 finite field multiplication
ff.div 𝐹 × 𝐹 → 𝐹 finite field division
ff.neg 𝐹 → 𝐹 finite field negation
ff.recip 𝐹 → 𝐹 finite field reciprocal

Table 2
A summary of finite field operations for a finite field type 𝐹 .

3.5. Comparison

Since finite fields are not ordered, the theory of finite fields only supports the equality predicate:

(= (_ FiniteField 𝑝) (_ FiniteField 𝑝))
(= (_ FiniteField 𝑝 𝑛) (_ FiniteField 𝑝 𝑛))

Example 8. Continuing with the definition of Example 4. First define some variables:

(declare-fun x0 () FF5)
(declare-fun x1 () FF5)
(declare-fun x2 () FF5)

Then add some assertions:

(assert (= (ff.mul x1 x2) (ff.add x1 x2)))
(assert (= (ff.recip x1) x0))
(assert (= (ff.sub x2 x0)) (as ff1 FF5))

This encodes the constraint system in F5:

𝑥1𝑥2 = 𝑥1 + 𝑥2

𝑥−1
1 = 𝑥0

𝑥2 − 𝑥0 = 1

4. Existing Finite Field Solvers

There are two existing SMT solvers that support the theory of finite fields: Yices [23] and cvc5 [26].
Both support the logic of quantifier-free finite field arithmetic QF_FFA for prime fields as defined in
this paper.

• Yices2 implements reasoning over prime fields using its MCSat engine [24]. This implementation
is based on the approach by Hader et al. [22]. Processing of polynomials over prime fields is done
done using an updated version of the LibPoly library [67].

• cvc5’s prime field solver is a CDCL(𝒯 ) theory solver that implements two decision procedures
designed by Ozdemir et al. The first procedure is based on Gröbner bases and triangular decom-
position [17]. The second is based on the same algebraic ideas, but uses multiple, small Gröbner
bases for better scalability in some cases [25]. The implementation uses the CoCoALib computer
algebra library [68].

5. Future Directions

In designing our theory, we have intentionally omitted a number of potential features. Some of these
features might be good additions in the future. We discuss two such features here, together with why
they might be useful.



Conversions In this proposal, we do not give operations for converting between finite field elements
and other discrete arithmetic types, such as integers and bit-vectors. This might be useful for veri-
fication problems about code that converts between these types. For example, the AES-GCM block
cipher alternates between treating its data as bit-vectors and elements of F2𝑛 , to perform different
kinds of operations on that data. The bit-vector representation is used for the AES permutation and
the field representation is used in the GCM message authentication code. Another example is an im-
plementation of F𝑝 arithmetic on a 𝑏-bit CPU, where 2𝑏 ≪ 𝑝. Such an implementation is defined by
bit-vector arithmetic, but the specification is an equation in F𝑝. Thus, giving a natural statement of the
implementation’s correctness requires operations to convert between F𝑝 and bit-vectors. Since some
SMT solvers already allow conversions between bit-vectors and integers, conversions between integers
and finite field elements might suffice.

Another kind of conversion which might be useful is one between a field F𝑝𝑛 and some extension
F(𝑝𝑛)𝑒 of it (for 𝑒 > 1).

Variable-sized fields In this proposal, we consider only fields of fixed size. This bars the possibility
of queries that verify a property that holds generically for many or all fields. Such properties arise
naturally in many verification problems. For instance, one might have a function that implements some
finite-field operation in which the size of the field is an input to the function. To verify the function for
all fields, one might construct a logical formula in which the field size is a variable.
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